
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

109 | P a g e
www.ijacsa.thesai.org

Software Development Effort Estimation by Means of

Genetic Programming

Arturo Chavoya, Cuauhtemoc Lopez-Martin, M.E. Meda-Campaña

Department of Information Systems

University of Guadalajara

Guadalajara, Mexico

Abstract—In this study, a genetic programming technique

was used with the goal of estimating the effort required in the

development of individual projects. Results obtained were

compared with those generated by a statistical regression and by

a neural network that have already been used to estimate the

development effort of individual software projects. A sample of

132 projects developed by 40 programmers was used for

generating the three models and another sample of 77 projects

developed by 24 programmers was used for validating the three

models. Results in the accuracy of the model obtained from

genetic programming suggest that it could be used to estimate
software development effort of individual projects.

Keywords—genetic programming; feedforward neural network;

software effort estimation; statistical regression

I. INTRODUCTION

The estimation of how long it takes to develop specific
software projects is an ongoing concern for project managers
[1]. The software development effort estimation can begin with
individual projects within academic environments [2], as is the
case in this study. There are several techniques for estimating
development effort, which could be classified into: 1) expert
judgment that aims at deriving estimates based on the
experience of experts on similar projects [3][4]; 2) those based
on models such as a statistical regression model [5][6]; and 3)
those based on techniques from computational intelligence [7],
such as fuzzy logic [8][9], neural networks [10] and genetic
programming [11].

Considering that no single estimation technique is best for
all situations, and that a careful comparison of the results from
several approaches is most likely to produce realistic estimates
[12], this study compares estimates generated with a genetic
programming model against the results obtained with a neural
network and with the most commonly used model: statistical
regression[4].

Data samples for this study were integrated by 132 and 77
projects for generating (verifying) and validating the models,
respectively, and were developed by 40 and 24 programmers,
respectively. All of the projects were created following
practices of the Personal Software Process (PSP) [13].

The three models were generated from data of small
projects individually developed using practices of PSP because
this approach has proven its usefulness when applied to
individual projects [2].

The hypothesis of this research is the following: Prediction
accuracy of a model based on genetic programming is
statistically better or equal than a statistical regression model or
a model obtained with a feedforward neural network, when
these three models are generated from two kinds of lines of
code and are applied to the prediction of software development
effort of individual projects that have been developed with
personal practices.One reason for choosing genetic
programming in this work was that this technique is capable of
modeling non-linear behaviors, which are common when
correlating independent variables with the development effort
of software projects [14].

The rest of the paper starts with a section describing the
genetic programming algorithm used to generate the
corresponding model, followed by a section with the related
work. The next section presents the methods used for
evaluating the three models, followed bya section on the
generation of the models. Respective sections on the
verification and validation of the models are presented next.
The paper ends with a section of conclusions.

II. GENETIC PROGRAMMING

Genetic programming (GP) is a field of evolutionary
computation that works by evolving a population of data
structures that correspond to some form of computer programs
[15]. These programs typically represent trees varying in shape
and size where the internal nodes correspond to functions and
the leaves represent terminals such as constants and variable
names. The trees can be implemented as the list-based
structures known as S-expressions, with sublists representing
subtrees.

Fig. 1 presents the flowchart followed by a typical
implementation of the GP algorithm [15]. The GP algorithm
starts with a population of M randomly generated programs
consisting of functions and terminals appropriate to the
problem domain. If the termination criterion has not been
reached, each program is then evaluated according to some
fitness function that measures the ability of the program to
solve a particular problem.The fitness function typically
evaluates a problem against a number of different fitness cases
and the final fitness value for the program is the sum or the
average of the values of the individual fitness cases. GP
normally works with a standardized fitness function in which
lower non-negative values correspond to better values, usually
with zero as the best value.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

110 | P a g e
www.ijacsa.thesai.org

Fig. 1. Flowchart followed by a typical implementation of the GP

algorithm.Symbols are as follows: Gen = Generation counter; i = Individual

counter; M = Population size; Pr= Probability of reproduction; Pc =
Probability of crossover.

