
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 12, 2013

168 | P a g e
www.ijacsa.thesai.org

Pre-Eminance of Open Source Eda Tools and Its

Types in The Arena of Commercial Electronics

Geeta Yadav

VLSI Design Group

Department of EECE, ITM University

Gurgaon (Haryana), India

Neeraj Kr. Shukla

VLSI Design Group

Department of EECE, ITM University

Gurgaon (Haryana), India

Abstract—Digital synthesis with a goal of chip designing in

the commercial electronics arena is packed into large EDA

Software providers like, Synopsys, Cadence, or MentorGraphics.

These commercial tools being expensive and having closed file

structures. It is also a financial constraint for the startup

companies sometimes who have their budget limitations. Any

bug-fixes or add features cannot be made with ease; in such

scenario the company is forced to opt for an alternative cost

effective EDA software. This paper deals with the advantages of

using open source EDA tools like Icarus Verilog, Verilator,

GTKwave viewer, GHDL VHDL simulator, gEDA, etc. that are

available as a free source and focuses on the Icarus Verilog

simulator tool. It can be seen as a big encouragement for startups

in Semiconductor domain. Thereby, these open source EDA tools

make the design process more cost-effective, less time consuming
and affordable as well.

Keywords—Open source EDA; MentorGraphics; Cadence;

Icarus Verilog; GTKwave viewer; Verilator; GHDL VHDL

simulator; gEDA; Linux; Github; VPI

I. INTRODUCTION

A. Open source EDA tools

The open source plays a key role in the EDA tool
development. A set of tools known as Digital synthesis flow is
used to turn a circuit design written in Verilog or VHDL a
high-level behavioral language into a physical circuit, which
can either serve to be configuration code for a Xilinx or Altera
chip, or a layout in a specific fabrication process technology
[1]. In the commercial electronics arena, digital synthesis with
the application of a chip design is usually packaged into large
EDA software systems like MentorGraphics or Cadence or
Synopsys which are very expensive. So the designers need to
maintain cutting-edge performance as these commercial tool
chains get more and more expensive. Another disadvantage of
working with the closed file structures is that it becomes
difficult to add customized features to the tool. Also, for small
customers it becomes very difficult and time consuming for
them to fix the bugs appearing in the tool. An alternate to this,
is to go for new software that is more user friendly and easier
to deal with [2].

The oldest of these are probably VIS and SIS, two
software tools developed at Berkeley for Verilog parsing,
logic verification, and mapping of logic onto a digital standard
cell library. They perform the task of logic optimization and
cell mapping admirably [3].

B. Linux Platform

Linux serves as a open source platform for the various
EDA tools. It is very advantageous as compared to the other
operating systems as it is free to obtain, while Microsoft
products are available for a hefty and sometimes recurring fee,
the security aspect of Linux is much stronger than that of
Windows as free from virus, the power to control just about
every aspect of the operating system, flexibility, its use as a
firewall, a file server, or a backup server [4].

C. Github

It is a web based hosting service which is used for software
development projects using the Git version control system. Git
is a software version control tool which is mainly used for
proper management of the various versions of a particular tool.
It keeps track of the dates when the changes are being made to
the tool, what are those changes, and who has made those
changes. This way, we can easily follow the continuous
changes being made to the tool. For private repositories,
Github provides paid plan whereas for open source projects it
is free. The site provides social networking functionality such
as feeds, followers and the social network graph to display
how developers work on their versions of a repository.

II. TYPES OF OPEN SOURCE EDA TOOLS

A. Icarus Verilog Simulator

Icarus verilog is an open source synthesis and simulation
tool. It works as a compiler and compiles the source code
written in Verilog(IEEE-1364) into a target format. The Icarus
Verilog compiler is written by Stephen Williams. He is still
working on it. This tool supports a waveform viewer named
GTKWave. This tool has various released versions; one of its
latest released versions is version 0.9.6 [5].

