
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 12, 2013

48 | P a g e

www.ijacsa.thesai.org

FIR Filter Design Using The Signed-Digit Number

System and Carry Save Adders – A Comparison

Hesham Altwaijry

Computer Engineering Department,

King Saud University

PO Box 51178, Riyadh 11543, Saudi Arabia

Yasser Mohammad Seddiq

Computer Engineering Department,

King Saud University

PO Box 51178, Riyadh 11543, Saudi Arabia

Abstract— This work looks at optimizing finite impulse

response (FIR) filters from an arithmetic perspective. Since the

main two arithmetic operations in the convolution equations are

addition and multiplication, they are the targets of the

optimization. Therefore, considering carry-propagate-free

addition techniques should enhance the addition operation of the

filter. The signed-digit number system is utilized to speedup

addition in the filter. An alternative carry propagate free fast

adder, carry-save adder, is also used here to compare its

performance to the signed-digit adder. For multiplication, Booth

encoding is used to reduce the number of partial products. The

two filters are modeled in VHDL, synthesized and place-and-

routed. The filters are deployed on a development board to filter

digital images. The resultant hardware is analyzed for speed and

logic utilization

Keywords— FIR Filters – Signed Digit – Carry-Save – FPGA

I. INTRODUCTION

Digital signal processing (DSP) systems employ computer
systems to digitally process input signals. An example where
computer arithmetic is a key factor in optimizing the design is
digital filters especially convolution-based ones. The hardware
complexity and processing delay of these digital filters are
proportional to a parameter called the filter order, which is
highly desired to be large [1]. These filters have been built
using FPGA’s [2] [3] [4]

A fundamental principle in computer arithmetic upon which

all the succeeding aspects are based is how values are to be

represented. As all the computing platforms that are used

today for digital signal processing are based on digital

electronics, the arithmetic operations they perform should be

handled in a way that is suitable to the nature of the electronics

that build these platforms. The way a value is represented is

called a number system. Computers were initially developed

to use the binary number system (radix-2). Although,

computers use radix-2, there have been few number systems

discussed in the computer arithmetic literature that are

unconventional in terms of representation and operations.

Such number systems are used in computers for some special

applications.

A. The Binary Number System

Binary number systems are called positional number
systems [5]. A general expression for the value of an n-digit
number A consisting of digits an–1, an–2, … , a0, in radix-r
number system is as follows:








1

0

n

i

i

i raA

 

In computers, the choice of r is 2 due to electronic circuit

limitations. When r equals a constant value as in the decimal

and the binary systems, this is called a fixed-radix number

system. An observation on the conventional fixed-radix

positional representation is that special representations are

required for signed number and that carry propagation in

addition, which increases the delay of operations, limits

system scalability and adds more complexity to algorithm

implementation.

B. Unconventional Number Systems

A common feature of the unconventional number systems

is redundancy; a positional number system is redundant when

the number of elements in its digit set is greater than r, where r

is the radix. In a redundant number system, an algebraic value

can have more than one representation. Redundant number

systems can improve system reliability, increase speed of

operations, and provide structural flexibility. [6]

Signed digit number systems are a positional number

representation with a constant radix r ≥ 3. Each digit of a

signed-digit number can have one value of the set {–a, –a + 1,

… , 0 , … , a – 1, a} [7] [8]. The maximum possible

magnitude, a, is set as follows

 3 radicesoddfor1
2

1



oo

o rra
r

 (2)

 4 radicesoddfor11
2

 ee
e rra

r
 

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 12, 2013

49 | P a g e

www.ijacsa.thesai.org

Fig. 1. Basic FIR Filter

When a value is represented with n binary bits, then it will

be represented with   rnk 2log/ signed digits [9]

Signed-digit systems have the advantage that the addition

time of a multi-operand adder that is built by cascading

identical digit adders is constant.

A special case in signed-digit representation is for the

radix r = 2 and the digit set is { 1 , 0, 1} where 1 represents –

1. In this case, the representation is called canonic signed-digit

(CSD). Three main properties of the CSD are that it is

irredundant, the number of nonzero digits is minimal and

multiplying any two adjacent digits will produce zero. In the

applications that involve multiple constant multiplications

(MCM) as in the FIR filters, using CSD guarantees the

minimal number of adders.

