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Abstract—In this study, a genetic programming technique 

was used with the goal of estimating the effort required in the 

development of individual projects. Results obtained were 

compared with those generated by a statistical regression and by 

a neural network that have already been used to estimate the 

development effort of individual software projects. A sample of 

132 projects developed by 40 programmers was used for 

generating the three models and another sample of 77 projects 

developed by 24 programmers was used for validating the three 

models. Results in the accuracy of the model obtained from 

genetic programming suggest that it could be used to estimate 
software development effort of individual projects. 
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I. INTRODUCTION 

The estimation of how long it takes to develop specific 
software projects is an ongoing concern for project managers 
[1]. The software development effort estimation can begin with 
individual projects within academic environments [2], as is the 
case in this study. There are several techniques for estimating 
development effort, which could be classified into: 1) expert 
judgment that aims at deriving estimates based on the 
experience of experts on similar projects [3][4]; 2) those based 
on models such as a statistical regression model [5][6]; and 3) 
those based on techniques from computational intelligence [7], 
such as fuzzy logic [8][9], neural networks [10] and genetic 
programming [11]. 

Considering that no single estimation technique is best for 
all situations, and that a careful comparison of the results from 
several approaches is most likely to produce realistic estimates 
[12], this study compares estimates generated with a genetic 
programming model against the results obtained with a neural 
network and with the most commonly used model: statistical 
regression[4]. 

Data samples for this study were integrated by 132 and 77 
projects for generating (verifying) and validating the models, 
respectively, and were developed by 40 and 24 programmers, 
respectively. All of the projects were created following 
practices of the Personal Software Process (PSP) [13]. 

The three models were generated from data of small 
projects individually developed using practices of PSP because 
this approach has proven its usefulness when applied to 
individual projects [2]. 

The hypothesis of this research is the following: Prediction 
accuracy of a model based on genetic programming is 
statistically better or equal than a statistical regression model or 
a model obtained with a feedforward neural network, when 
these three models are generated from two kinds of lines of 
code and are applied to the prediction of software development 
effort of individual projects that have been developed with 
personal practices.One reason for choosing genetic 
programming in this work was that this technique is capable of 
modeling non-linear behaviors, which are common when 
correlating independent variables with the development effort 
of software projects [14]. 

The rest of the paper starts with a section describing the 
genetic programming algorithm used to generate the 
corresponding model, followed by a section with the related 
work. The next section presents the methods used for 
evaluating the three models, followed bya section on the 
generation of the models. Respective sections on the 
verification and validation of the models are presented next. 
The paper ends with a section of conclusions. 

II. GENETIC PROGRAMMING 

Genetic programming (GP) is a field of evolutionary 
computation that works by evolving a population of data 
structures that correspond to some form of computer programs 
[15]. These programs typically represent trees varying in shape 
and size where the internal nodes correspond to functions and 
the leaves represent terminals such as constants and variable 
names. The trees can be implemented as the list-based 
structures known as S-expressions, with sublists representing 
subtrees. 

Fig. 1 presents the flowchart followed by a typical 
implementation of the GP algorithm [15]. The GP algorithm 
starts with a population of M randomly generated programs 
consisting of functions and terminals appropriate to the 
problem domain. If the termination criterion has not been 
reached, each program is then evaluated according to some 
fitness function that measures the ability of the program to 
solve a particular problem.The fitness function typically 
evaluates a problem against a number of different fitness cases 
and the final fitness value for the program is the sum or the 
average of the values of the individual fitness cases. GP 
normally works with a standardized fitness function in which 
lower non-negative values correspond to better values, usually 
with zero as the best value. 
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Fig. 1. Flowchart followed by a typical implementation of the GP 

algorithm.Symbols are as follows: Gen = Generation counter; i = Individual 

counter; M = Population size; Pr= Probability of reproduction; Pc = 
Probability of crossover. 

