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Abstract— This work looks at optimizing finite impulse 

response (FIR) filters from an arithmetic perspective. Since the 

main two arithmetic operations in the convolution equations are 

addition and multiplication, they are the targets of the 

optimization. Therefore, considering carry-propagate-free 

addition techniques should enhance the addition operation of the 

filter. The signed-digit number system is utilized to speedup 

addition in the filter. An alternative carry propagate free fast 

adder, carry-save adder, is also used here to compare its 

performance to the signed-digit adder. For multiplication, Booth 

encoding is used to reduce the number of partial products. The 

two filters are modeled in VHDL, synthesized and place-and-

routed. The filters are deployed on a development board to filter 

digital images. The resultant hardware is analyzed for speed and 

logic utilization 
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I. INTRODUCTION  

Digital signal processing (DSP) systems employ computer 
systems to digitally process input signals. An example where 
computer arithmetic is a key factor in optimizing the design is 
digital filters especially convolution-based ones. The hardware 
complexity and processing delay of these digital filters are 
proportional to a parameter called the filter order, which is 
highly desired to be large [1]. These filters have been built 
using FPGA’s [2] [3] [4] 

A fundamental principle in computer arithmetic upon which 

all the succeeding aspects are based is how values are to be 

represented. As all the computing platforms that are used 

today for digital signal processing are based on digital 

electronics, the arithmetic operations they perform should be 

handled in a way that is suitable to the nature of the electronics 

that build these platforms. The way a value is represented is 

called a number system. Computers were initially developed 

to use the binary number system (radix-2). Although, 

computers use radix-2, there have been few number systems 

discussed in the computer arithmetic literature that are 

unconventional in terms of representation and operations. 

Such number systems are used in computers for some special 

applications. 

A. The Binary Number System 

Binary number systems are called positional number 
systems [5]. A general expression for the value of an n-digit 
number A consisting of digits an–1, an–2, … , a0,  in radix-r 
number system is as follows:   
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In computers, the choice of r is 2 due to electronic circuit 

limitations. When r equals a constant value as in the decimal 

and the binary systems, this is called a fixed-radix number 

system. An observation on the conventional fixed-radix 

positional representation is that special representations are 

required for signed number and that carry propagation in 

addition, which increases the delay of operations, limits 

system scalability and adds more complexity to algorithm 

implementation.  

B. Unconventional Number Systems 

A common feature of the unconventional number systems 

is redundancy; a positional number system is redundant when 

the number of elements in its digit set is greater than r, where r 

is the radix. In a redundant number system, an algebraic value 

can have more than one representation. Redundant number 

systems can improve system reliability, increase speed of 

operations, and provide structural flexibility. [6] 

Signed digit number systems are a positional number 

representation with a constant radix r ≥ 3. Each digit of a 

signed-digit number can have one value of the set {–a, –a + 1, 

… , 0 , … , a – 1, a} [7] [8]. The maximum possible 

magnitude, a, is set as follows   
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Fig. 1. Basic FIR Filter 

When a value is represented with n binary bits, then it will 

be represented with   rnk 2log/  signed digits [9] 

Signed-digit systems have the advantage that the addition 

time of a multi-operand adder that is built by cascading 

identical digit adders is constant. 

A special case in signed-digit representation is for the 

radix r = 2 and the digit set is { 1 , 0, 1} where 1  represents –

1. In this case, the representation is called canonic signed-digit 

(CSD). Three main properties of the CSD are that it is 

irredundant, the number of nonzero digits is minimal and 

multiplying any two adjacent digits will produce zero. In the 

applications that involve multiple constant multiplications 

(MCM) as in the FIR filters, using CSD guarantees the 

minimal number of adders. 

II. DIGITAL FILTERS 

Filters are signal processing components that are used to 

process interfered and corrupted signals. They can be 

classified to two main categories: analog and digital filters. 

Filters in these two categories are different in terms of cost, 

speed, accuracy, power consumption and implementation, but 

they are similar in the sense that they are both used to filter 

signals. 

A commonly used method of implementing digital filters 

is by considering a subset of the filter’s impulse response. 

Filter designed this way are called finite impulse response 

(FIR) filters. The mathematical process used to get the output 

of a linear system according to its impulse response is the 

convolution. When a digital signal x[n] is to be processed by a 

system of impulse response h[n], the output is the result of the 

following equation [1]: 
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The above equation describes how each sample of the 

output signal is calculated. This is an application of the widely 

used mathematical operation of the dot product, which 

consists purely of multiplication and addition. Optimizing the 

dot product does not only serve the FIR filter application, but 

also some other applications that are similarly described such 

as radar processing, signal correlation and matrix 

multiplication. 