After all programs in the population have been evaluated, a
selection is made among the individuals in the population to
produce the next generation. This selection is usually made
proportionate to fitness so that programs with better fitness
values have a higher probability of being selected. The
Darwinian selection of the fittest individuals in the population
is the biological basis on which the various evolutionary
computation paradigms are inspired. A number of operations
can be applied to selected individuals to provide for variability
in the new generation. The reproduction operation consists of
selecting a fixed percentage of individuals to pass unchanged
to the next generation according to a certain probability of
reproduction (Pr). In the crossover operation, two individuals
are selected according to a probability of crossover (Pc) to
function as parents to produce two offspring programs. In each
of the parents a node in the corresponding trees is selected
randomly to constitute a crossover point.

The subtrees that have the selected nodes as roots are then
exchanged generating two new individuals that are usually
different from their parents.

Fig. 2 shows an example of two parental trees before
crossover, with the corresponding S-expression below each
tree; arrows point at the root nodes of the subtrees chosen to be
exchanged, with the corresponding subexpressions shown in
boldface.

Fig. 3 presents the generated offspring trees resulting from
the exchange of the subtrees in Fig. 2 whose root nodes are
pointed at by the arrows. The exchange of subtrees corresponds
to the exchange of the sublists shown in boldface below each
tree.

A fixed portion of the next generation is produced using the
crossover operation, having the possibility of forcing that a
fixed percentage of the selected nodes correspond to functions,
whereas the rest correspond to either functions or terminals.
Unlike genetic algorithms, the mutation operation is normally
not necessary in GP, as the crossover operation can provide for
point mutation when two nodes corresponding to terminals in
the parents are selected to be exchanged.

The process of evaluating, selecting and modifying
individuals to produce a new generation is continued until a
termination criterion is satisfied. The GP run usually terminates
when either a predefined number of generations has been
reached or a desired individual has been found.

Fig. 2. Example of two parental trees before crossover and the corresponding
S-expressions.

Fig. 3. Offspring trees after crossover and the corresponding S-expressions.

III. RELATED WORK

Results from the application of neural networks and
statistical regression have shown that the estimation accuracy
of both techniques are competitive with models generated from
data of large projects [16][17][18], and of small projects [19].

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

111 | P a g e
www.ijacsa.thesai.org

The accuracy of the genetic programming model used in
the present work is compared against the accuracies obtained
from the neural network and the multiple linear regression
models described in [19]. These two models were generated
using data from small-scale projects. The kind of neural
network used was a feedforward multi-layer perceptron with a
backpropagation learning algorithm (the most commonly used
in the effort estimation field [20]). The feed-forward neural
network used the Levenberg-Marquardt algorithm due to its
reported efficiency [21].

Genetic programming has already been applied to large
projects; however, we did not find any study related to its
application for predicting the software development effort of
small projects developed in laboratory learning environments
[22]. Some of the methods reported in previous publications
resemble the approach taken in the present work, in which a
mathematical model that best fits the data is searched.

The main difference of the present work with most
previous reports lies in the genetic programming parameters
they used and the data on which they applied the genetic
programming algorithm. In [10] a GP algorithm was
implemented having a population size of 1000 individuals
reproducing for 500 generations during only 10 runs. They
used a dataset of 81 software projects that a Canadian software
company developed in the late 1980s. They suggested that the
genetic programming approach needed further study to fully
exploit its advantages. On the other hand, in [23] GP was used
with the goal of comparing the use of public datasets against
company-specific ones. The techniques they used (GP,
artificial neural networks and multiple linear regression) were
slightly more accurate with the company-specific database than
with publicly available datasets. They used the same GP
parameters as in [10]. They concluded that companies should
base effort estimates on in-house data rather than on public
domain data. In [24] GP was compared against artificial neural
networks and multiple linear regression using a number of
publicly available datasets. Using less individuals in the GP
population (from 25 to 50) than normally employed in the
typical implementation of the algorithm (several hundred), they
found that although GP was better at effort prediction than
neural networks and multiple linear regression with some
datasets, in general, none of the techniques they tested rendered
a good effort estimation model. These authors concluded that
the datasets used to build a prediction model had a great
influence in the ability of the model to provide adequate effort
estimation. In [25] a different approach was used with GP;
instead of finding the mathematical model that best fitted the
data, they developed a grammar-based technique they called
Grammar Guided Genetic Programming (GGGP) and
compared it against simple linear regression. They used the
data of 423 software development projects from a public
repository and randomly divided them into a training set of 211
projects and a test set of 212 projects. The results obtained
using the GGGP technique were not very encouraging, as the
effort prediction they found was not very accurate. In [26] GP
was also applied for predicting the effort of large projects, and
their results showed that GP was better than case-based
reasoning and comparable with statistical regression. Finally,
GP was applied in [27] using the same methodology as in the

present work, but the model found had a slightly higher
validation MMER than the model presented here.