After all programs in the population have been evaluated, a 
selection is made among the individuals in the population to 
produce the next generation. This selection is usually made 
proportionate to fitness so that programs with better fitness 
values have a higher probability of being selected. The 
Darwinian selection of the fittest individuals in the population 
is the biological basis on which the various evolutionary 
computation paradigms are inspired. A number of operations 
can be applied to selected individuals to provide for variability 
in the new generation. The reproduction operation consists of 
selecting a fixed percentage of individuals to pass unchanged 
to the next generation according to a certain probability of 
reproduction (Pr). In the crossover operation, two individuals 
are selected according to a probability of crossover (Pc) to 
function as parents to produce two offspring programs. In each 
of the parents a node in the corresponding trees is selected 
randomly to constitute a crossover point.  

The subtrees that have the selected nodes as roots are then 
exchanged generating two new individuals that are usually 
different from their parents. 

Fig. 2 shows an example of two parental trees before 
crossover, with the corresponding S-expression below each 
tree; arrows point at the root nodes of the subtrees chosen to be 
exchanged, with the corresponding subexpressions shown in 
boldface.  

Fig. 3 presents the generated offspring trees resulting from 
the exchange of the subtrees in Fig. 2 whose root nodes are 
pointed at by the arrows. The exchange of subtrees corresponds 
to the exchange of the sublists shown in boldface below each 
tree. 

A fixed portion of the next generation is produced using the 
crossover operation, having the possibility of forcing that a 
fixed percentage of the selected nodes correspond to functions, 
whereas the rest correspond to either functions or terminals. 
Unlike genetic algorithms, the mutation operation is normally 
not necessary in GP, as the crossover operation can provide for 
point mutation when two nodes corresponding to terminals in 
the parents are selected to be exchanged. 

The process of evaluating, selecting and modifying 
individuals to produce a new generation is continued until a 
termination criterion is satisfied. The GP run usually terminates 
when either a predefined number of generations has been 
reached or a desired individual has been found. 

 

Fig. 2. Example of two parental trees before crossover and the corresponding 
S-expressions. 

 

Fig. 3. Offspring trees after crossover and the corresponding S-expressions. 

III. RELATED WORK 

Results from the application of neural networks and 
statistical regression have shown that the estimation accuracy 
of both techniques are competitive with models generated from 
data of large projects [16][17][18], and of small projects [19]. 
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The accuracy of the genetic programming model used in 
the present work is compared against the accuracies obtained 
from the neural network and the multiple linear regression 
models described in [19]. These two models were generated 
using data from small-scale projects. The kind of neural 
network used was a feedforward multi-layer perceptron with a 
backpropagation learning algorithm (the most commonly used 
in the effort estimation field [20]). The feed-forward neural 
network used the Levenberg-Marquardt algorithm due to its 
reported efficiency [21]. 

Genetic programming has already been applied to large 
projects; however, we did not find any study related to its 
application for predicting the software development effort of 
small projects developed in laboratory learning environments 
[22]. Some of the methods reported in previous publications 
resemble the approach taken in the present work, in which a 
mathematical model that best fits the data is searched.  

