
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

162 | P a g e
www.ijacsa.thesai.org

Mobile Robots in Teaching Programming for IT

Engineers and its Effects

Attila Pásztor, Róbert Pap-Szigeti, Erika Török

Kecskemét College, Faculty of Mechanical Engineering and Automation

Kecskemét, Hungary

Abstract—in this paper the new methods and devices

introduced into the learning process of programming for IT

engineers at our college is described. Based on our previous

research results we supposed that project methods and some new

devices can reduce programming problems during the first term.

These problems are rooted in the difficulties of abstract thinking

and they can cause the decrease of programming self-concept and

other learning motives.

We redesigned the traditional learning environment. As a

constructive approach project method was used. Our students

worked in groups of two or three; small problems were solved

after every lesson. In the problem solving process students use

programmable robots (e.g. Surveyor, LEGO NXT and RCX).

They had to plan their program, solve some technical problems
and test their solution.

The usability of mobile robots in the learning process and the

short-term efficiency of our teaching method were checked with a

control group after a semester (n = 149). We examined the effects

on our students’ programming skills and on their motives, mainly

on their attitudes and programming self-concept. After a two-

year-long period we could measure some positive long-term

effects.

Keywords—programmable mobile robots; project method;

positive effects

I. INTRODUCTION

Programming is not a compulsory subject in IT courses for
students at Hungarian high schools. The National Curriculum
aims at developing the skills of writing algorithm and
developing algorithmic thinking but the skills of programming
are taught only in classes that prepare students for IT
graduation at advanced level. Because of this, many IT students
start to acquire the elements of programming and program
planning only during their college studies. Some previous
research results [1] proved that those students who had already
learned programming at high school were much more
successful in the programming courses at our college. This
advantage does not depend on the weekly number of high
school lessons.

In contrast, beginners usually cannot pass their first exams.
Lecturers often notice a decreasing increasing interest in
programming. We supposed that abstract thinking means a
great problem for beginners.

The Hungarian empirical research results [1] are supported
by some results from other countries. In their comprehensive

study on the Greek secondary school system Sartatzemi at al.
[2] paid attention to the problems of teaching programming.
They emphasize, there are some essential difficulties for those
who have just started to learn programming:

 The professional programming languages are too
complicated for beginners, in spite of the fact that these
languages provide a wide range of solutions. Students
usually have to focus rather on the language than on the
problem itself. Accordingly, the implementation of a
simple algorithm demands high-level thinking abilities.

 Professional programming environment is usually more
complex than it is necessary for beginners. The
environments do not help a beginner with the
identification of syntax errors. The error messages in
professional environments are made for professional
programmers, not for beginners. The complexity of the
environment can be shocking for students.

 During the first semester students cannot solve
interesting problems. In order to enable them, they have
to learn not only the programming language but the
methods of developing larger programs as well. It is not
possible during one semester. The grounding often
seems too hard and boring for beginners and can
decrease their motivation.

To sum it up, students have to focus not only on algorithm.
They meet the principles of programming, the structure and
syntax of the language, machine control problems etc. In
addition, they have to learn the methods of program planning,
developing and debugging.

The results of Sartatzemi et al. confirmed that new devices
and methods are necessary in order to make the learning
process more effective. Researchers usually propose different
approaches so that beginners could cope with programming
difficulties and with the complexity of programming
languages. Some of them suggest that the object-oriented
paradigm is more usable in teaching programming than the
functional paradigm [3]. However, this change does not give a
solution for the above-mentioned problems. Other researchers
prefer a possible “learning programming language” [4] with an
optimal environment and strongly limited set of statements.

We wanted to introduce new devices and methods into the
learning process of programming. We looked for a method to
improve the participation of students and increase
communication among them. At the same time, we wanted to
make devices more tangible. We aimed at making the learning

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

163 | P a g e
www.ijacsa.thesai.org

process more concrete, practical and interesting for our
students. The programmable mobile robot Mindstorms RCX
(made by LEGO) appeared suitable for the realization of our
aims. These devices and their programming environment allow
students to learn in a natural, experimental way. Abstract
thinking can be preceded by the manipulative and concrete
usage of skills [5]. It can facilitate the development of skills
and can deepen the level of understanding [6]. At the same
time, the students’ motives can increase due to the success of
these learning situations. The co-operation among students can
strengthen students' social and communicative skills [7]. These
experience-based learning situations can lead to experiencing
the growth of knowledge and can result in a higher level of
students’ activity. In a well-organized learning situation
students can feel the flow. This is a mental state in which the
students are fully immersed in concentration and the enjoyment
of the activity [8]. These very motivated periods may accelerate
skills development and may increase the efficiency of learning.