IV. METHODS

In this study, the independent variables for all three models
were New and Changed (N&C) as well as Reused code, and all
of them were considered as physical lines of code (LOC). N&C
is composed of added and modified code. The added code is
the LOC written during the current programming process,
whereas the modified code is the LOC changed in the base
project when modifying a previously developed project. The
base project is the total LOC of the previous projects, whereas
the reused code is the LOC of previously developed projects
that are used without any modification [13]. Source lines of
code represent one of the two most common measures for
estimating software size [28]. Finally, the dependent variable
Effort was measured in minutes.

The accuracy criterion for evaluating models in this work
was the Magnitude of Error Relative to the estimate for
observation i, or MERi, defined as follows:

MERi
Actual Effort i - Estimated Effort i

Estimated Effort i

.

The MER value is calculated for each observation i whose
effort is estimated. The aggregation of MER over multiple
observations can be achieved through the mean (MMER).

Another criterion that has been used in the past for
evaluating prediction models is the Magnitude of Relative
Error (MRE), which is calculated for the i-th observation as
follows:

MRE i
Actual Effort i - Estimated Effort i

Actual Effort i

.

The mean of MRE over multiple observations is denoted as
MMRE.

The accuracy of an estimation technique is inversely
proportional to the MMER or the MMRE. It has been reported

that an MMRE 0.25 is considered acceptable [29]; however,
no studies or argumentations supporting this threshold value
have been presented [30].Results of MMER in [31] showed
better results when compared to other studies; this fact is the
reason for choosing MMER as evaluation criterion in the
present work.

Experiments for this study were done within a controlled
environment having the following characteristics:

 All of the developers were working for a software
development company. However, none of them had
previously taken a course related to personal practices
for developing software at the individual level.

 All developers were studying a graduate program
related to computer science.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

112 | P a g e
www.ijacsa.thesai.org

 Each developer wrote seven project assignments. Only
the last four of the assignments of each developer were
selected for this study. The first three projects were not
considered because they had differences in their process
phases and in their logs, whereas the last four projects
were based on the same logs and had the following
phases: plan, design, design review, code, code review,
compile, testing, and postmortem.

 Each developer selected his/her own imperative
programming language whose coding standard had the
following characteristics: each compiler directive,
variable declaration, constant definition, delimiter,
assign sentence, as well as flow control statement was
written in a line of code.

 Developers had already received at least a formal
course on the object oriented programming language
that they selected to be used through the assignments,
and they had good programming experience in that
language. The sample for this study only involved
developers whose projects were coded in C++ or
JAVA.

 Because this study was an experiment with the aim of
reducing bias, we did not inform the developers about
our experimental goal.

 Developers filled out a spreadsheet for each project and
submitted it electronically for examination. This
spreadsheet contained a template called “Project Plan
Summary”, which included the completed data by
project. This summary had actual data related to size,
effort (time spent in the development of the project) and
defects. This document had to be completed after each
project was finished.

 Each PSP course was given to no more than fifteen
developers.

 Since a coding standard establishes a consistent set of
coding practices that is used as a criterion for judging
the quality of the produced code [13], the same coding
and counting standards were used in all projects. The
projects developed during this study followed these
guidelines. All projects complied with the counting
standard shown in Table I.

 Developers were constantly supervised and advised
about the process.

 The code written in each project was designed by the
developers to be reused in subsequent projects.

 The kind of the developed projects had a similar
complexity as those suggested in [13], and all of them
required a basic knowledge of statistics and
programming topics learned in the first semesters of an
undergraduate program. From a set of 18 individual
projects, a subset of seven projects was randomly
assigned to each of the programmers. Description of
these 18 projects is presented in [19].

 Data used in this study are from those programmers
whose data for all seven exercises were correct,
complete, and consistent.