II. DIGITAL FILTERS

Filters are signal processing components that are used to

process interfered and corrupted signals. They can be

classified to two main categories: analog and digital filters.

Filters in these two categories are different in terms of cost,

speed, accuracy, power consumption and implementation, but

they are similar in the sense that they are both used to filter

signals.

A commonly used method of implementing digital filters

is by considering a subset of the filter’s impulse response.

Filter designed this way are called finite impulse response

(FIR) filters. The mathematical process used to get the output

of a linear system according to its impulse response is the

convolution. When a digital signal x[n] is to be processed by a

system of impulse response h[n], the output is the result of the

following equation [1]:








1

0

][][][
N

k

knxkhny

 

The above equation describes how each sample of the

output signal is calculated. This is an application of the widely

used mathematical operation of the dot product, which

consists purely of multiplication and addition. Optimizing the

dot product does not only serve the FIR filter application, but

also some other applications that are similarly described such

as radar processing, signal correlation and matrix

multiplication.

Fig. 2. Signed Digit Addition

A general block diagram of the convolution process as it

is implemented in hardware is shown in Fig. 1 The delay line

represents the inversion and shift in the input x[n]. The taps of

the delay line are multiplied by the constant values of h[n].

The wider the delay line, the more accurate the results of the

FIR filter are. Of course, this is on expense of more hardware

resources, higher power consumption and higher cost.

In order to make the FIR filter performs addition faster,

breaking the carry propagation chain in its adders is essential.

The two most common techniques to achieve this are signed-

digit addition and carry-save addition.

A. Signed-Digit Addition

Signed-digit number system can perform addition and

subtraction with a limited propagation of carry. This feature

makes the adder's delay independent of the operand length

which implies less delay. The carry propagation can go as far

as one position to the left. The sign of the number is implicitly

expressed in the digits and no special representation is needed

for this purpose. A block diagram of a signed digit adder is

depicted in Fig. 2. The values shown in the figure are

determined in [10]

B. Carry-Save Addition

Carry-save addition is one of the carry-propagate free

methods of addition [11]. Carry-save adders (CSA) are mainly

used when adding three operands or more. CSAs are built

using (3, 2) counters in a manner that prevents carry

propagation. The term (3, 2) counter is an alternative name for

a full adder because it receives three bits of the same weight

and outputs two bits representing the number of ones in the

three-bit input. In the ordinary carry-propagate adders, the

least significant bit of the output of the (3, 2) counter is the

sum while the most significant bit is the carry that propagates

to the left. Therefore, adding multi-operands using a CSA will

result in a vector of the sum bits and another vector of carry

bits. This two-vector result invites the need for a carry-

propagate adder to add these two vectors to get a single result

in the normal binary representation.

III. IMPLEMENTING SIGNED DIGIT FILTER

For the purpose of implementing a high-speed FIR filter,

the arithmetic advantages of the signed-digit number system

have been exploited to enhance the filter performance. This

section is an elaboration to our work in [12]. It discusses the

adder and the multiplier design and implementation.

h[0] h[1] h[2] h[3] h[4] h[5] h[6] h[7]

Multi-Operand Adder

8-tap delay line

Stage 1 Stage 1 Stage 1 Stage 1 Stage 1

Stage 2 Stage 2 Stage 2 Stage 2

 s5 s4 s3 s2

c1

u0
c2

u1
c3
u2

c4

u3

c5

u4

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 12, 2013

50 | P a g e

www.ijacsa.thesai.org

Fig. 3. Signed Digit Booth-3 Multiplier

A. Digit Set and Encoding

The signed-digit number system used in this work is in

radix-2. Therefore, the allowed set of digits is { 1 , 0, 1} where

1 represents –1. As there are three possible digits in this set,

two bits are needed to encode each digit.

There are two commonly used encoding methods used to

encode the digits of a number in the signed-digit

representation [10] [13]. In the first method, each digit is

assigned a 2’s complement number representing the algebraic

value of that digit. In the second encoding method, each digit

of the number in signed-digit representation is assigned a 2-bit

code x such that the sum of the two bits is equal to the value of

that digit. If the high bit holds a negative sign, the low bit

holds a positive sign and vice versa. That is, the value can be

determined either as x
+
 + x

–
 or as x

–
 + x

+
.