Fig. 2. Signed Digit Addition 

A general block diagram of the convolution process as it 

is implemented in hardware is shown in Fig. 1 The delay line 

represents the inversion and shift in the input x[n]. The taps of 

the delay line are multiplied by the constant values of h[n]. 

The wider the delay line, the more accurate the results of the 

FIR filter are. Of course, this is on expense of more hardware 

resources, higher power consumption and higher cost. 

In order to make the FIR filter performs addition faster, 

breaking the carry propagation chain in its adders is essential. 

The two most common techniques to achieve this are signed-

digit addition and carry-save addition.  

A. Signed-Digit Addition 

Signed-digit number system can perform addition and 

subtraction with a limited propagation of carry. This feature 

makes the adder's delay independent of the operand length 

which implies less delay. The carry propagation can go as far 

as one position to the left. The sign of the number is implicitly 

expressed in the digits and no special representation is needed 

for this purpose. A block diagram of a signed digit adder is 

depicted in Fig. 2. The values shown in the figure are 

determined in [10] 

B. Carry-Save Addition 

Carry-save addition is one of the carry-propagate free 

methods of addition [11]. Carry-save adders (CSA) are mainly 

used when adding three operands or more. CSAs are built 

using (3, 2) counters in a manner that prevents carry 

propagation. The term (3, 2) counter is an alternative name for 

a full adder because it receives three bits of the same weight 

and outputs two bits representing the number of ones in the 

three-bit input. In the ordinary carry-propagate adders, the 

least significant bit of the output of the (3, 2) counter is the 

sum while the most significant bit is the carry that propagates 

to the left. Therefore, adding multi-operands using a CSA will 

result in a vector of the sum bits and another vector of carry 

bits. This two-vector result invites the need for a carry-

propagate adder to add these two vectors to get a single result 

in the normal binary representation. 

III. IMPLEMENTING SIGNED DIGIT FILTER 

For the purpose of implementing a high-speed FIR filter, 

the arithmetic advantages of the signed-digit number system 

have been exploited to enhance the filter performance. This 

section is an elaboration to our work in [12]. It discusses the 

adder and the multiplier design and implementation. 
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Fig. 3. Signed Digit Booth-3 Multiplier 

A. Digit Set and Encoding 

The signed-digit number system used in this work is in 

radix-2. Therefore, the allowed set of digits is { 1 , 0, 1} where 

1  represents –1. As there are three possible digits in this set, 

two bits are needed to encode each digit.  

There are two commonly used encoding methods used to 

encode the digits of a number in the signed-digit 

representation [10] [13]. In the first method, each digit is 

assigned a 2’s complement number representing the algebraic 

value of that digit. In the second encoding method, each digit 

of the number in signed-digit representation is assigned a 2-bit 

code x such that the sum of the two bits is equal to the value of 

that digit. If the high bit holds a negative sign, the low bit 

holds a positive sign and vice versa. That is, the value can be 

determined either as x
+
 + x

–
 or as x

–
 + x

+
. 

The second encoding method makes converting signed-digit 

numbers to 2’s complement number easier [10]. Additionally, 

sign inversion of a digit is simply swapping the high and the 

low bits. Therefore, in this work the second encoding method 

with the value determined as xh – xl is used. 

A Signed digit adder can be implemented as a straight 

forward implementation into an FPGA by means of using 

lookup tables (LUT). However, the synthesis of this 

implementation results in a very poor utilization for the FPGA 

logic elements. Alternatively, the adder can be implemented 

using logic gates based upon equations presented by [14]. 

B. Signed Digit Partial Product Generation 

FIR filters involve multiplying the input samples with the 

filter kernel coefficients. Thus, improving the filter multipliers 

will significantly improve the filter performance. 

Multiplication is done two steps: 

1. Generating the partial products. 

2. Accumulating the partial products.  

The number of partial products needed for the 

multiplication can be reduced by using Booth’s algorithm [15], 

however this encoding is performed serially, it can be done in 

parallel using the modified Booth encoding [16]. Booth-2 

encoding is the most commonly used method. However, 

Booth-3 provides more reduction for the non-zero digits but 

the existence of the hard multiple 3M forms an obstacle when 

applying Booth-3 encoding. An efficient solution for the hard 

multiple 3M was proposed in [13] by exploiting the 

advantages of the signed-digit number system. The multiplier 

proposed accepts two operands in 2’s complement 

representation and gives their product in signed-digit 

representation. The digit coding method used in that work is 

the sum-of-bits in the form x
+
 + x

–
. The signed-digit encoding 

method is utilized to determine the hard multiple 3M as 4M – 

M.  