TABLE I. COUNTING STANDARD.

Count type Type

Physical/logical Physical

Statement type Included

Executable Yes

Non-executable

Declarations Yes (one by text line)

Compiler directives Yes (one by text line)

Comments and Blank lines No

Delimiters:

 { and } Yes

V. GENERATION OF MODELS

Data from 132 individual projects developed by 40
programmers from the year 2005 to the year 2008 were used in
the three models: GP, neural network and multiple linear
regression. The projects that contained reused code were
selected for the sample.

A. Multiple Linear Regression

The following multiple linear regression equation was
generated [19]:

The intercept value of 45.06is the value of the line where
the independent variables are equal to zero. On the other hand,
the signs of the two parameters comply with the following
assumptions related to software development:

 The larger the value of new and changed code (N&C),
the greater the development effort.

 The larger the value of reused code, the lesser the
development effort.

An acceptable value for the coefficient of determination is
r2 ≥ 0.5 [13],with this equation having an r2 equal to 0.58. The
ANOVA for this equation had a statistically significant
relationship between the variables at the 99% confidence level
and the two independent variables were statistically significant
at the 99% confidence level.

B. Neural Network

There is a variety of tasks that neural network can be
trained to perform. The most common tasks are: pattern
association, pattern recognition, function approximation,
automatic control, filtering and beam-forming. In the present
work, a feedforward neural network with one hidden layer was
applied for function approximation. This network had already
been trained to approximate a function [19]. The effort was
considered as a function of two variables: N&C (number of
new and changed lines of code) and Reused (number of reused
lines of code).

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

113 | P a g e
www.ijacsa.thesai.org

It has been shown that a feedforward network with one
layer of hidden neurons is sufficient to approximate any
function with a finite number of discontinuities on any given
interval [21]. This is the reason for using a fully-connected
feedforward neural network with one hidden layer of neurons
in this work. The fully-connected part of the description means
that each neuron in a layer receives a signal from each of the
neurons in the preceding layer. There were two neurons in the
input layer of the network: one received the number of N&C
lines of code and the other received the number of reused lines
of code. The output layer consisted of only one neuron
indicating an estimated effort. The number of neurons in the
hidden layer was empirically optimized. A range from two to
40 neurons was explored and the best results were obtained
with ten neurons in the hidden layer. The optimized
Levenberg-Marquardt algorithm was used to train the network.

The network passed through two phases: training and
application. The first group of 132 software projects was used
to train the network. This group of projects was randomly
separated into three subgroups: training, validation and testing.
The training group contained 70% of the projects. The input-
output pairs of data for these projects were used by the network
to adjust its parameters. The next 20% of data was used to
validate the results and identify the point at which the training
should stop. The remaining 10% of data was randomly chosen
to be used as testing data, to make sure that the network
performed well with the data that was not presented during the
parameter adjustment.

C. Genetic Programming

A LISP implementation of the GP algorithm was used for
generating a model to predict software development effort. The
following standard parameters were used on all runs [15]: the
initial population consisted of 500 S-expressions randomly
generated using the ramped half-and-half generative method.
In this method, an equal number of trees are created with a
depth that ranges from 2 to the maximum allowed depth (6 in
this work) for new individuals. For each depth, half of the
programs corresponded to full trees, and the other half
consisted of growing trees of variable shape. The maximum
depth for individuals after the application of the crossover
operation was 17. The reproduction rate was 0.1, whereas the
crossover rate was 0.7 for function nodes and 0.2 for any node.
Finally, each GP run was allowed to evolve for 50 generations
and the individual with the best fitness value was selected from
the final generation.

The set of terminals was defined by the two independent
variables X1 and X2 corresponding to the New & Changed and
Reused lines of code, respectively. Additionally, terminals also
consisted of floating-point constants randomly generated from
the range [-5, 5).

The set of functions consisted of the arithmetic operators
for addition (+), subtraction (–) and multiplication (*), along
with the following protected functions shown in prefix
notation. To avoid division by zero, the protected division %
was defined as follows:

(% x y)
1

x /y

y 0

y 0
.

To account for non-positive variable values, the protected
logarithmic function RLOG was defined as

RLOG x
0

ln x

x 0

x 0
.