Our students’ learning performance and the level of the
adaptability of their knowledge are influenced by many factors.
The effects of some factors have been revealed by researchers.
The previously acquired levels of knowledge and skills have
naturally a significant effect on the knowledge to be mastered.
However, the individual differences in prior knowledge are not
merely sufficient to explain the differences in further learning
performances [9]. Additional factors have an important role in
the learning process. The individual level of learning
motivation (with many sub-factors) as well as family
background or the system of social relations may have an effect
on the students’ learning success.

II. REAL AND VIRTUAL ROBOTS IN EDUCATION

A. Overview

One of the most interesting and most difficult problems in
the field of artificial intelligence is to create and apply
intelligent robots. Real robots have to work in a noisy,
nondeterministic, continuous space and time it makes its
necessary to solve a number of additional difficulties. Thanks
to the burgeoning of low-cost high-performance computers, we
are able to simulate robots in a virtual space. Working with
robotic simulators programmers can focus on the algorithm,
neglecting many of the real world's aspects.

In education, the question arises whether the use of real
robots or the use of robotic simulators is more efficient in the
development of students’ programming skills. Using simulators
the teacher can create and change the teaching environment.
The complexity, inventiveness and realism of the environment
can be adapted to the students' skills and age. However,
students cannot “touch” the robots simulated on the screen.
Because of this, the manipulative skill may be incomplete; this
can cause difficulties in the process of interiorization [5].

Until the last decade robot simulators could be usually
found in industrial applications. Additionally, some robot-
specific simulators were used. In the last decade, possibilities
of robot simulators moved towards general usability. By a
special plug-in of MathLab, we can simulate punctiform robots
or robots with real expansion [10].

An advanced simulation environment is the Webots mobile
robotics simulator which is a commercial product developed by
Cyberbotics[11]. It can simulate rolling, walking or flying
robots. Additionally, this simulator can control some types of
real robots (e.g. Pioneer, LEGO Mindstorms, Aibo) [12].
Repast (developed by the University of Chicago) is an open
source, multi-agent simulation package based on Java [13] .
The basic concepts of Repast were borrowed from the
simulation environment of Swarm agent [14]. These simulators
are used mainly in research.

In the past half a century some famous robot simulators
were used in education too, e.g. Papert’s turtle [15], Karel the
robot [16] or the Spider World, used by Dalbey and Linn [17].
The Lego Mindstorms Simulator (LMS) developed by the
University of Paderborn was also very popular in education.
Some empirical experiences of teaching with robot simulators
are shown in the next section.

B. Research result

Sartatzemi et al. [2] used Mindstorms RCX mobile robots
and ROBOLAB as a programming environment. In a ten-hour
course (two hours/day), 14 students solved simple tasks in an
icon-oriented environment. The teacher presented ROBOLAB
structures in the first part of the lessons then the students
solved tasks on worksheets. Researchers concluded that
Mindstorms robots and the new programming environment are
an efficient and practical way for high school students to learn
programming. Their empirical data and the assessment showed
some important conclusions. Students can easily acquire
knowledge about procedures and the controlling of robots but
this knowledge is often incomplete and inaccurate. The
application of a real system is useful to analyze and solve a
problem. Additionally, the students can check and debug their
solutions in an experiential and clear way. It seems that
students can understand the basic principles of programming in
this environment. However, researchers observed some
difficulties. The internal difficulties of the structures of the
programs are similar to other environments; they can lead to
misunderstanding. Because of this, the development of larger
programs seems difficult for students. Furthermore, it was
difficult for many students to connect the behavior of a robot to
the logic of the program.

In their experiment, Wu et al. [18] compared the
effectiveness of teaching with real and simulated robots. One of
their groups (75 students) used LEGO RCX or LMR robots, the
other group (76 students) used LEGO Mindstorms Simulators.
Both groups consisted of beginners in programming. Similar
pre-knowledge was supposed, so researchers did not use any
pre-test. It was a short-term experiment (seven weeks; two
hours/week); because of this researchers assessed the short time
effects only. Pre-written templates in leJos (Java) language
with simple program structures, basic variables and functions
for controlling motors, lighting and crash sensors were used for
the tasks. As their empirical result showed, there was not any
significant difference between the two groups in understanding
the pre-written programs and programming. However, those
students who used real robots, showed a more positive attitude
towards learning. Students in this group could easily imagine

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

164 | P a g e
www.ijacsa.thesai.org

the behavior of robots but the usage of real robots demands
extra time.