Characteristics:

 Simulation engine is efficient

 Portable compiler

 Challenge for commercial tools

 Supported graphics tool like GTKwave

 New compatibility with de facto standards such as
library formats and command files

Significance:

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 12, 2013

169 | P a g e
www.ijacsa.thesai.org

The addition of the functionality to the Icarus Verilog tool
would lead to the effective and reduction in the design and
verification of the circuits through the Hardware Description
Languages. List of providers who offer commercial support
for Icarus Verilog and/or related products are Dolly Software
Private Limited, Embecosm, OCLogic Limited [6].

The tool has various release versions like 0.9.2, 0.9.3,
0.9.4, and so on, latest being the version 0.9.6. The release
notes of the tool lists the various bugs in that version which
are then worked on. This can be fixed by any user as it is an
open source EDA detail. The fixation of these bugs leads to
making the verification of the tool more effective.

B. Verilator

Verilator is a free Verilog HDL simulator. It compiles
synthesizable Verilog into an executable format and wraps it
into a SystemC model. Internally a two-stage model is used.
The resulting model executes about 10 times faster than
standalone SystemC. Verilator has been used to simulate many
very large multi-million gate designs with thousands of
modules. Therefore we have chosen this tool to be used in the
verification environment for the Open RISC processor [7].
Characteristics:

 Verilator is the fastest

 It compiles synthesizable Verilog (not test-bench code),
plus some PSL, SystemVerilog and Synthesis
assertions into C++ or SystemC code

 Verilator has been used to simulate many very large
multi-million gate designs with thousands of modules

C. GHDL VHDL simulator

GHDL implements the VHDL87 (common name for IEEE
1076-1987) standard, the VHDL93 standard (aka IEEE 1076-
1993) and the protected types of VHDL00 (aka IEEE 1076a or
IEEE 1076-2000). The VHDL version can be selected with a
command line option [7].

Characteristics:

 It has been successfully employed for compiling and
simulating the DLX processor and the LEON1 SPARC
processor

 It directly creates binaries or executable images, which
is the best form for testbenches

 It can be used to pretty print or to generate cross
references in HTML

D. gEDA

The gEDA project was started by Ales Hvezda in an effort
to remedy the lack of free software EDA tools for Linux/Unix.
The first software was released on 1 April 1998, and included
a schematic capture program and a netlister. At that time, the
gEDA project website and mailing lists were also set up.

Characteristics:

 Originally, the project planned to also write a PCB
layout program

 The ability to target netlists to PCB was quickly built
into the gEDA Project's netlister, and plans to write a
new layout program from scratch were scrapped

 The authors of other open source programs became
affiliated with the gEDA website and mailing lists, and
the collaborative gEDA Project was born

E. GTKwave viewer

It is a GTK+ based wave viewer for Unix, Win32 etc.
GTK+ is basically a toolkit used for creating graphical user
interfaces. It helps in viewing the VCD files. The Icarus
Verilog tool uses the GTKwave tool for the graphical
representation of the results.

III. VERILOG PROCEDURAL INTERFACE

VPI stands for Verilog Procedural Interface. The use of
VPI permits behavioral Verilog code to invoke C functions
and C functions to invoke standard Verilog system tasks. VPI
is a part of the programming language interface standard IEEE
1364. Users can access information contained in a Verilog
design as well as provides facilities to interact dynamically
with a software product via the VPI interface routines. VPI
interface provides applications such as annotators and
connection of a Verilog simulator with other simulation tools
and customize the debugging of tasks, delay calculators. The
basic functions of the VPI interface can be categorized into
two main areas: VPI callbacks usage for dynamic software
product interaction. Verilog HDL objects and simulation
specific objects can be accessed.

Callbacks in VPI can call a user-defined application by the
use of Verilog HDL software product like logic simulator
when a specified activity occurs on request of the user.
Dynamic software product interaction is accomplished by
registered callback mechanism. To understand this take an
example like, when a particular net value changes the user can
request the calling of the user application my_monitor and can
call my_cleanup() routine when the execution of the product
of the software completes. The detection of the changes in the
occurrence of values, termination of simulation, time
advancement, etc. can be detected by using VPI callback
facilities which allows the dynamic interaction with software
product. The callback feature allows applications of
integration with other simulation systems, specializing of the
timing checks, complexity of debugging features, etc. There
are four basic reasons for callbacks as listed below [9]:

 Simulation event (e.g., change in the value on a net or
a behavioral statement execution)

 Simulation time (e.g., the termination of a time queue
or after certain amount of time)

 Simulator action/feature (e.g., the end of compilation,
end of simulation, restart, or enter interactive mode)

 User-defined system task or function execution

Steps required writing a C function and interfacing it with
a Verilog simulator:

 Write a function in C

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 12, 2013

170 | P a g e
www.ijacsa.thesai.org

 Associate the C function with a new system task

 Register a new system task

 Invoke system tasks

Fig. 1. Example showing use of VPI

IV. EVENT QUEUE STANDARD

The Verilog HDL is defined in terms of a discrete event
execution model. A design has a large number of threads
connections for execution or processes. Objects that can have
state can be evaluated and respond to the changes in the
outputs with respect to the changes in the inputs are called
Processes. Modules, primitives, initial and always procedural
blocks, continuous assignments, asynchronous tasks, and
procedural assignment statements are all included in a process.

Update event: Change in value of a every net or variable in
the circuit being simulated and named event as well.

Evaluation event: Processes have sensitivity for update
events. All the processes that are sensitive to that event are
evaluated in an arbitrary order when an update event is
executed. Process evaluation is also an event.

Simulation time: It is the time value maintained by the
simulator for modeling the actual time it would take for the
circuit in simulation.

Scheduling an event: Events occur at different times slots,
so in order to keep track of the events and to have a surety
that they are processed in the correct order, the events are
kept on an event queue, as ordered by simulation time. Putting
an event on the queue is called scheduling an event.

V. VPI FOR INERTIAL DELAY IN ICARUS VERILOG VERSION

0.9.6

This is one of the functional bugs in the 0.9.6 released
version. VPI (Verilog Procedural Interface) is used to invoke
the C functions from Verilog or vice-versa. Inertial delay is
basically the gate delay associated with the design. Icarus
Version 0.9.6 does not provide the VPI support for inertial
delays i.e. it does not consider the inertial delays associated
with the design when interfacing with the other tools.

For the addition of this functionality changes need to be
made in the source code. For this bug the scheduler.cc is the
part of the source code where changes are needed. An event
queue is used for scheduling the active, inactive, and non-
blocking and monitors assignments. Hence for inertial delay a
second event queue needs to be added providing input to the
event loop in the scheduler.cc which will automatically keep a
check on the inertial delay of the design. The adding of this
functionality leads to the more efficient design verification as
the inertial delay will also be encountered.

Fig. 2. Example showing inertial delay support without VPI

The inertial delay support is present in the Icarus Verilog
version 0.9.6 without the use of VPI, whereas when the VPI is
used than the inertial delay is not supported by the tool. Hence
this is one of the bug present in the version 0.9.6.

VI. CONCLUSION

The closed file structures are a real challenge for the
startup companies as they are expensive and the bug-fixes as
well as the adding of functionality is not possible, in such
scenario the company needs to change the whole software. On
the other hand open source EDA tools are of great importance,
it provides its source code for the users to make changes and
use it.

The availability of the source code leads to the faster
development of the tool. Icarus Verilog is a very strong
simulation tool; the synthesis part is being worked on. Icarus
Veilog also has a graphical support in the form of GTKwave
viewer. So, open source EDA tools are cost-effective, less
time consuming, user friendly with a lot of fun learning as
well.

REFERENCES

[1] URL: http://opencircuitdesign.com/qflow/welcome.html

[2] URL: http://blog.engineersimplicity.com/2008/11/open-source-
eda.html

[3] URL: http://opencircuitdesign.com/qflow/welcome.html

[4] URL:http://ubuntu-artists.deviantart.com/journal/8-Advantages-of-

using-Linux-overWindows-291681914

[5] URL:]http://iverilog.icarus.com/

[6] URL: https://sites.google.com/site/iverilog/support/support-providers

[7] URL: http://opencores.org/opencores,tools

http://opencircuitdesign.com/qflow/welcome.html
http://opencircuitdesign.com/qflow/welcome.html
http://iverilog.icarus.com/
https://sites.google.com/site/iverilog/support/support-providers
http://opencores.org/opencores,tools