The second encoding method makes converting signed-digit

numbers to 2’s complement number easier [10]. Additionally,

sign inversion of a digit is simply swapping the high and the

low bits. Therefore, in this work the second encoding method

with the value determined as xh – xl is used.

A Signed digit adder can be implemented as a straight

forward implementation into an FPGA by means of using

lookup tables (LUT). However, the synthesis of this

implementation results in a very poor utilization for the FPGA

logic elements. Alternatively, the adder can be implemented

using logic gates based upon equations presented by [14].

B. Signed Digit Partial Product Generation

FIR filters involve multiplying the input samples with the

filter kernel coefficients. Thus, improving the filter multipliers

will significantly improve the filter performance.

Multiplication is done two steps:

1. Generating the partial products.

2. Accumulating the partial products.

The number of partial products needed for the

multiplication can be reduced by using Booth’s algorithm [15],

however this encoding is performed serially, it can be done in

parallel using the modified Booth encoding [16]. Booth-2

encoding is the most commonly used method. However,

Booth-3 provides more reduction for the non-zero digits but

the existence of the hard multiple 3M forms an obstacle when

applying Booth-3 encoding. An efficient solution for the hard

multiple 3M was proposed in [13] by exploiting the

advantages of the signed-digit number system. The multiplier

proposed accepts two operands in 2’s complement

representation and gives their product in signed-digit

representation. The digit coding method used in that work is

the sum-of-bits in the form x
+
 + x

–
. The signed-digit encoding

method is utilized to determine the hard multiple 3M as 4M –

M.

Finally, the partial products are added up to get the final

product. This step requires a signed-digit multi-operand adder.

Binary tree architecture is used to build the multi-operand

adder using two-operand signed-digit adders. The block

diagram of the Booth-3 multiplier that is designed in this work

is shown in Fig. 3

C. Signed Digit Filter

After the multiplier and the multi-operand adder are al-

ready implemented, the FIR filter just needs to be assembled.

The delay line has been implemented as an array of registers.

Since the output of the final adder is still in signed-digit

representation, a converter had to be added to convert the

result to 2’s complement format. In this work, the converter is

simply a carry lookahead adder that adds the positive and the

negative parts of the signed-digit number. Converting an n-

digit signed-digit number X is performed as follows:

X = (x
+
, x

–
)n–1 (x

+
, x

–
)n–2 … (x

+
, x

–
)2 (x

+
, x

–
)1 (x

+
, x

–
)0.

The positive part is XP = x
+

n–1 x
+

n–2 … x
+

2 x
+

1 x
+

0.

The negative part is XN = x
–
n–1 x

–
n–2 … x

–
2 x

–
1 x

–
0

The 2’s complement representation is Y = XP + XN.

A scalable and parameterized design has been highly

considered. Thus, when the FIR filter is assembled, the filter

order and the sample width are defined as design generics in

the VHDL code such that the generated filter architecture

meets the intended filter parameter. The block diagram of the

signed-digit FIR filter implemented in this work is depicted in

Fig. 4. If the sample width is W and the filter order is N, the

filter output sample will be of width  NW 2log2  .

Fig. 4. Signed Digit FIR Filter [12]

IV. IMPLEMENTING CARRY SAVE FILTER

In this section, another method of breaking the carry

propagation chain is reported. That is by using carry-save

addition (CSA) [11]. CSAs are built using (3, 2) counters in a

manner that prevents carry propagation. The term (3, 2)

counter is an alternative name for the full adder because it

Partial Product
Generation

 multiplicand (M) multiplier (R)

Partial
Product

Selection

... Partial Products

Multi-Operand Signed-Digit
Adder (Tree structure)

Product

Selection
lines (M, M

and M)

Input
sample

R
e
g
is

te
r

0

R
e
g
is

te
r

2

R
e
g
is

te
r

1

...

R
e
g
is

te
r

N
-1

R
e
g
is

te
r

N
-2

h0 h1 h2 hN-2

SD
Booth-3

Mult.

N-Sample Delay Line

SD
Booth-3

Mult.

SD
Booth-3

Mult.

SD
Booth-3

Mult.

Multi-Operand Signed-Digit Adder (Tree structure) CLA

Output
Sample

hN-1

SD
Booth-3

Mult.