Kamada et al. [19] assumed that computer-controlled
machines are used in almost all areas of life. Because of this, it
is advisable to learn about the mechanism and the controlling
opportunities of robots at the same time. Researchers assumed
that the simultaneous learning of hardware and software can
lead to an easier recognition and correction of errors of
computer-controlled devices. Students built their own Myurobo
robots, after that they tried to control them using Dolittle
programming language. The simple and cheap robots could be
used not only at school but at home as well. During the process
of building the robots students acquired knowledge in the field
of mechanics. The structure of the robots was similar to a
"glass box", so the wiring of mechanical and electrical parts
could be seen. According to the teachers’ opinion, this way, the
mechanical and electrical structure is easier to understand for
the students. The experiment was organized as a pilot-project
for high school students. The researchers did not aim to assess
the effectiveness of learning; they were interested in whether
these devices can be applied in education. The project lasted
only 10 hours: two hours to learn the programming language,
four hours to build the robots, four hours to solve a
programming problem. The teachers wanted to find a
programming language which can be learnt easily by the
students. The low price (€20) and the “glass box” style of the
device were attractive for the participants. An additional
benefit was the simple control language. However, the
environment had some disadvantages: the difficulty of serial-
to-USB conversion and the fact, that there was no real-time
control from the computer. The transformed control language
also showed some differences from the original Dolittle
language. Based on the feedback from the participants, the
researchers considered that a revised, object-oriented Dolittle
language can be applicable in high school education.

Kurebayashi et al. [20] prepared a proposal for a new
curriculum for primary and secondary school students. They
suggested introducing a new practice-oriented subject with tri-
axial robots. With these robots, the elements of mechanics,
electronics and information technology may be taught in one
context. They examined whether the complex way of teaching
with embedded systems is more effective than the traditional
methods of teaching. The new curriculum was tested on a
sample with 123 high school students. Students built robots and
prepared their programs. After that a competition was
organized for the robots. The effectiveness of the curriculum
was measured by questionnaires for students and teachers.
Based on the educators’ feedback, the new curriculum resulted
in positive effects and high efficiency. As the students looked
back, building and programming a robot was a hard but
enjoyable task. Many of them planned to continue learning
about robot programming; this new curriculum sparked their
interest in complex, systematic learning. To sum it up, the
curriculum and its content may help with the teaching of
complex embedded systems.

Fagin and Merkle [21] investigated the advantages of using
robots in teaching information technology. They organized a
control group experiment with more than 800 students and
observed them for a year. It was expected that robot assisted

learning would encourage students to choose computer
engineering, computer science or any related field during their
college studies. Additionally, researchers supposed that the
robot can be a motivational device for students. Furthermore,
they expected that programming skills would develop more
significantly in the experimental group than in the control
group. In the experimental group, the students used LEGO
Mindstorms robots and Ada/Mindstorms as a programming
environment. An additional aim was the acquisition of
elements of the Ada language. In comparison to the above
mentioned research results this experiment showed negative
effects on the programming skills. The performance of students
with the robots was significantly lower than in the control
group taught with traditional devices and method. There are
several possible reasons for this. After uploading, students had
to compile and debug their programs on the robots; for this,
more time was necessary compared to the traditional method
using only computers. Another reason for errors may have been
that teachers were well prepared for the lessons, but they had
also used the robots for the first time, so they did not have
sufficient experience in organizing robot assisted lessons. As
the researchers summarized, despite their potential positive
effects, the robots are not panaceas in education.

III. SHORT-TERM EFFECTS OF USING PROJECT METHOD

AND MODEL ROBOTS AT OUR COLLEGE

A. New course: new method and new devices

Because of problems described in the introduction, a new
course was developed at our college. Our students learnt this
course in a non-traditional way. LEGO NXT, LEGO RCX and
Surveyor as programmable model robots were used to teach the
elements of programming for IT-engineering students [22].
This new course can be taken by students who have
successfully passed their “Programming 1.” exam in C/C++
language. That is why NQC and NXC programming languages
were chosen for this course. Syntax, statements, functions etc.
of these languages are very similar to those used in standard C
language. We did not put emphasis on the knowledge of the
internal structure of robots. Our aim was to deepen our
students’ programming skills and algorithmic thinking, as well
as to improve their attitude towards programming with these
tangible devices.

NQC and NXC languages also contain loops, conditional
statements, functions, tasks and included files similarly to
standard C. From an educational point of view, one of the most
important features is an easy way to run our program: we can
upload it to the robot via Bluetooth, and check it immediately
and visually.

