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Abstract-The Resource Constrained Scheduling Problem 
(RCSP) represents an important research area. Not only exact 
solution but also many heuristic methods have been proposed to 
solve RCPSP (Resource Constrained Project Scheduling 
Problem). It is an NP hard problem. Heuristic methods are 
designed to solve large and highly Resource Constrained software 
projects. We have solved the problem of resource constrained 
scheduling problem and named as GASolver. It is implemented 
in C# using .net platform.  We have used Dependency Injection to 
make the problem loosely coupled, so that other arena of 
scheduling like Time Cost Tradeoff (CT), Payment Scheduling 
(PS)  etc can be merged with same solution in the future. We have 
implemented GASolver using Genetic Algorithm (GA). 
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I. INTRODUCTION 

The Resource Constrained Project Scheduling Problem 
represents an important research problem. Not only exact 
solution but also many heuristic methods have been proposed 
to solve RCPSP. It being an NP hard problem, Alcaraz and 
Maroto [5] mentioned that the optimal solution can only be 
achieved by exact solution procedures in small software 
projects, usually with less than 60 activities, which are not 
highly resource constrained.  

Therefore heuristic methods are designed to solve large and 
highly Resource Constrained software projects. Mohring [6] 
mentioned that RCPSP is one of the most intractable problems 
in operations research and many latest optimization techniques 
and local search were applied to solve it. We have solved the 
problem of resource constrained scheduling problem and 
named as GASolver. It is implemented in C# using .net 
platform.  We have used Dependency Injection (DI) to make 
the problem loosely coupled, so that other arena of scheduling 
like Time Cost Tradeoff, Payment Scheduling etc can be 
merged with same solution in the future. We have implemented 
GASolver using Genetic Algorithm. The problem statement is 
explained in the following section. Problem Statement for 
RCPSP (Resource Constrained Project Scheduling Problem) 

What is the best way to assign the resources to the activities 
at specific times such that all of the constraints are satisfied and 
the best objective measures are produced? 

II. GENETIC ALGORITHM 

Genetic algorithms (GAs) are search algorithms that are 
conceptually based on the methods that living organisms adapt 

to their environment. These methods, known as natural 
selection or evolution, combine the concept of survival of the 
fittest among string structures with a structured yet randomized 
information exchange to form a search algorithm with some of 
the innovative flair of human search. In each generation, a new 
set of string structures is created from (bits and pieces of) the 
fittest strings from the previous generation and occasionally a 
randomly altered new part. This process of exploiting historical 
data allows the GA to speculate on new search points that will 
improve performance thus producing better solutions. Genetic 
algorithms were initially developed by JohnH.Holland, a 
professor of psychology and computer science at the University 
of Michigan. As an optimization tool, the Genetic Algorithm 
attempts to improve performance leading to an optimal 
solution.  

In this process, there are two distinct steps, (1) the process 
of improvement and (2) reaching the optimum itself. Of these 
two steps, the most important is the process of improvement. In 
complex systems, due to the potential high costs involved, 
reaching the optimum solution may not be justified as long as 
continuous improvement is being made and an optimal 
(desirable) solution can be found.  

Genetic algorithm (GA) [1][2][3] is a pioneering method of 
metaheuristic optimization which originated from the studies of 
cellular automata of Holland in the 1970s. It is also known as 
an evolutionary algorithm and a search technique that copies 
from biological evolution. In Genetic Algorithm, a population 
of candidate solutions called individuals evolves toward better 
solutions from generation to generation.  

ADVANTAGES OF GENETIC ALGORITHM 

 GA can quickly scan a vast solution set. Bad proposals 
do not affect the endSolution negatively as they are 
simply discarded. 

 The inductive nature of the GA means that it doesn’t 
have to know any rules of the problem - it works by its 
own internal rules. This is very useful for complex or 
loosely defined problems.     

 They efficiently search the model space, so they are 
more likely (than local optimization techniques) to 
converge toward a global minima. 