The main difference of the present work with most 
previous reports lies in the genetic programming parameters 
they used and the data on which they applied the genetic 
programming algorithm. In [10] a GP algorithm was 
implemented having a population size of 1000 individuals 
reproducing for 500 generations during only 10 runs. They 
used a dataset of 81 software projects that a Canadian software 
company developed in the late 1980s. They suggested that the 
genetic programming approach needed further study to fully 
exploit its advantages. On the other hand, in [23] GP was used 
with the goal of comparing the use of public datasets against 
company-specific ones. The techniques they used (GP, 
artificial neural networks and multiple linear regression) were 
slightly more accurate with the company-specific database than 
with publicly available datasets. They used the same GP 
parameters as in [10]. They concluded that companies should 
base effort estimates on in-house data rather than on public 
domain data. In [24] GP was compared against artificial neural 
networks and multiple linear regression using a number of 
publicly available datasets. Using less individuals in the GP 
population (from 25 to 50) than normally employed in the 
typical implementation of the algorithm (several hundred), they 
found that although GP was better at effort prediction than 
neural networks and multiple linear regression with some 
datasets, in general, none of the techniques they tested rendered 
a good effort estimation model. These authors concluded that 
the datasets used to build a prediction model had a great 
influence in the ability of the model to provide adequate effort 
estimation. In [25] a different approach was used with GP; 
instead of finding the mathematical model that best fitted the 
data, they developed a grammar-based technique they called 
Grammar Guided Genetic Programming (GGGP) and 
compared it against simple linear regression. They used the 
data of 423 software development projects from a public 
repository and randomly divided them into a training set of 211 
projects and a test set of 212 projects. The results obtained 
using the GGGP technique were not very encouraging, as the 
effort prediction they found was not very accurate. In [26] GP 
was also applied for predicting the effort of large projects, and 
their results showed that GP was better than case-based 
reasoning and comparable with statistical regression. Finally, 
GP was applied in [27] using the same methodology as in the 

present work, but the model found had a slightly higher 
validation MMER than the model presented here. 

IV. METHODS 

In this study, the independent variables for all three models 
were New and Changed (N&C) as well as Reused code, and all 
of them were considered as physical lines of code (LOC). N&C 
is composed of added and modified code. The added code is 
the LOC written during the current programming process, 
whereas the modified code is the LOC changed in the base 
project when modifying a previously developed project. The 
base project is the total LOC of the previous projects, whereas 
the reused code is the LOC of previously developed projects 
that are used without any modification [13]. Source lines of 
code represent one of the two most common measures for 
estimating software size [28]. Finally, the dependent variable 
Effort was measured in minutes. 

The accuracy criterion for evaluating models in this work 
was the Magnitude of Error Relative to the estimate for 
observation i, or MERi, defined as follows: 



MERi 
Actual Effort i -  Estimated Effort i

Estimated Effort i

.


The MER value is calculated for each observation i whose 
effort is estimated. The aggregation of MER over multiple 
observations can be achieved through the mean (MMER). 

Another criterion that has been used in the past for 
evaluating prediction models is the Magnitude of Relative 
Error (MRE), which is calculated for the i-th observation as 
follows: 



MRE i 
Actual Effort i -  Estimated Effort i

Actual Effort i

.


The mean of MRE over multiple observations is denoted as 
MMRE. 

The accuracy of an estimation technique is inversely 
proportional to the MMER or the MMRE. It has been reported 

that an MMRE  0.25 is considered acceptable [29]; however, 
no studies or argumentations supporting this threshold value 
have been presented [30].Results of MMER in [31] showed 
better results when compared to other studies; this fact is the 
reason for choosing MMER as evaluation criterion in the 
present work. 

Experiments for this study were done within a controlled 
environment having the following characteristics: 

 All of the developers were working for a software 
development company. However, none of them had 
previously taken a course related to personal practices 
for developing software at the individual level. 

 All developers were studying a graduate program 
related to computer science. 
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 Each developer wrote seven project assignments. Only 
the last four of the assignments of each developer were 
selected for this study. The first three projects were not 
considered because they had differences in their process 
phases and in their logs, whereas the last four projects 
were based on the same logs and had the following 
phases: plan, design, design review, code, code review, 
compile, testing, and postmortem.  

 Each developer selected his/her own imperative 
programming language whose coding standard had the 
following characteristics: each compiler directive, 
variable declaration, constant definition, delimiter, 
assign sentence, as well as flow control statement was 
written in a line of code. 

 Developers had already received at least a formal 
course on the object oriented programming language 
that they selected to be used through the assignments, 
and they had good programming experience in that 
language. The sample for this study only involved 
developers whose projects were coded in C++ or 
JAVA. 