...

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 12, 2013

51 | P a g e

www.ijacsa.thesai.org

receives three bits of the same weight and outputs two bits

representing the number of ones in the three-bit input. In CSA

instead of propagating the carry bits to a higher position, these

carry bits are kept and added using later stages of the CSA.

Carry-save adders are used in FIR filters to add the partial

products of the multipliers and to calculate the final result of

the filter.

A. Carry-Save Addition

An efficient way of designing a carry-save adder to

achieve fast performance is by designing it based on a 3-

operand carry-save adder. A k-operand CSA adder (where k >

3), is constructed out of several blocks of 3-operand CSAs

[17] [18]. This k-operand CSA could be implemented in two

common ways: cascade or tree. The cascade structure accepts

one new operand at each level except at the first level where

three new operands are accepted. The number of levels in this

structure is more than the number of levels in the tree

structure, which implies more delay. However, the cascade

structure remains a preferred option sometimes due to its

regular layout, which implies more simplicity in the VLSI

design.

On the other hand, the tree structure, which is known as

the Wallace tree [11], accepts as many operands as possible at

the first level. The following levels are used to add the sum

and the carry vectors in addition to the operands remaining

from the first level, which must be at most two remaining

operas. When using the tree structure to build a CSA, the

number of levels will be less than the cascade structure. [19]

B. Carry-Save Filter

The CSA and Booth-2 multiplier are the fundamental

blocks of the carry save FIR filter. As in the signed-digit case,

the FIR filter is built by assembling these blocks with some

extra logic for the delay line, which is an array of registers,

and the converter, which is a carry lookahead adder. The

conversion from the carry-save to the 2’s complement format

is performed by adding the sum and carry vectors. The filter is

illustrated in Fig. 5

Fig. 5. Carry-Save FIR Filter

V. TESTING AND VERIFICATION

The implementation of the different configurations of the

FIR filters have been tested functionally using test benches

written in VHDL. Those test benches covered the top-level

architectures along with the sub-components throughout the

design hierarchy. Moreover, the filters have been synthesized

and mapped into an FPGA in order to verify their functionality

on real hardware for image processing. This experiment is

reported briefly in [12] while described in more details in the

following. Such applications are challenging in the sense that

two dimensional (2D) FIR filters are needed instead of the one

dimensional (1D) filters available in hand. A 2D FIR filter

applies the 2D convolution equation:











1

0

1

0

],[],[],[
M

i

N

j

jnimhjixnmy

 

A sample of an image signal is in indexed by two values:

m and n indicating the row and column position of that sample

respectively. Since the filters implemented so far in this work

are 1D, they are instantiated in parallel to build a 2D FIR filter

of order M-by-N such that each one of the M 1D filters

performs convolution operation of order N as illustrated in

Fig.6. The kernel h of each filter is assigned as one row of the

2D kernel. The 2D filter of order 11-by-11 that is designed in

this work is intended to smooth out the sharp edges of an input

image by averaging out each pixel with its neighbors such that

the output image is a blurred version of the original one. So,

this is a moving average filter, which is a low-pass filter.

After blurring the image, the result is subtracted from the

original image in order to extract the image edges and cancel

out the constant regions. In this work the filter size is 11-by-11

and the filter kernel is




































2222

2222

2222

2222

11

1
...

11

1

11

1

11

1

...............

11

1
...

11

1

11

1

11

1
11

1
...

11

1

11

1

11

1
11

1
...

11

1

11

1

11

1

h

 

The above described process is implemented on Altera

Cyclone II Starter Development Board. The image source is a

normal personal computer. The interface between the FPGA

and the computer is the serial port. The results are depicted in

Fig. 7

Fig. 6. 2-D FIR filter [12]

Input
sample

R
e
g
is

te
r

0

R
e
g
is

te
r

2

R
e
g
is

te
r

1

...

R
e
g
is

te
r

N
-1

R
e
g
is

te
r

N
-2

h0 h1 h2 hN-2

CS
Booth-2

Mult.

N-Sample Delay Line

CS
Booth-2

Mult.

CS
Booth-2

Mult.

CS
Booth-2

Mult.

Sum

CarryMulti-Operand Carry-Save Adder (Tree structure)
CLA

Output
Sample

SC SC SC SC

hN-1

CS
Booth-2

Mult.