Finally, the partial products are added up to get the final 

product. This step requires a signed-digit multi-operand adder. 

Binary tree architecture is used to build the multi-operand 

adder using two-operand signed-digit adders. The block 

diagram of the Booth-3 multiplier that is designed in this work 

is shown in Fig. 3 

C. Signed Digit Filter 

After the multiplier and the multi-operand adder are al-

ready implemented, the FIR filter just needs to be assembled. 

The delay line has been implemented as an array of registers. 

Since the output of the final adder is still in signed-digit 

representation, a converter had to be added to convert the 

result to 2’s complement format. In this work, the converter is 

simply a carry lookahead adder that adds the positive and the 

negative parts of the signed-digit number. Converting an n-

digit signed-digit number X is performed as follows: 
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2 x
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The 2’s complement representation is Y = XP + XN.  

A scalable and parameterized design has been highly 

considered. Thus, when the FIR filter is assembled, the filter 

order and the sample width are defined as design generics in 

the VHDL code such that the generated filter architecture 

meets the intended filter parameter. The block diagram of the 

signed-digit FIR filter implemented in this work is depicted in 

Fig. 4. If the sample width is W and the filter order is N, the 

filter output sample will be of width  NW 2log2  .    

 

Fig. 4. Signed Digit FIR Filter [12] 

IV. IMPLEMENTING CARRY SAVE FILTER 

In this section, another method of breaking the carry 

propagation chain is reported. That is by using carry-save 

addition (CSA) [11]. CSAs are built using (3, 2) counters in a 

manner that prevents carry propagation. The term (3, 2) 

counter is an alternative name for the full adder because it 
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receives three bits of the same weight and outputs two bits 

representing the number of ones in the three-bit input. In CSA 

instead of propagating the carry bits to a higher position, these 

carry bits are kept and added using later stages of the CSA. 

Carry-save adders are used in FIR filters to add the partial 

products of the multipliers and to calculate the final result of 

the filter. 

A. Carry-Save Addition 

An efficient way of designing a carry-save adder to 

achieve fast performance is by designing it based on a 3-

operand carry-save adder. A k-operand CSA adder (where k > 

3), is constructed out of several blocks of 3-operand CSAs 

[17] [18]. This k-operand CSA could be implemented in two 

common ways: cascade or tree. The cascade structure accepts 

one new operand at each level except at the first level where 

three new operands are accepted. The number of levels in this 

structure is more than the number of levels in the tree 

structure, which implies more delay. However, the cascade 

structure remains a preferred option sometimes due to its 

regular layout, which implies more simplicity in the VLSI 

design. 

On the other hand, the tree structure, which is known as 

the Wallace tree [11], accepts as many operands as possible at 

the first level. The following levels are used to add the sum 

and the carry vectors in addition to the operands remaining 

from the first level, which must be at most two remaining 

operas. When using the tree structure to build a CSA, the 

number of levels will be less than the cascade structure. [19] 

B. Carry-Save Filter 

The CSA and Booth-2 multiplier are the fundamental 

blocks of the carry save FIR filter. As in the signed-digit case, 

the FIR filter is built by assembling these blocks with some 

extra logic for the delay line, which is an array of registers, 

and the converter, which is a carry lookahead adder. The 

conversion from the carry-save to the 2’s complement format 

is performed by adding the sum and carry vectors. The filter is 

illustrated in Fig. 5 

 
Fig. 5. Carry-Save FIR Filter 

V. TESTING AND VERIFICATION 

The implementation of the different configurations of the 

FIR filters have been tested functionally using test benches 

written in VHDL. Those test benches covered the top-level 

architectures along with the sub-components throughout the 

design hierarchy. Moreover, the filters have been synthesized 

and mapped into an FPGA in order to verify their functionality 

on real hardware for image processing. This experiment is 

reported briefly in [12] while described in more details in the 

following. Such applications are challenging in the sense that 

two dimensional (2D) FIR filters are needed instead of the one 

dimensional (1D) filters available in hand. A 2D FIR filter 

applies the 2D convolution equation: 
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A sample of an image signal is in indexed by two values: 

m and n indicating the row and column position of that sample 

respectively. Since the filters implemented so far in this work 

are 1D, they are instantiated in parallel to build a 2D FIR filter 

of order M-by-N such that each one of the M 1D filters 

performs convolution operation of order N as illustrated in 

Fig.6. The kernel h of each filter is assigned as one row of the 

2D kernel. The 2D filter of order 11-by-11 that is designed in 

this work is intended to smooth out the sharp edges of an input 

image by averaging out each pixel with its neighbors such that 

the output image is a blurred version of the original one. So, 

this is a moving average filter, which is a low-pass filter.  