Finally, the protected exponential function REXP was
defined as

REXP x
0

ex

x 20

x 20
,

where the boundary value 20 was arbitrarily chosen to
avoid over- and underflows during evaluation.

Since the standardized fitness function

f is required to

consist of non-negative values, with zero as the best match, this
function was defined as

f Actual Effort i - Estimated Effort i .

The MMER value was not considered an appropriate
fitness measure, as the denominator in the MER formula can
yield negative values if the estimated effort in the LISP model
is negative itself.

Fifty experiments each consisting of 1,000 GP runs were
made. From each experiment, the run with the highest fitness
value (lowest f value) was selected and finally an individual
program from all runs was selected according to how well it
predicted software development effort on both the verification
and validation data sets. The selected program from the 50,000
runs is presented next in LISP notation, where X1 is New and
Changed code, and X2 is Reused code.

(- (- (+ (- X1 (* (- X2 X2) 3.7990248)) (REXP 3.7627742))

 (% (+ (* 2.2606792 X1) (- X2 -4.461488)) (+ (+ X1
X2) X1)))

 (% (+ (% X2 (+ X1 2.2606792)) (- 4.497994 X1))

 (+ (% (% X2 (% -1.1173002 X2)) (+ X1 X1)) (+ X1
2.2606792))))

After evaluation of constant subexpressions and
simplification of additions involving subexpressions evaluating
to zero, the next equivalent program was obtained.

(- (- (+ X1 43.06774)

 (% (+ (* 2.2606792 X1) (- X2 -4.461488)) (+ (+ X1
X2) X1)))

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

114 | P a g e
www.ijacsa.thesai.org

 (% (+ (% X2 (+ X1 2.2606792)) (- 4.497994 X1))

 (+ (% (% X2 (% -1.1173002 X2)) (+ X1 X1)) (+ X1
2.2606792))))

VI. VERIFICATION OF MODELS

The GP, the multiple linear regression equation, and the
neural network models were applied to the original dataset of
132 projects for estimating effort; then their accuracy by
project (MER), as well as by model (MMER), were calculated
giving the following results for MMER:

 Genetic Programming = 0.25

 Multiple Linear Regression = 0.26

 Neural Network = 0.25

The following three assumptions of residuals for MER
ANOVA were analyzed:

 Independent samples: in this study, groups of
developers are made up of separate programmers and
each of them developed their own projects, rendering
the data independent of each other.

 Equal standard deviations: in a plot of this kind the
residuals should fall roughly in a horizontal band
centered and symmetrical about the horizontal axis (as
shown in Fig. 4).

 Normal populations: a normal probability plot of the
residuals should be roughly linear (as shown in Fig. 5).

Once these three residual assumptions had been met, the
ANOVA for MER of the projects was calculated, which
showed that there was not a statistically significant difference
among the prediction accuracy for the three models (p-value of
Table II is greater than 0.05).

Fig. 4. Equal standard deviation plot of MER ANOVA – verification stage.

Fig. 5. Normality plot of MER ANOVA– verification stage.

TABLE II. ANOVA TABLE FOR MER BY MODEL (VERIFICATION)

Source
Sum

of squares
Degrees

of freedom

Me

an
square

F-
ratio

p-
value

Between groups 0.0317 2 0.0158 0.60 0.5488

Within groups 10.3644 392 0.0264

Total 10.3962 394

VII. VALIDATION OF MODELS

Another group of developers consisting of 24 programmers
developed 77 projects through the year 2009. These projects
were developed using the same standards, logs, and following
the same processes as the 132 programs used for generating the
models presented in Section V. Once the three models for
predicting effort were applied to these data, the MER by
project as well as the MMER by model were calculated
yielding the following MMER values:

 Genetic Programming = 0.23

 Multiple Linear Regression = 0.24

 Neural Network = 0.22

An ANOVA for the MMER models (Table III) showed that
there was not a statistically significant difference among the
accuracy of prediction for the three models (p-value is greater
than 0.05) at 95% of confidence. Fig. 6 and Fig. 7 show how
ANOVA residuals assumptions as described in the previous
section are met.

TABLE III. ANOVA TABLE FOR MER BY MODEL (VALIDATION).