 Because this study was an experiment with the aim of 
reducing bias, we did not inform the developers about 
our experimental goal. 

 Developers filled out a spreadsheet for each project and 
submitted it electronically for examination. This 
spreadsheet contained a template called “Project Plan 
Summary”, which included the completed data by 
project. This summary had actual data related to size, 
effort (time spent in the development of the project) and 
defects. This document had to be completed after each 
project was finished. 

 Each PSP course was given to no more than fifteen 
developers. 

 Since a coding standard establishes a consistent set of 
coding practices that is used as a criterion for judging 
the quality of the produced code [13], the same coding 
and counting standards were used in all projects. The 
projects developed during this study followed these 
guidelines. All projects complied with the counting 
standard shown in Table I. 

 Developers were constantly supervised and advised 
about the process.  

 The code written in each project was designed by the 
developers to be reused in subsequent projects. 

 The kind of the developed projects had a similar 
complexity as those suggested in [13], and all of them 
required a basic knowledge of statistics and 
programming topics learned in the first semesters of an 
undergraduate program. From a set of 18 individual 
projects, a subset of seven projects was randomly 
assigned to each of the programmers. Description of 
these 18 projects is presented in [19].  

 Data used in this study are from those programmers 
whose data for all seven exercises were correct, 
complete, and consistent. 

TABLE I.  COUNTING STANDARD. 

Count type Type 

Physical/logical Physical 

Statement type Included 

Executable Yes 

Non-executable  

Declarations  Yes (one by text line) 

Compiler directives Yes (one by text line) 

Comments and Blank lines No 

Delimiters:  

 { and } Yes 

V. GENERATION OF MODELS 

Data from 132 individual projects developed by 40 
programmers from the year 2005 to the year 2008 were used in 
the three models: GP, neural network and multiple linear 
regression. The projects that contained reused code were 
selected for the sample. 

A. Multiple Linear Regression 

The following multiple linear regression equation was 
generated [19]: 

  

The intercept value of 45.06is the value of the line where 
the independent variables are equal to zero. On the other hand, 
the signs of the two parameters comply with the following 
assumptions related to software development: 

 The larger the value of new and changed code (N&C), 
the greater the development effort. 

 The larger the value of reused code, the lesser the 
development effort. 

An acceptable value for the coefficient of determination is 
r2 ≥ 0.5 [13],with this equation having an r2 equal to 0.58. The 
ANOVA for this equation had a statistically significant 
relationship between the variables at the 99% confidence level 
and the two independent variables were statistically significant 
at the 99% confidence level. 

B. Neural Network 

There is a variety of tasks that neural network can be 
trained to perform. The most common tasks are: pattern 
association, pattern recognition, function approximation, 
automatic control, filtering and beam-forming. In the present 
work, a feedforward neural network with one hidden layer was 
applied for function approximation. This network had already 
been trained to approximate a function [19]. The effort was 
considered as a function of two variables: N&C (number of 
new and changed lines of code) and Reused (number of reused 
lines of code). 
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It has been shown that a feedforward network with one 
layer of hidden neurons is sufficient to approximate any 
function with a finite number of discontinuities on any given 
interval [21]. This is the reason for using a fully-connected 
feedforward neural network with one hidden layer of neurons 
in this work. The fully-connected part of the description means 
that each neuron in a layer receives a signal from each of the 
neurons in the preceding layer. There were two neurons in the 
input layer of the network: one received the number of N&C 
lines of code and the other received the number of reused lines 
of code. The output layer consisted of only one neuron 
indicating an estimated effort. The number of neurons in the 
hidden layer was empirically optimized. A range from two to 
40 neurons was explored and the best results were obtained 
with ten neurons in the hidden layer. The optimized 
Levenberg-Marquardt algorithm was used to train the network. 