After blurring the image, the result is subtracted from the 

original image in order to extract the image edges and cancel 

out the constant regions. In this work the filter size is 11-by-11 

and the filter kernel is 
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The above described process is implemented on Altera 

Cyclone II Starter Development Board. The image source is a 

normal personal computer. The interface between the FPGA 

and the computer is the serial port. The results are depicted in 

Fig. 7 

 

Fig. 6. 2-D FIR filter [12] 
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(a) Original image          (b) Blurred image 

 
(c) Subtracted image 

Fig. 7. Edge Extraction using FIR filter [12] 

VI. SYNTHESIS RESULTS 

The two FIR filter designs have been implemented in a 

scalable and parameterized manner by exploiting the 

generality features of VHDL. The sample width W and the 

filter order N are the two generics of the two filters. Recalling 

that the major problem that is handled in this work is the carry 

propagation delay, different values for W, which is directly 

affecting the carry chain, should be examined. Since we are 

talking about FIR filters, the order N is also worth examining.  

Three precision levels of W are selected: low precision, 

medium precision and high precision where W is equal to 12, 

24 and 48 bits respectively. These values of W are selected 

because when Booth-3 is applied on them, the number of 

generated partial products is a power of 2, which reduces the 

complexity of the multi-operand adder when built as a binary 

tree. In fact, there is also some attractive and practical 

advantage for choosing sample widths of 12 and 24 bits. That 

is, most of the commercial analog-to-digital converters 

(ADCs) that are used today electronic systems are 12-bit wide 

and most of the audio codec components used in media 

systems are 24-bit wide.  

For the values of N, arbitrarily chosen values of 16, 32 

and 64 samples have been considered. With two filter types, 

three precision levels and three filter orders, there are 18 

different FIR filters to be synthesized. The 18 filters have been 

synthesized and place-and-routed using Quartus II software. 

The target FPGA is Altera Stratix III EP3SL340 [20]. The 

timing and hardware results of the place-and-route process are 

targeted for analysis. To get accurate timing results, the delay 

from the primary input to the primary output of the filter 

should be measured. In fact, some software design tools 

measure the delay starting from the FPGA pin to which the 

primary input is assigned and ending at the pin to which the 

primary output pin is assigned. This method of measuring 

delay is not accurate when comparing two or more designs 

because there will be some extra routing delay between the 

pins of the primary ports. This routing delay is dependent on 

where the tool places and routes the design and hence is not 

regular. To avoid this problem in this work, the primary input 

and the primary output of the filter are latched. Once the tool 

figures out that there is some logic between two registers, it 

will calculate the maximum clock frequency fmax allowed for 

this design. The reciprocal of the frequency (1/ fmax) is the 

propagation delay of the logic between the two registers, plus 

some sequencing overhead which is common for all designs. 

Thus, the presence of this extra delay in the comparison is fair. 

The place-and-route results for delay and hardware are 

collected and analyzed. These results are discussed in the 

following figures. 

The delay data collected for the 18 filters are summarized 

in Fig.8. An observation on the chart is that the latency in both 

filters is proportional to W and N. The justification of this 

observation is that the sample width W directly affects the 

number of partial products that is generated in the Booth 

multipliers, which in turn increases the number of levels in the 

multi-operand adder inside the multiplier. Likewise, the value 

of N affects the number of levels in the multi-operand adder 

that generates the final filter result. This increase in the adder 

levels, which is proportional to W and N, results in a larger 

latency. It is interesting to notice that the delay of the two 

filters is not equally proportional to W and N; it is highly 

proportional to W while slightly proportional to N. This is, in 

fact, due to the delay introduced by the carry lookahead adder 

that acts as a converter at the last stage in both filters. A CLA 

is a carry propagate adder and it is expected to be highly tied 

to W. When this CLA has been separately analyzed, it has 

been found that it is responsible for about 28 % of the overall 

filter delay. This explains why W has more influence on the 

filter delay than N. 