 There is no need of linearization of the problem. 
 There is no need to compute partial derivatives. 
 More probable models are sampled more frequently 

than less probable ones 
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III. RELATED WORK 

In 1978, Stinson et al.[9] formulated the multiple resource-
constrained scheduling problem as an integer programming 
problem and advanced a branch-and-bound algorithm for 
solving it. The algorithm they developed was similar to branch-
and-bound algorithm with differences in the node selection 
heuristics employed and the number of resources handled 
(Johnson's algorithm allows for a single resource). In their 
algorithm, branching corresponds to creating new partial 
feasible schedules from given partial feasible schedules.  

An experimental investigation was completed in 1988 by 
Dumond and Mabert[4]. They studied RCPSP in an 
environment where new software projects arrive continuously 
or randomly to a system in which software projects share 
common resources and receive completion deadlines. Dumond 
and Mabert tested the performance of four due date procedures 
and five scheduling heuristics with full control on the due date 
assignment. A second test was conducted to examine the 
performance of the due date procedures when deadlines were 
set externally. Their experimental results failed to indicate a 
rule that uniformly outperformed the others. 

In 2006 an improved Particle Swarm Optimization (PSO) 
algorithm[10] for resource-constrained software project 
scheduling problem was proposed. Improvements based on the 
basic PSO include: the particle swarm is initialized by heuristic 
rule to improve the quality of particles; inertia weight was self-
adapted with iteration of the algorithm to decelerate the speed 
of particles; crossover mechanism of genetic algorithm were 
applied to particle swarm to enable the exchange of good 
characteristics between two particles.  

Computational results for software project instances of 
PSPLIB demonstrate that this improved PSO was effective as 
compared with other mataheuristic approaches 

In 2007 YanLiu presented a fuzzy genetic algorithm for 
software project scheduling problem with resource constraints 
and uncertain activity duration [11]. The objective of this 
research was to minimize the fuzzy software project make 
span. Firstly, fuzzy set was used to represent the uncertainty of 
activity duration and the corresponding comparison method of 
fuzzy number called integral value approach was introduced. 
Second, three genetic operators were used to search for an 
approximate shortest software project make span. Therefore, 
this study provided another metaheuristic method for solving 
resource-constraint software project scheduling problem with 
uncertain activity duration. 

In 2009 itself Mohammad Amin Rigi, Shahriar 
Mohammadi K. N. Toosi [8] proposed a new evolutionary 
approach to resource constrained software project scheduling 
problem. Hybrid genetic algorithm (GA)-constraint satisfaction 
problem (CSP) has been applied to solve resource constrained 
software project scheduling (RCPS). GA’s task was to find the 
best schedule. Their approach has used CSP in order to 
overcome the existing inconsistencies in activities precedence 
and resources conflicts. A full state CSP with min-conflict 
heuristic has been used for solving precedence conflicts and a 
simple iterative CSP is used to resolve the resource conflicts. 

A more realistic resource-constrained software project-
scheduling was solved in 2010[7]. A model that is applicable to 
real-world software projects, with discounted cash flows and 
generalized precedence relations is investigated under inflation 
factor such that a bonus–penalty structure at the deadline of the 
software project is imposed to force the software project not to 
be finished beyond the deadline. The goal was to find activity 
schedules and resource requirement levels that maximized the 
net present value of the software project cash flows. A Genetic 
Algorithm (GA) is designed using a new three-stage process 
that utilizes design of experiments and response surface 
methodology. The results of the performance analysis of the 
proposed methodology showed an effective solution approach 
to the problem. 