SC

...

Kernel = h[M- ,] to h[M- , N-]

FIR filter

x[, n]

Kernel = h[M- ,] to h[M- , N-]

FIR filter

x[, n]

Kernel = h[M- ,] to h[M- , N-]

FIR filter

x[, n]

Kernel = h[,] to h[, N-]

FIR filter M-

x[M- , n]

:
:

+
x[m, n]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 12, 2013

52 | P a g e

www.ijacsa.thesai.org

(a) Original image (b) Blurred image

(c) Subtracted image

Fig. 7. Edge Extraction using FIR filter [12]

VI. SYNTHESIS RESULTS

The two FIR filter designs have been implemented in a

scalable and parameterized manner by exploiting the

generality features of VHDL. The sample width W and the

filter order N are the two generics of the two filters. Recalling

that the major problem that is handled in this work is the carry

propagation delay, different values for W, which is directly

affecting the carry chain, should be examined. Since we are

talking about FIR filters, the order N is also worth examining.

Three precision levels of W are selected: low precision,

medium precision and high precision where W is equal to 12,

24 and 48 bits respectively. These values of W are selected

because when Booth-3 is applied on them, the number of

generated partial products is a power of 2, which reduces the

complexity of the multi-operand adder when built as a binary

tree. In fact, there is also some attractive and practical

advantage for choosing sample widths of 12 and 24 bits. That

is, most of the commercial analog-to-digital converters

(ADCs) that are used today electronic systems are 12-bit wide

and most of the audio codec components used in media

systems are 24-bit wide.

For the values of N, arbitrarily chosen values of 16, 32

and 64 samples have been considered. With two filter types,

three precision levels and three filter orders, there are 18

different FIR filters to be synthesized. The 18 filters have been

synthesized and place-and-routed using Quartus II software.

The target FPGA is Altera Stratix III EP3SL340 [20]. The

timing and hardware results of the place-and-route process are

targeted for analysis. To get accurate timing results, the delay

from the primary input to the primary output of the filter

should be measured. In fact, some software design tools

measure the delay starting from the FPGA pin to which the

primary input is assigned and ending at the pin to which the

primary output pin is assigned. This method of measuring

delay is not accurate when comparing two or more designs

because there will be some extra routing delay between the

pins of the primary ports. This routing delay is dependent on

where the tool places and routes the design and hence is not

regular. To avoid this problem in this work, the primary input

and the primary output of the filter are latched. Once the tool

figures out that there is some logic between two registers, it

will calculate the maximum clock frequency fmax allowed for

this design. The reciprocal of the frequency (1/ fmax) is the

propagation delay of the logic between the two registers, plus

some sequencing overhead which is common for all designs.

Thus, the presence of this extra delay in the comparison is fair.

The place-and-route results for delay and hardware are

collected and analyzed. These results are discussed in the

following figures.

The delay data collected for the 18 filters are summarized

in Fig.8. An observation on the chart is that the latency in both

filters is proportional to W and N. The justification of this

observation is that the sample width W directly affects the

number of partial products that is generated in the Booth

multipliers, which in turn increases the number of levels in the

multi-operand adder inside the multiplier. Likewise, the value

of N affects the number of levels in the multi-operand adder

that generates the final filter result. This increase in the adder

levels, which is proportional to W and N, results in a larger

latency. It is interesting to notice that the delay of the two

filters is not equally proportional to W and N; it is highly

proportional to W while slightly proportional to N. This is, in

fact, due to the delay introduced by the carry lookahead adder

that acts as a converter at the last stage in both filters. A CLA

is a carry propagate adder and it is expected to be highly tied

to W. When this CLA has been separately analyzed, it has

been found that it is responsible for about 28 % of the overall

filter delay. This explains why W has more influence on the

filter delay than N.

Another observation is that the signed-digit filter is

always faster than the carry-save filter. This improvement in

filter performance needs more analysis in order to see how the

improvement behaves with respect to the design parameters

and how significant it is. Fig. 9 depicts the ratio of the signed-

digit filter delay over the carry-save filter delay. Clearly, the

delay improvement is very slight since the chart indicates that

signed-digit filter performs between 1.1 and 1.2 times faster

than the carry-save filter. The speedup is almost constant

regardless of the values of W and N.