The network passed through two phases: training and 
application. The first group of 132 software projects was used 
to train the network. This group of projects was randomly 
separated into three subgroups: training, validation and testing. 
The training group contained 70% of the projects. The input-
output pairs of data for these projects were used by the network 
to adjust its parameters. The next 20% of data was used to 
validate the results and identify the point at which the training 
should stop. The remaining 10% of data was randomly chosen 
to be used as testing data, to make sure that the network 
performed well with the data that was not presented during the 
parameter adjustment. 

C. Genetic Programming 

A LISP implementation of the GP algorithm was used for 
generating a model to predict software development effort. The 
following standard parameters were used on all runs [15]: the 
initial population consisted of 500 S-expressions randomly 
generated using the ramped half-and-half generative method. 
In this method, an equal number of trees are created with a 
depth that ranges from 2 to the maximum allowed depth (6 in 
this work) for new individuals. For each depth, half of the 
programs corresponded to full trees, and the other half 
consisted of growing trees of variable shape. The maximum 
depth for individuals after the application of the crossover 
operation was 17. The reproduction rate was 0.1, whereas the 
crossover rate was 0.7 for function nodes and 0.2 for any node. 
Finally, each GP run was allowed to evolve for 50 generations 
and the individual with the best fitness value was selected from 
the final generation. 

The set of terminals was defined by the two independent 
variables X1 and X2 corresponding to the New & Changed and 
Reused lines of code, respectively. Additionally, terminals also 
consisted of floating-point constants randomly generated from 
the range [-5, 5). 

The set of functions consisted of the arithmetic operators 
for addition (+), subtraction (–) and multiplication (*), along 
with the following protected functions shown in prefix 
notation. To avoid division by zero, the protected division % 
was defined as follows: 





(% x y) 
1

x /y





y  0

y  0
.

 

To account for non-positive variable values, the protected 
logarithmic function RLOG was defined as 





RLOG x 
0

ln x





x  0

x  0
.

 

Finally, the protected exponential function REXP was 
defined as 





REXP x 
0

ex




x 20

x  20
,

 

where the boundary value 20 was arbitrarily chosen to 
avoid over- and underflows during evaluation. 

Since the standardized fitness function 



f  is required to 

consist of non-negative values, with zero as the best match, this 
function was defined as 





f  Actual Effort i -  Estimated Effort i .
 

The MMER value was not considered an appropriate 
fitness measure, as the denominator in the MER formula can 
yield negative values if the estimated effort in the LISP model 
is negative itself. 

Fifty experiments each consisting of 1,000 GP runs were 
made. From each experiment, the run with the highest fitness 
value (lowest f value) was selected and finally an individual 
program from all runs was selected according to how well it 
predicted software development effort on both the verification 
and validation data sets. The selected program from the 50,000 
runs is presented next in LISP notation, where X1 is New and 
Changed code, and X2 is Reused code. 

(- (- (+ (- X1 (* (- X2 X2) 3.7990248)) (REXP 3.7627742)) 

      (% (+ (* 2.2606792 X1) (- X2 -4.461488)) (+ (+ X1 
X2) X1))) 

   (% (+ (% X2 (+ X1 2.2606792)) (- 4.497994 X1)) 

      (+ (% (% X2 (% -1.1173002 X2)) (+ X1 X1)) (+ X1 
2.2606792)))) 

After evaluation of constant subexpressions and 
simplification of additions involving subexpressions evaluating 
to zero, the next equivalent program was obtained. 

(- (- (+  X1 43.06774) 

      (% (+ (* 2.2606792 X1) (- X2 -4.461488)) (+ (+ X1 
X2) X1))) 
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   (% (+ (% X2 (+ X1 2.2606792)) (- 4.497994 X1)) 

      (+ (% (% X2 (% -1.1173002 X2)) (+ X1 X1)) (+ X1 
2.2606792)))) 

VI. VERIFICATION OF MODELS 

The GP, the multiple linear regression equation, and the 
neural network models were applied to the original dataset of 
132 projects for estimating effort; then their accuracy by 
project (MER), as well as by model (MMER), were calculated 
giving the following results for MMER: 

 Genetic Programming = 0.25 

 Multiple Linear Regression = 0.26  

 Neural Network = 0.25 

The following three assumptions of residuals for MER 
ANOVA were analyzed:  

 Independent samples: in this study, groups of 
developers are made up of separate programmers and 
each of them developed their own projects, rendering 
the data independent of each other. 