IV.   SOLUTION TO RESOURCE CONSTRAINED PROJECT 

SCHEDULING PROBLEM 

To implement RCPSP using GA we need to address the 
following objectives:- 

A. method of specifying the  relationships between the tasks. 

B. description of resources, skill, salary to perform the tasks. 

C. The representation of the chromosome. 

D. Implementation of selection, crossover and mutation 
function. 

E. Calculation of an objective function to evaluate the best 
schedule and optimal cost. 

F. Class Diagram and Implementation Details of RCPSP. 

A. A method of specifying the    relationships between the tasks 

A project is best represented as a Task Precedence Graph 
(TPG).A TPG is an acyclic directed graph consisting of a set of 
tasks and a set of precedence relationships. With the help of 
Task Precedence Graph we will be able to set the precedence 
for each task. The Task Precedence graph is shown below in 
the form of Table.  

TABLE I. TASK PRECEDENCE GRAPH FOR RCPSP 

The task precedence graph describes that Task T1 and T2 
are not dependent on any task although for task T3 to finish, 
Task T1 should be completely finished. Similarly for task T4 to 
complete, Task T1 and T3 should finish and so on. Thus Task 

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 

T1 0 0 1 1 0 0 0 0 0 0 0 0 

T2 0 0 0 0 1 0 0 0 0 0 0 0 

T3 0 0 0 1 0 0 0 0 0 0 0 0 

T4 0 0 0 0 0 0 1 0 0 0 0 0 

T5 0 0 0 0 0 0 0 0 0 0 0 0 

T6 0 0 0 0 0 1 0 1 1 0 0 0 
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Precedence Graph enables us to set the precedence for various 
tasks and maintains the order of execution of tasks. 

B. Description of resources, skills, salary to perform the tasks 

   
Fig. 1. Data Descriptions for RCPSP 

 Figure 1 above demonstrates the description of relationship 
for Resource Constrained database.  

C.  Representation of the chromosome for RCPSP 

Before Implementation any application with genetic 
algorithm, the most important part of genetic algorithm is to 
decide the structure for a genome. The genome is an essential 
part of genetic algorithm as it will be generated randomly. The 
genome for our problem is a two-dimensional array consisting 
of employees and tasks. We will randomly generate the 
employees who can work on these tasks as the random 
numbers generated between 0 and 1. The chromosome 
structure is shown below.  

TABLE II. CHROMOSOME STRUCTURE FOR RCPSP 

D. Design of operators for Genetic Algorithm  

The three critical functions of genetic algorithm are 
selection, crossover and mutation. These are to be designed for 
a specific problem. We have designed these operators for 
RCPSP and they are explained below. 

SELECTION:  
We initially generate a 2 dimensional array of the above 

mentioned genome of employee who can work on various 

tasks. First we check the validity of genome by checking the 
following 

1) Have obeyed the task precedence relationship 
2) Have fitness better than death fitness variable 
3) Obeys employee skill matrix  
Here the death fitness variable signifies the fitness of the 

genome. If the fitness of the genome is -1 , (value of death 
fitness) then the genome is an invalid genome. We calculate the 
fitness of the genome.  We select only those genome which are 
good reproducers i.e. which can reproduce. If the fitness is 
better, only then it will reproduce otherwise it is removed from 
the genome list and if it is able to reproduce it will be added to 
the list of genomes which will be further utilized for crossover 
and mutation. This way we will be able to select the genomes 
which have the capability to reproduce further. 

Crossover 

The crossover operator mimics the way in which bisexual 
reproduction passes along each parents good genes to the next 
generation. Normally, two parents Genomes create two new 
offspring Genomes by combining their “genes” using one point 
crossover. Let’s take an example of two genomes which are 
successfully randomly generated and passed the first operator 
of genetic algorithm.  

Before crossover 

Randomly we have chosen two genomes from the list of 
selected genomes which can reproduce well. They are 
represented as Genome1 and Genome2. 