In this course we rarely used traditional teaching methods
e.g. teacher’s presentation, but we often used methods giving
an opportunity for constructive learning. The most preferred
one was project method. Similarly to the business sector, in a
project process the analysis of the problem, planning the steps
towards their own solution and the implementation are carried
out in groups [23]. The rigid and commanding knowledge
transfer function of teachers has changed. Primarily, their roles
are to raise the problem, to provide sufficient resources for
work and to co-ordinate students’ work. Simultaneously, the
importance of their preparatory role has grown. Group

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

165 | P a g e
www.ijacsa.thesai.org

members plan the process, divide the tasks among themselves,
communicate to each other and, at the end of the work, they
jointly summarize and present their results.

During this process, students could acquire theoretical and
practical knowledge. This knowledge may be applicable in our
students’ future IT-engineering job and in their software
developing projects as well. Teamwork can have positive
effects on their communication skills because their thoughts,
their ideas have to be expressed understandably but in a
professional way [24]. Most courses of higher education rarely
give opportunities for professional communication among
students because of the high number of students.

In details, in our ”Model robot programming” courses we
aimed at following the principles, methods and processes of the
constructive approach of teaching. Only 20% of time was used
for teacher’s presentation and explanation. During this period,
the teacher introduced the subject, the necessary functions and
the elements of the language via examples. In the remaining
time, groups of two or three participants solved programming
problems. The co-operation among the teammates was an
important factor because they had to recognize the problem, to
find a possible solution and to divide the job. As a teacher, we
did not play a traditional knowledge distributor role in this
phase. Instead of this, we had to support, motivate and co-
ordinate our groups’ work. We could help with identifying the
main points of the problem, with accessing useful resources
and sample libraries, with the accomplishment of the
independent research etc. In the most significant period of the
learning process the groups had to construct their robots and
build them from LEGO Mindstorms or Surveyor parts. In this
period they had to make and check their algorithm, write and
debug their program. Additionally, a documentation of their
solution with their plan, photos, video clips had to be prepared.
At the end of the project each group presented their solution to
the other groups and answered their questions. During the
evaluation of the project, in addition to the teacher's reflections,
self-evaluation, the other teams’ and the teammates’ evaluation
also play an important role.

Our courses provided opportunities for collaborative
knowledge building [25]. In a process like this, the
understanding and interpretation of problems can be
strengthened. The individual's activities for personal
understanding are associated with social knowledge building
[26].

B. Short-term effects

With the new course introduced in the previous chapter, we
wished to decrease the problems mentioned at the introduction.
Based on the college course system, it was not possible to
conduct an experiment for more than half a year. That is why
we decided to monitor our students' results later in order to
demonstrate the effectiveness of the development of
motivation.

We presupposed that the usage of tangible devices may
accomplish the activation and improvement of learning motives
and the acquisition of basic elements of programming
simultaneously [27].

H1: Real tools make learning more enjoyable.

The feeling of knowledge growth and joyful learning may
lead to the flow state. It can work as a very strong learning
motive. In addition, the gradually more complicated tasks may
ensure a lasting strength of challenge. In this situation, the
mastery motive can be activated and may play a fundamental
role in skill acquisition.

H2: Programming self-concept can be improved with the
use of robots.

The experiences obtained in robot programming and the
achievements in problem solving tasks have an effect on
students’ self-confidence.

H3: The tasks solved by students at the concrete operational
level have an impact on the development of abstract
programming skills.

Acquiring programming at the abstract operation level often
proves to be too difficult for starting programmers. We
supposed that learning with tangible devices can enhance the
acquisition of the abstract knowledge elements.

1) Methods
To verify the hypotheses, we organized a study with

experimental and control groups. All students in the study took
our course “Programming 1.”. During the semester of our
experiment, members of the experimental group (n1 = 73) used
LEGO NXT robots with the methods introduced in chapter 3.1.
Members of the control group were taught by traditional
teaching methods.

We used a test with 15 items to assess our students’
programming skills and knowledge (Cronbach-α = 0.86). Most
Mitems required a short answer. In these items students had to
understand short pieces of a program, after that they had to
complete or debug them. We used the same test means for the
pre-test and post-test.

In order to assess our students’ programming self-concept
and attitudes towards programming, we used a questionnaire
containing 17 questions. To the majority of questions students
could choose their answers from a five-level Likert-style
response list. Six questions used for assessing the programming
self-concept, were arranged into one factor (KMO = 0.87). We
aggregated these variables into one new variable without
weighting. This new variable was rescaled on a percent-point
scale. The questionnaire contained some additional questions
about students’ social background.

Some more questions were asked in the post-test
questionnaire. These questions concerned the hardness and fun
of the work during the experimental semester.

The result of our two sub-samples in course “Programming
1.” was very similar (χ2 = 3.86; p = 0.38). The pre-test
difference between the experimental group and control group
was not significant in their programming pre-knowledge and in
their programming self-concept (Table 1).