Fig. 8. FIR filter Delays

0
5

10
15
20
25
30
35

12 24 48 12 24 48 12 24 48
16 32 64

W=

N=

ns SD
 CS

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 12, 2013

53 | P a g e

www.ijacsa.thesai.org

Fig. 9. Ratio of SD- to CSA FIR filter delays

Fig. 10. Logic Utilization

Fig. 11. Logic Utilization Percentage

The data of the logic utilized by the 18 filters is also

collected and analyzed. The place-and-routing logic utilization

results are summarized in Fig. 10. While Fig. 11 shows the

percentage of hardware reduction in the signed-digit filter with

respect to the carry-save filter. It is logical and expected to see

that the hardware of the two filters grows as the values of W

and N increase. It is noticeable that the hardware utilization

when W = 12 bits, regardless of the value of N, is almost the

same for the two types of filters. With higher values of W, the

signed-digit filter has an advantage. The case of having the

signed-digit filter being smaller than the carry-save filter

despite that the added complexity of the signed-digit adder is

may by the significance of Booth multipliers in the filters

since most of the filter size is occupied by them. Booth

multiplier efficiency in saving hardware and time becomes

more significant and appreciated when the multiplier gets

bigger. This is what makes the logic difference more notable

when W is equal to 24 and 48 bits. From Fig. 11, the signed-

digit filter is between 30 % and 40 % smaller than the carry-

save filter for W = 48. This might seem counterintuitive.

However, this could be justified by amount of multipliers

used, and the fact that the reduction from Booth 2 to Booth 3

is the cause for this reduction in size.

VII. CONCLUSIONS

In this work, FIR filter design and implementation have

been approached from arithmetic perspective. The signed-digit

and the carry-save arithmetic techniques have been exploited

to reduce addition time. Booth encoding was used to speedup

multiplication. The authors designed, simulated and tested a

high-speed FIR filter using the signed digit number system.

The first part of work is the design and implementation of the

FIR filter using the signed-digit number system and Booth-3

encoding to improve the filter adders and multipliers

respectively. The implementation of the signed-digit two-

operand and multi-operand adders has been discussed. In

Booth-3 implementation, it has been shown how the signed-

digit number system helps in generating the hard multiple 3M.

The other part of this work is the design and implementation

of an FIR filter using carry-save addition and Booth-2

encoding to improve the filter adders and multipliers

respectively. The hierarchical design of CSAs of several sizes

has been reported.

For the two types of filters in this work, nine different

configurations have been considered for the sample width W

(12, 24, 48 bits) and for filter order N (16, 32, 64) samples. A

total of 18 filters of both types have been modeled and

generated in VHDL. Then, these filters have been synthesized

and place-and-routed. The data resulted from the place-and-

rout process, which is related to system delay and logic size,

has been collected and analyzed.

The results analysis have shown that the signed-digit FIR

filters designed in this work are slightly faster than the carry-

save FIR filters. The filter delay is slightly proportional to N,

but highly proportional to W. The signed-digit filters are

constantly about 1.1 times faster than the carry-save filters.

Both types of filters have consumed almost the same amount

of logic for low precision samples while they differ in logic

utilization as the precision increases. The signed-digit filter

reported better logic utilization especially for W = 48 bits

where it becomes 30 % to 40 % smaller than the carry-save

filter.
In conclusion, both the signed-digit and the carry-save

filters are fast and efficient because of the carry-propagate-free
addition they involve. The speedup that is gained in the FIR
filter when signed-digit arithmetic is used is not so significant.
Likewise, the filter size reduction for a sample width around 12
bits is almost negligible. However, the improvement in logic
utilization for wider samples is strongly significant. Therefore,
designing FIR filters using signed-digit number system
becomes efficient and useful more than carry-save filters when
the filter works for high precision samples. However, the
signed-digit filter is superior over the carry-save filter in logic
utilization more than speed.

REFERENCES

[1] S. Smith, The Scientist and Engineer's Guide to Digital Signal Processing,
San Diego: California Technical Publishing, 1997.