 Equal standard deviations: in a plot of this kind the 
residuals should fall roughly in a horizontal band 
centered and symmetrical about the horizontal axis (as 
shown in Fig. 4).  

 Normal populations: a normal probability plot of the 
residuals should be roughly linear (as shown in Fig. 5). 

Once these three residual assumptions had been met, the 
ANOVA for MER of the projects was calculated, which 
showed that there was not a statistically significant difference 
among the prediction accuracy for the three models (p-value of 
Table II is greater than 0.05).  

 

Fig. 4. Equal standard deviation plot of MER ANOVA – verification stage. 

 

Fig. 5. Normality plot of MER ANOVA– verification stage. 

TABLE II.  ANOVA TABLE FOR MER BY MODEL (VERIFICATION) 

Source 
Sum 

of squares 
Degrees 

of freedom 

Me

an 
square 

F-
ratio 

p-
value 

Between groups 0.0317 2 0.0158 0.60 0.5488 

Within groups 10.3644 392 0.0264   

Total 10.3962 394    
 

VII. VALIDATION OF MODELS 

Another group of developers consisting of 24 programmers 
developed 77 projects through the year 2009. These projects 
were developed using the same standards, logs, and following 
the same processes as the 132 programs used for generating the 
models presented in Section V. Once the three models for 
predicting effort were applied to these data, the MER by 
project as well as the MMER by model were calculated 
yielding the following MMER values: 

 Genetic Programming = 0.23 

 Multiple Linear Regression = 0.24  

 Neural Network = 0.22  

An ANOVA for the MMER models (Table III) showed that 
there was not a statistically significant difference among the 
accuracy of prediction for the three models (p-value is greater 
than 0.05) at 95% of confidence. Fig. 6 and Fig. 7 show how 
ANOVA residuals assumptions as described in the previous 
section are met. 

TABLE III.  ANOVA TABLE FOR MER BY MODEL (VALIDATION). 

Source 
Sum 

of squares 
Degrees 

of freedom 

Me

an 
square 

F-
ratio 

p-
value 

Between groups 0.045 2 0.0226 1.00 0.3703 

Within groups 5.0962 225 0.0226    

Total 5.1414 227     
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Fig. 6. Equal standard deviation plot of MER ANOVA – validation stage. 

 

Fig. 7. Normality plot of MER ANOVA – validation stage. 

VIII. CONCLUSION 

Taking into account that no single estimation technique is 
best for all situations, this study compared a GP model with the 
results obtained from a neural network, as well as from 
statistical regression. 

Data samples integrated by 132 and 77 individual projects 
for verifying and validating the three models were developed 
by 40 and 24 programmers, respectively. All the projects were 
developed following the same practices from the personal 
software process. The independent variables used in the models 
were New & Changed code as well as Reused code, whereas 
the dependent variable was the effort measured in minutes. 

The accepted hypothesis in this study was the following: 
prediction accuracy of a genetic programming model is 
statistically equal to those obtained from a feedforward neural 
network, and from a statistical regression model when these 
three models are generated from two kinds of lines of code and 
they are applied for predicting software development effort of 
individual projects that have been developed with personal 
practices.  

Even though we found that the three estimation techniques 
we tested had a similar power of prediction, GP can have an 
advantage over other techniques in those cases where specific 
non-linear functions are suspected to be part of the prediction 
function, as GP allows the use of any function desired, and the 
final solution can be a composition of the selected functions. 

Future research involves the application of genetic 
programming for estimating the effort of individual projects 
involving more independent variables and larger datasets. 
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