There was a small, non-significant difference between the
two sub-samples in the number of programming courses at high
school (2 = 5.42; p = 0.27). Nearly half of the whole sample
(46% of students) had not learned programming at high school.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

166 | P a g e
www.ijacsa.thesai.org

TABLE I. PROGRAMMING PRE-KNOWLEDGE AND PROGRAMMING

SELF-CONCEPT IN THE SUB-SAMPLES IN THE PRE-TEST

 Experimental

mean (st. dev.)

Control

mean (st.

dev.)

t (p)

Programming pre-

knowledge (%p)
44.6 (19.1) 41.3 (19.5) 1.36 (0.17)

Programming self-concept

(%p)
47.2 (19.7) 46.3 (21.5) 1.57 (0.14)

Remark: we used Levene-F to compare standard deviations.
The difference between standard deviations was not significant.

Based on similar results of our experimental and control
groups, we supposed the differences at the end of the
experimental semester were due to educational effects. The
next chapter presents these changes

2) Development of the experimental and control group
We could not observe any significant development of

programming skill either in the experimental group (xpre =
44.6 %p; xpost = 47.9 %p; t = -1.23; p = 0.23) or in the control
group (xpre = 41.3 %p; xpost = 43.6 %p; t = -1.01; p = 0.34).
The Pearson-correlation between the pre-test and post-test
results are similar in the two sub-samples (rexp = 0.63; rctrl =
0.62). These results showed that the learning process with
tangible devices had not directly affected our students’
knowledge.

However, we could measure an important and significant
difference between the experimental and control groups in the
field of learning motives. During the semester members of the
experimental group were absent on significantly less occasions
than the members of the control group. The learning process
was much more enjoyable for the experimental group (on a
five-grade scale: xexp = 3.47; xctrl = 2.96; t = 3.87; p < 0.01),
and they felt the course less difficult (xexp = 3.07; xctrl = 3.35;
t = 1.96; p = 0.03). Simultaneously, the students’ attitude
towards their teacher did not change significantly (xpre-exp =
4.03; xpost-exp = 4.06; xpre-ctrl = 4.03; xpost-ctrl = 4.12), so
we can suppose that the changes in the students’ motives are
not consequences of their teacher’s personality.

The average programming self-concept of the control group
remained unchanged during the experimental semester (xpre =
46.3 %p; xpost = 44.1 %p; t = -0.45; p = 0.66). However, the
results showed significant changes in the experimental group
members’ programming self-concept (xpre = 47.2 %p; xpost =
52.2 %p; t = -2.60; p = 0.01). Differences between our sub-
samples were also observed in the distributions of this variable.

These results showed that despite the short-period,
significant changes in students’ programming self-concept can
be achieved using new devices and teaching methods. This is
very important for the students’ future learning performance
because of the strong effect that well-developed self-concept
has on learning achievement [28]. With monitoring students
further we want to verify if the well-developed self-concept
results in any additional programming effectiveness.

C. Assessment of the durability of effects

1) Questions of our research
As presented in chapter III.B, a short-term post-test showed

positive effects on students’ self-concept in the experimental
group. However, we can check the durability of these effects

and the usability of acquired knowledge only after a long-term
period.

An important problem when organizing the long-term post-
test was that most of our students in the sample had completed
their college studies. That is why we could only involve our
former students with available contact details in the
assessment. The sample of the long-term post-test was limited
by this fact. An additional problem was that it is almost
impossible to organize a control group as it is very hard to
create a sample whose members studied at the same time,
whose previous measurement results and contact details are
also available. So the assessment is based on the responses of
students who studied our course previously.

Our analysis is primarily intended to clarify if the attitudes
are long-lasting since the “Model robots programming” course
was taken towards the topic and self-concept related to mobile
robots programming. We also wanted to explore whether the
beneficial short-term changes can be transferred to other areas
of programming.

2) Methods
In the study 33 people took part. Previously, all of them had

been involved in the course and the experiment introduced in
chapter III.B. The total sample’s average age is 30.9 years,
standard deviation is 6.1 years. 36% of the sample was full-
time, the others were correspondence students. Obviously, the
full-time students’ sub-sample (x = 26.2) was significantly
younger than the correspondence students’ (x = 33.6). The
sample was considered to be a normal distribution of age. The
sex ratio was not significantly different from what we can
observe at the whole faculty, so we did not analyze the data in
sub-samples of women and men. 15.2% of the sample was
female.