Logic Utilization

0

10

20

30

40

50

60

70

80

90

12 24 48 12 24 48 12 24 48

16 32 64

W=

N=

F
P

G
A

 p
e
rc

e
n
ta

g
e

 SD

 CS

Logic Utilization

-41

-31

-21

-11

-1

9

19

29

39

12 24 48 12 24 48 12 24 48

16 32 64

W=

N=

Im
p

ro
v
m

e
n

t
p

e
rc

e
n

ta
g

e

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

12 24 48 12 24 48 12 24 48
16 32 64

W=

N=

X

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 12, 2013

54 | P a g e

www.ijacsa.thesai.org

[2] C.-J. Chou, S. Mohanakrishnan and J. B. Eva, "FPGA Implementation of
Digital Filters," in International Conference of Signal Processing
Applications and Technology ICSPAT ’93, Santa Clara, CA, 1993.

[3] B. Parhami and D.-M. Kwai, "Parallel Architectures and Adaptation
Algorithms for Programmable FIR Digital Filters with Fully Pipelined
Data and Control Flows," Journal of Information Science and
Engineering, no. 19, pp. 59-74, 2003.

[4] X. Jiang and Y. Bao, "FIR filter design based on FPGA," in International
Conference on Computer Application and System Modeling (ICCASM) ,
Taiyuan, 2010.

[5] J. Deschamps and M. Davio, "Addition in Signed Digit Number System,"
in Proceedings of the eighth international symposium on Multiple-valued
logic , Rosemont, Illinois, United States , 1978.

[6] D. Atkins, "Introduction to the Role of Redundancy in Computer
Arithmetic," Computer, vol. 8, no. 6, pp. 74-77, June 1975.

[7] A. Avizieni, "Binary Compatible Signed Digit Arithmetic," AFIPS
Conference Proceedings, vol. 26, no. 1, pp. 664-672, 1964.

[8] P. Ramamoorthy, B. Potu and G. Govind, "DSP System Architecture
Using Signed-Digit Number Representations," ICASSP, vol. 3, pp. 1702-
1705, April 1988.

[9] C. Nagendra, M. Irwin and R. M. Owens, "Area Time Power Tradeoffs in
Parallel Adders," IEEE Transaction on Circuits and Systems, vol. 43, no.
10, pp. 689-702, October 1996.

[10] I. Koren, Computer Arithmetic Algorithms, Natick: A. K. Peters, 2002.

[11] S. Wallace, "A Suggestion for a Fast Multiplier," IEEE Transactions of
Electronic Computers, pp. 14-17, Febuary 1964.

[12] Y. M. Seddiq and H. A. Altwaijry, "An Implementation of a 2D FIR
Filter Using the Signed-Digit Number System," in Saudi International
Electronics, Communications and Photonics Conference (SIECPC2011),
Riyadh, pp. 1-4. 2011.

[13] O. McSorley, "High Speed Arithmetic in Binary Computers,"
Proceedings of the IRE, vol. 49, no. 1, pp. 67-91, January 1961.

[14] H. Makino, Y. Nakase, H. Suzuki, H. Morinaka, H. Shinohara and K.
Mashiko, "An 8.8ns 54 x 54 Bit Multiplier wuth High Speed Redundant
Binary Architecture," IEEE Journal of Solid State Circuits, vol. 31, no. 6,
pp. 773-783, June 1996 .

[15] J. Fadavi-Ardenkani, "M x N Booth Encoded Multiplier Generator Using
Optimized Wallace Trees," IEEE Transaction on Very Large Scale
Integration (VLSI) System, vol. 1, no. 2, pp. 120-125, June 1993.

[16] G. DeMicheli and P. Song, "Circuit and Architecture Tradeoffs for High
Speed Multiplication," IEEE Journal of Solid State Circuits, vol. 26, no.
9, pp. 1184-1198, September 1991.

[17] L. Dadda, "Some Schemes for Parallel Multipliers," Alta Frequenza, vol.
34, pp. 349-356, 1965.

[18] D. Booth, "A Signed Binary Multiplication Technique," Quarterly Journal
of Mechanics and Applied Mathematics, vol. 4, no. 2, pp. 236-240, 1951.

[19] N. Besli, A Novel Arithmetic Unit Using Redundant Binary Signed Digit
Number System, Ph.D. Thesis, Florida Institute of Technology, 2004.

[20] "www.altera.com," [Online].