Another observation is that the signed-digit filter is 

always faster than the carry-save filter. This improvement in 

filter performance needs more analysis in order to see how the 

improvement behaves with respect to the design parameters 

and how significant it is. Fig. 9 depicts the ratio of the signed-

digit filter delay over the carry-save filter delay. Clearly, the 

delay improvement is very slight since the chart indicates that 

signed-digit filter performs between 1.1 and 1.2 times faster 

than the carry-save filter. The speedup is almost constant 

regardless of the values of W and N. 

 
Fig. 8. FIR filter Delays 
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Fig. 9. Ratio of SD- to CSA FIR filter delays 

 
Fig. 10. Logic Utilization 

 
Fig. 11. Logic Utilization Percentage 

The data of the logic utilized by the 18 filters is also 

collected and analyzed. The place-and-routing logic utilization 

results are summarized in Fig. 10. While Fig. 11 shows the 

percentage of hardware reduction in the signed-digit filter with 

respect to the carry-save filter. It is logical and expected to see 

that the hardware of the two filters grows as the values of W 

and N increase. It is noticeable that the hardware utilization 

when W = 12 bits, regardless of the value of N, is almost the 

same for the two types of filters. With higher values of W, the 

signed-digit filter has an advantage. The case of having the 

signed-digit filter being smaller than the carry-save filter 

despite that the added complexity of the signed-digit adder is 

may by the significance of Booth multipliers in the filters 

since most of the filter size is occupied by them. Booth 

multiplier efficiency in saving hardware and time becomes 

more significant and appreciated when the multiplier gets 

bigger. This is what makes the logic difference more notable 

when W is equal to 24 and 48 bits. From Fig. 11, the signed-

digit filter is between 30 % and 40 % smaller than the carry-

save filter for W = 48. This might seem counterintuitive. 

However, this could be justified by amount of multipliers 

used, and the fact that the reduction from Booth 2 to Booth 3 

is the cause for this reduction in size. 

VII. CONCLUSIONS 

In this work, FIR filter design and implementation have 

been approached from arithmetic perspective. The signed-digit 

and the carry-save arithmetic techniques have been exploited 

to reduce addition time. Booth encoding was used to speedup 

multiplication. The authors designed, simulated and tested a 

high-speed FIR filter using the signed digit number system. 

The first part of work is the design and implementation of the 

FIR filter using the signed-digit number system and Booth-3 

encoding to improve the filter adders and multipliers 

respectively. The implementation of the signed-digit two-

operand and multi-operand adders has been discussed. In 

Booth-3 implementation, it has been shown how the signed-

digit number system helps in generating the hard multiple 3M. 

The other part of this work is the design and implementation 

of an FIR filter using carry-save addition and Booth-2 

encoding to improve the filter adders and multipliers 

respectively. The hierarchical design of CSAs of several sizes 

has been reported.  

For the two types of filters in this work, nine different 

configurations have been considered for the sample width W 

(12, 24, 48 bits) and for filter order N (16, 32, 64) samples. A 

total of 18 filters of both types have been modeled and 

generated in VHDL. Then, these filters have been synthesized 

and place-and-routed. The data resulted from the place-and-

rout process, which is related to system delay and logic size, 

has been collected and analyzed.  

The results analysis have shown that the signed-digit FIR 

filters designed in this work are slightly faster than the carry-

save FIR filters. The filter delay is slightly proportional to N, 

but highly proportional to W. The signed-digit filters are 

constantly about 1.1 times faster than the carry-save filters. 

Both types of filters have consumed almost the same amount 

of logic for low precision samples while they differ in logic 

utilization as the precision increases. The signed-digit filter 

reported better logic utilization especially for W = 48 bits 

where it becomes 30 % to 40 % smaller than the carry-save 

filter.  
In conclusion, both the signed-digit and the carry-save 

filters are fast and efficient because of the carry-propagate-free 
addition they involve. The speedup that is gained in the FIR 
filter when signed-digit arithmetic is used is not so significant.  
Likewise, the filter size reduction for a sample width around 12 
bits is almost negligible. However, the improvement in logic 
utilization for wider samples is strongly significant. Therefore, 
designing FIR filters using signed-digit number system 
becomes efficient and useful more than carry-save filters when 
the filter works for high precision samples. However, the 
signed-digit filter is superior over the carry-save filter in logic 
utilization more than speed. 
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