We compiled a new questionnaire to assess long-term
affects. The questions were related to completed studies as well
as to other studies since then. We asked some questions about
our former students’ current job and its relationship to IT. The
questionnaire consisted of 18 questions. These assessed the
actual attitudes towards programming as well as to self-concept
related to programming and mobile robot programming.
Respondents could choose their answers from five-grade
Likert-style lists.

An additional question was used for assessing our
respondents’ programming self-concept based on social
comparison. They had to imagine a fictive situation where they
had to fill in a 50-point programming test. Every respondent
had to assess how many points he/she could collect if the
average performance of his/her team mates was 35 points. So
they had to give a norm-oriented assessment. This question
could measure the respondents’ self-concept [9] .

The questionnaire was sent to all former students of our
course. They could answer the questions electronically. The
questionnaire was sent back by 62% of those students whose
contact details were available.

3) Results
The average length of pre-college IT courses was 3.5 years

in the sample but 20% of respondents learned IT for only one

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

167 | P a g e
www.ijacsa.thesai.org

academic year. The mean was significantly higher in the sub-
sample of full-time students (x = 4.8 years) than in the sub-
sample of correspondents (x = 2.6 years). The primary cause of
this difference was the different age of the two sub-samples.
We could observe a strong, significant Spearman-correlation
between the age and the number of pre-college years with pre-
college IT learning (r = -0.60; p < 0.01).

In the fields of programming, the mean of pre-college years
is 1.6. There is a moderate but significant Spearman-correlation
between the number of pre-college years with IT learning and
the number of pre-college years with learning programming (r
= 0.55; p < 0.01). The correlation between the age and the
number of pre-college years with learning programming is also
negative but lower, so the older sub-sample spent relatively
more time with programming. It can be caused by the changes
in the curriculum or by the changes in the fields of interest.

Students had learned our course for 3-5 years before our
long-term post-test, so we did not analyze whether the answers
depended on this variable. Because of the short period after
graduation, only a very small proportion (just two people)
gained further qualifications. 42.6% of the respondents deal
with programming in their current work.

At the end of the ”Model robot programming” course, the
average mark was 4.6 (on a five-grade scale in Hungarian
schools). This mean was calculated based on the memories of
our respondents. It is similar to the average of the official
results of all students who had passed this course (x = 4.56; n =
127). However, this mean is significantly higher than usual at
the end of ”Programming 1.” courses (usually it is around
III.A), despite the fact that the programming skills to be
acquired are very similar in both courses. This may partly be
caused by the fact that the students, who registered for this
mobile robot programming course, had better pre-knowledge
and motivation within the population. But in our sample the
mean of ”Programming 1.” course mark was only 3.27, that is
why we suppose that the difference is due to our experiment.

During further analysis we had to emphasize that quite a
long time had passed since learning our course. So the long-
term post-test could only analyze the durability of the long-
term effects of attitudes and motives.

The ”Model robot programming” course was considered
easier (f = 60.6%) or much easier (f = 36.4%) by the
respondents than other programming subjects. Only one
respondent answered that this subject was more difficult for
him and no one answered that it was much more difficult.
There is no difference in this question between the full-time
and the correspondence students (F = 1.97; p = 0.17; t < 0.01; p
> 0.99). The feeling of difficulty was almost independent of
age (r = 0.02; p = 0.94).

The durability of the respondents’ positive attitude towards
mobile robot programming was indicated by the great
proportion of those (f = 90.9%) who found the subject much
funnier and more enjoyable than other subjects. Only one ex-
student remarked that it was as funny as any other
programming subject. The difference between full-time
students and correspondence students was not significant in this

variable (Welch-d = 1.77; p = 0.10) and it is independent of age
(r = 0.12; p = 0.63).

This positive attitude may be caused by many factors. One
of them is, according to the respondents' opinion, that this
course provided by far more possibilities for student activity
than other course. This positive attitude was similar in the sub-
samples of full-time and correspondence student (F = 0.03; p =
0.88; t < 0.01; p > 0.99) despite the fact that the number of
contact lessons is much less for correspondence students.

Neither in the opinion regarding difficulty, nor in the
attitudes towards mobile robot programming were any
significant differences between the sub-samples of those who
work in IT sector and those of working in other fields („easier”:
F = 2.32; p = 0.14; t = 0.21; p = 0.83; „more enjoyable”: F =
1.52; t = 0.23; t = 0.59; p = 0.56; „more possibility of
activities”: F = 8.51; p = 0.01; d = 1.79; p = 0.08). Based on
these results, we supposed that the effect of “past became
beautiful” was not significant in the case of those who work in
IT now.