Source
Sum

of squares
Degrees

of freedom

Me

an
square

F-
ratio

p-
value

Between groups 0.045 2 0.0226 1.00 0.3703

Within groups 5.0962 225 0.0226

Total 5.1414 227

GP MLR N N

R es idua l Plo t fo r MER

-0 .44

-0 .24

-0 .04

0 .16

0 .36

0 .56

re
s

id
u

a
l

Tec hn ique

N or mal Probab ility Plo t

0 0 .2 0 .4 0 .6 0 .8

MER

0 .1

1

5

20

50

80

95

99

99.9

p
e

r
c

e
n

t
a

g
e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

115 | P a g e
www.ijacsa.thesai.org

Fig. 6. Equal standard deviation plot of MER ANOVA – validation stage.

Fig. 7. Normality plot of MER ANOVA – validation stage.

VIII. CONCLUSION

Taking into account that no single estimation technique is
best for all situations, this study compared a GP model with the
results obtained from a neural network, as well as from
statistical regression.

Data samples integrated by 132 and 77 individual projects
for verifying and validating the three models were developed
by 40 and 24 programmers, respectively. All the projects were
developed following the same practices from the personal
software process. The independent variables used in the models
were New & Changed code as well as Reused code, whereas
the dependent variable was the effort measured in minutes.

The accepted hypothesis in this study was the following:
prediction accuracy of a genetic programming model is
statistically equal to those obtained from a feedforward neural
network, and from a statistical regression model when these
three models are generated from two kinds of lines of code and
they are applied for predicting software development effort of
individual projects that have been developed with personal
practices.

Even though we found that the three estimation techniques
we tested had a similar power of prediction, GP can have an
advantage over other techniques in those cases where specific
non-linear functions are suspected to be part of the prediction
function, as GP allows the use of any function desired, and the
final solution can be a composition of the selected functions.

Future research involves the application of genetic
programming for estimating the effort of individual projects
involving more independent variables and larger datasets.

ACKNOWLEDGMENT

The authors of this paper would like to thank CUCEA of
Guadalajara University, Jalisco, México, ConsejoNacional de
Ciencia y Tecnología (Conacyt), as well as Programa de
MejoramientodelProfesorado (PROMEP).

References

[1] Jørgensen, M., T. Halkjelsvik, T.: The effects of request formats on

judgment-based effort estimation. The Journal of Systems and Software,
83, 29–36 (2010)

[2] Rombach, D., Münch, J., Ocampo, A., Humphrey, W.S., Burton, D.:

Teaching disciplined software development. Journal of Systems and
Software, 81, 747- 763 (2008)

[3] López-Martín, C., Abran, A.: Applying expert judgment to improve an

individual's ability to predict software development effort. International
Journal of Software Engineering and Knowledge Engineering 22(4):

467-484 (2012)

[4] Jørgensen, M.: Forecasting of software development work effort:
Evidence on expert judgment and formal models. Journal of Forecasting,

23(3), 449-462 (2007)

[5] Boehm, B., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz,
E., Madachy, R., Reifer, D., Steece, B.: COCOMO II. Prentice Hall

(2000)

[6] Kok P., Kitchenhan, B.A., Kirakowski, J.: The MERMAID approach to
software cost estimation. In: Proceedings ESPRIT (1990)

[7] Pedrycz, W.: Computational intelligence as an emerging paradigm of
software engineering. In: ACM 14th International Conference on

Software Engineering and Knowledge Engineering, pp 7-14 (2002)

[8] Lopez-Martin, C., Yañez-Marquez, C., Gutierrez-Tornes, A.: Predictive
accuracy comparison of fuzzy models for software development effort

of small programs. Journal of Systems and Software, 81(6), 949-960
(2008)

[9] Lopez-Martín, C: A fuzzy logic model for predicting the development

effort of short scale programs based upon two independent variables.
Journal of Applied Soft Computing, 11(1), 724-732 (2011)

[10] Wen, J., Li, S., Lin, Z., Hu, Y., Huang, C.: Systematic literature review

of machine learning based software development effort estimation
models. Information and Software Technology, 54, 41–59 (2012)

[11] Burguess, C.J., Lefley, M.: Can genetic programming improve software

effort estimation? A comparative evaluation. Journal of Information and
Software Technology, 43, 863-873 (2001)