An indicator of programming self-concept may be a norm-
oriented comparison of the students’ own supposed result
compared to his/her team’s or classmates’ supposed result in an
imagined test (see Methods in this chapter). It is based on self-
confidence and depends on self-evaluation compared to the
peers’ results. We measured this factor on a percent-point scale
with a range of 0-100. The mean of the whole sample was 35.2
%p. It is a significantly better result for programming self-
concept than what had been measured in earlier studies. In this
study the distribution of this variable was very asymmetric,
65.6% of the sample gave a higher value than the reference
value of earlier studies. However, there were some extremely
low values so the distribution significantly differed from the
normal distribution (Z = 1.65; p = 0,01). Assumed forgetting
can be the reason for it but it also indicates that with these
respondents positive self-image did not last long.

There was a significant difference in this variable between
the sub-samples of full-time and correspondence students
(xfull-time = 39.9; xcorr = 32.7; F = 11.40; p < 0.01; d = 2.19;
p = 0.04). The individual differences were much bigger in the
sub-sample of correspondence students. This result supported
our earlier experiments: one of the reasons for the choice of
correspondence courses – together with family and social
backgrounds – is the lower learning self-concept.

Those who work in IT sector had a small advantage in this
variable (xIT = 37.6; xothers = 33.3) but this difference is not
significant (F = 0.51; p = 0.48; t = 1.07; p = 0.29). This small
difference could be a result of further workplace successes.

The self-concept related to programming and to mobile
robot programming were assessed by six-six Likert-style
questions. Both groups of these variables were arranged into
one factor (KMOprog = 0.84; KMOmobile = 0.72). Based on
this we aggregated these variables into two new variables and
transformed them into percent-point scale. Both of the new
variables showed a normal distribution (programming self-
concept: Z = 0.95; p = 0.33; self-concept related to mobile
robot programming: Z = 0.45; p = 0.98).

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

168 | P a g e
www.ijacsa.thesai.org

There was a great and significant difference between these
two variables in the whole sample (xprog = 56.7 %p; xmobile
= 88.5 %p; t = 6.77; p < 0.01). The Pearson-correlation
between two variables is not significant (r = 0.11). This result
showed that these factors are independent of each other despite
the fact that mobile robot programming is a sub-field of
programming. The mean of programming self-concept was
similar to the results of earlier studies. However, the self-
concept related to mobile robot programming was correlated to
the above mentioned factor of norm-oriented comparison (r =
0.44; p = 0.02), increasing the validity of our result.

The self-concept related to programming and to mobile
robot programming was similar in the two sub-samples of full-
time and correspondence students (programming self-concept:
xfull-tim = 55.9 %p; xcorr = 57.2 %p; self-concept related to
mobile robot programming: xfull-time = 86.7 %p; xcorr = 89.5
%p).

IV. CONCLUSIONS

Our results indicate that the learning process with
programmable mobile robots and with new teaching methods
could improve the attitude towards mobile robot programming
and self-concept, however, we could not observe any
significant transfer effects to other fields of programming. This
fact was underpinned by the negative and significant
Spearman-correlation between the programming self-concept
and the marks at the end of the “Model robot programming”
course (r = -0.47; p < 0.01). The successful transfer of the
mobile robot programming self-concept to other programming
areas would need further positive results.

ACKNOWLEDGMENT

This research was supported by the European Union and the
State of Hungary, co-financed by the European Social Fund
within the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001
‘National Excellence Program’

REFERENCES

[1] R. Kiss, A.Pásztor, ”Using Programmable Robots in the Education of

Programming”, Unpublished conference proceedings. Szakmai Nap,
Kecskemét. 2006.

[2] [2] M. Sartatzemi, V. Dagdilelis, K. Kagani, ”Teaching Programming

with Robots: A Case Study on Greek Secondary Education”, Lecture
Notes in Computer Science, 37(46), pp. 502-512, 2005.

[3] M. R. Lattanzi, S. M. Henry, ”Teaching the Object-oriented Paradigm

and Software Reuse: Notes from an empirical study”, Computer Science
Education, 7(1), pp. 99–108, 1996.

[4] S.Brilliant, T.R.Wiseman, ”The First Programming Paradigm and

Language Dilemma”, Proc. SIGCSE ’96 Symposium on Computer
Science Education, pp. 338–342, 1996.

[5] J. Piaget, The Essential Piaget. ed by Gruber, H. E. and Vonèche, J. J.
Basic Books, New York, 2007.

[6] J. Nagy, XXI. century and education, Budapest, Osiris Press, 2000.

[7] R.Pap-Szigeti,”Cooperative Strategies in Teaching of Web-

Programming” Practice and Theory Systems Education, pp 51-64, 2007.