[12] Boehm, B., Abts, C., Chulani, S.: Software development cost estimation

approaches: A survey. Journal of Annals of Software Engineering, 10(1-
4), 177-205 (2000)

[13] Humphrey, W.S.: A discipline for software engineering. Addison
Wesley (1995)

[14] Hsu C.J., Huang C.Y.: Comparison of weighted gray relational analysis

for software effort estimation. Software Quality Journal, 19(1) 165-200
(2011)

[15] Koza, J.R.: Genetic programming: On the programming of computers by

means of natural selection. The MIT Press (1992)

[16] Lopez-Martin C., Isaza C., Chavoya A.: Software development effort
prediction of industrial projects applying a general regression neural

network. Journal of Empirical Software Engineering, 17(6) 738-756
(2012)

[17] De Barcelos Tronto, I.F., Simoes da Silva, J.D., and Sant’Anna, N.: An

investigation of artificial neural networks based prediction systems in
software project management. Journal of Systems and Software, 81(3),

356-367 (2008)

[18] Heiat, A.: Comparison of artificial neural network and regression
models for estimating software development effort. Journal of

Information and Software Technology, 44(15), 911-922 (2002)

GP MLR N N

R es idua l Plo t fo r MER

-0 .33

-0 .13

0 .07

0 .27

0 .47

re
s

id
u

a
l

Tec hn ique

N or mal Probab ility Plo t

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6

MER

0 .1

1

5

20

50

80

95

99

99.9

p
e

r
c

e
n

t
a

g
e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

116 | P a g e
www.ijacsa.thesai.org

[19] Lopez-Martin, C.: Applying a general regression neural network for

predicting development effort of short-scale programs. Journal of Neural
Computing and Applications, 20(3), 389-401 (2011)

[20] Park, S.: An empirical validation of a neural network model for software
effort estimation. Journal of Expert Systems with Applications, 35, 929-

937 (2008)

[21] Haykin, S.: Neural Networks: A comprehensive foundation. Prentice
Hall (1998)

[22] Afzal, W. and Torkara, R.: On the application of genetic programming

for software engineering predictive modeling: A systematic review.
Journal of Expert Systems with Applications, 38(9), 11984-11997

(2011)

[23] Lefley, M., Shepperd, M.J.: Using genetic programming to improve
software effort estimation based on general data sets. LNCS, 2724,

2477-2487 (2003)

[24] Dolado, J.J., Fernández, L.: Genetic programming, neural networks and
linear regression in software project estimation. In: International

Conference on Software Process Improvement, Research, Education and
Training, pp 157-171 (1998)

[25] Shan, Y., McKay, R.I., Lokan, C.J., Essam, D.L.: Software project effort

estimation using genetic programming. In: Proceedings of the IEEE
2002 International Conference on Communications, Circuits and

Systems, 2, pp. 1108-1112 (2002)

[26] Ferrucci, F., Gravino, C., Oliveto, R., Sarro, F.: Genetic programming

for effort estimation: An analysis of the impact of different fitness
functions. In: The 2nd International Symposium on Search Based

Software Engineering, pp. 89-98 (2010)

[27] Chavoya, A., Lopez-Martin, C., Meda-Campaña, M.E.: Applying

genetic programming for estimating software development effort of
short-scale projects. In: IEEE 2011 Eighth International Conference on

Information Technology: New Generations (ITNG 2011), pp. 174-179
(2011)

[28] Sheetz, S.D., Henderson, D., Wallace, L.: Understanding developer and

manager perceptions of function points and source lines of code. Journal
of Systems and Software, 82, 1540–1549 (2009)

[29] Conte S.D., Dunsmore H.E, Shen V.Y.: Software engineering metrics

and models. Benjamin/Cummings Pub Co. (1986)

[30] Jørgensen, M.: A critique of how we measure and interpret the accuracy
of software development effort estimation. In: The First International

Workshop on Software Productivity Analysis and Cost Estimation
(SPACE’07). Information Processing Society of Japan, pp. 15-22 (2007)

[31] Foss, T., Stensrud, E., Kitchenham B., Myrtveit I.: A simulation study of

the model evaluation criterion MMRE. IEEE Transactions on Software
Engineering, 29(11), 985-995 (2003)