[8] M. Csíkszentmihályi, ”Flow. The psychology of optimal experience”,
Budapest, Akadémiai Press, 2001.

[9] B. Csapó, ”The Surface Layers of School Knowledge: What Do the

Ratings Reflect?”, In Csapó B. (ed.), The School Knowledge,. Budapest,
Osiris Press,pp. 39-81, 1998.

[10] C. Moler, The Origins of MATLAB, 2004.

[11] O. Michel, ”Webots: a powerful realistic mobile robots simulator”,
IProceeding of the Second International Workshop on RoboCup.

Springer-Verlag, 1998.

[12] O. Michel, ”Professional Mobile Robot Simulation”, International
Journal of Advanced Robotic Systems, 1 (1), pp 39-42, 2004.

[13] N. Collier, T. Howe, M. North. Onward and upward,”The transition to

Repast 2.0.”, In Proceedings of the First Annual North American
Association for Computational Social and Organizational Science

Conference, 2003.

[14] N. Minar, R. Burkhart, C. Langton, M. Askenazi. ”The Swarm
simulation system: a toolkit for building multi-agent simulations”,

Technical report, Santa Fe Institute, Working Paper 96-06-042, 1996.

[15] C. J. Solomon, S. Papert, ”A case study of a young child doing turtle
graphics in LOGO” AI Memo 375. Massachusetts Inst. of Tech.,

Cambridge, Artificial Intelligence Lab. 1976.

[16] R.E. Pattis, ”Karel the robot: a gentle introduction to the art of

programming”, Wiley & Sons, Hoboken, NJ. 1981/1995..

[17] J. Dalbey, M. Linn, ”Spider World: A robot language for learning to
program. Assessing the cognitive consequences of computer

environments for learning (ACCCEL)”, Paper presented at the Annual
Meeting of the American Educational Research Association, New

Orleans, LA, 1984.

[18] C. Wu, I. Tseng, S. Huang, ”Visualisation of program behaviors:
physical robots versus robot simulators”, In: Mittermeir, R. T. & Syslo,

M. M. (eds.): Informatics Education – Supporting Computional
Thinking, Poceedings of the Third Conference on Informatics in

Secondary School, Poland, July 1-4. pp. 53-62, 2008.

[19] T. Kamada, H. Aoki, S. Kurebayashi, Y. Yamamoto, ”Development of
an educational system to control robots for all students”, In: Mittermeir,

R. T. & Syslo, M. M. (eds.): Informatics Education – Supporting
Computional Thinking. Poceedings of the Third Conference on

Informatics in Secondary Schools – Evolution and Perspectives, ISSEP
2008. Torun, pp. 63-74, 2008.

[20] S. Kurebayashi, H. Aoki, T. Kamada, S. Kanemune, Y. Kuno, ”Proposal

for teaching manufactoring and control programming using autonomous
mobile robots with an arm”, In: Mittermeir, R. T. & Syslo, M. M. (eds.):

Informatics Education – Supporting Computional Thinking. Poceedings
of the Third Conference on Informatics in Secondary Schools –

Evolution and Perspectives, ISSEP2008. Torun, Poland pp. 75-86, 2008.

[21] B. Fagin, L.Merkle, ”Measuring the Effectiveness of Robots in Teaching
Computer Science”, Proceedings of the Thirty-Fourth SIGCSE

Technical Symposium on Computer Science Education, 2003.

[22] A. Pásztor, Pap-Szigeti, ”Congruence Examination of NXT Robots in

the Education of Programming at KF GAMF College”, Practyce and
Theory in Systems of Education, Volume 3. Number 3-4 2008. 33-40.o.

HU ISSN 1788-2591, 2008.

[23] I.Falus, Didaktika. Nemzeti Tankönyvkiadó, Budapest. 1998.

[24] S. Kagan,” Cooperative learning”, Ökonet Press, Budapest. 2001.

[25] M. Scardamalia, C. Bereiter, “Knowledge Building“, In Encyclopedia of
Education. Macmillan Reference, New York, pp.1370-1373, 2003.

[26] G. Stahl, “Group Cognition: Computer Support for Collaborative

Knowledge Building“, MIT Press, Cambridge, 2006.

[27] A. Pásztor, R. Pap-Szigeti, E. Lakatos Török, “Effects of Using Model
Robots in the Education of Programming“, INFORMATICS IN

EDUCATION An International Journal, 2010, Vol. 9, No. 1,
ISSN1648-5831 pp. 133-140. 2010.

[28] A. Helmke, M. A. Aken, “The causal ordering of academic achievement
and self-concept of ability during elementary school: A longitudinal

study“, Educational Psychology, 87, pp. 624-637, 1995