TABLE III. GENOME 1 

 

 

 

 

 
The crossover can be performed row wise as well as 

column wise. Let’s take we have randomly generated the row 
wise crossover point as 2. So we will swap genome 1 and 
genome2 after T2, the two baby genomes will be as follows: 

After Crossover 

TABLE IV. GENOME 2 

 

 

 

 

 

 T1 T2 T3 T4 

Emp1 0 1 0 1 

Emp2 1 0 1 0 

Emp3 1 0 0 1 

Emp4 0 0 1 1 

 E1 E2 E3 E4 E5 E6 E7
T1 1 0 0 0 0 0 0 
T2 0 0 0 0 0 0 1 
T3 1 0 0 0 0 0 1 
T4 1 1 1 0 1 0 0 
T5 1 1 1 0 1 0 0 
T6 1 1 1 0 1 0 0 

 E1 E2 E3 E4 E5 E6 E7
T1 1 0 0 0 0 0 0 
T2 0 0 0 0 0 0 1 
T3 1 0 0 0 0 0 1 
T4 1 1 1 0 1 0 0 
T5 1 1 1 0 1 0 0 
T6 1 1 1 0 1 0 0 
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TABLE V. BABY GENOME1 

We have thus four genomes after crossover. They are 
Genome1, Genome2 and two 2 baby genomes. They will be 
sorted according to the fitness values and best of the two are 
stored in the list of genomes. We have used row wise 
crossover, we will also perform column wise crossover. We 
will generate a random number and based on that random we 
will decide for row wise or column wise crossover operator. 

TABLE VI. BABY GENOME 2 

MUTATION 

Following the crossover operator the offspring may be 
mutated by the mutation operator. Mutation is basically to get 
some variation in the result. Similar to random mutation in the 
biological world, this function is intended to preserve the 
diversity of the population, thereby expanding the search space 
into regions that may contain better solutions. Here for problem 
of Resource Constrained Project Scheduling, we have a two 
dimensional array of genome.  

TABLE VII. GENOME BEFORE MUTATION 

 

 

 

 

TABLE VIII. GENOME AFTER MUTATION 

We randomly pick a genome. We randomly generate an 
index value, pick any array value randomly, e.g. (4, 3). 
Presently the array value of this cell is one. We flip this value 
to zero. And index (5,4) which is 0 is flipped to 1. This way we 
can have variation in the genome results. After mutation we 
again calculate their fitness and put it in the final list of 
genomes. 

E. Calculation of an objective function to evaluate the best 
schedule 

Our objective is to find a schedule which should finish in 
minimum duration and should have an optimal cost. Another 
important objective is that no task should be undone. Our 
project will not be complete if any of the tasks is left 
incomplete, so we have maintained a check that no task is left, 
it should be managed by at least one of the employee. We have 
made functions like calculate project duration () that is to 
calculate the duration of the entire project which is shown 
below with the help of an example. Let say we have chosen this 
genome to calculate the project duration and project cost which 
is mentioned below. 

TABLE IX. GENOME 1 

TABLE X. TASK VS ESTIMATED DAYS 

As mentioned earlier the task and Estimated man days are 
also stored in the above Table. Based on the Task and Estimate 
days, we have calculated the Task Duration of Genome as 
shown in Table 11. 

  

 E1 E2 E3 E4 E5 E6 E7 

T1 1 0 0 0 0 0 0 

T2 0 0 0 0 0 0 1 

T3 1 0 0 0 0 0 1 

T4 1 1 1 0 1 0 0 

T5 1 1 1 0 1 0 0 

T6 0 0 1 1 1 1 1 

 E1 E2 E3 E4 E5 E6 E7 
T1 1 0 0 0 0 0 0 
T2 0 0 0 0 0 0 1 
T3 1 0 0 0 0 0 1 
T4 1 1 1 0 1 0 0 
T5 1 1 1 0 1 0 0 
T6 1 1 1 0 1 0 0 

 E1 E2 E3 E4 E5 E6 E7 
T1 1 0 0 0 0 0 0 
T2 0 0 0 0 0 0 1 
T3 1 0 0 0 0 0 1 
T4 1 1 1 0 1 0 0 
T5 1 1 1 0 1 0 0 
T6 1 1 1 0 1 0 0 

 E1 E2 E3 E4 E5 E6 E7 

T1 1 0 0 0 0 0 0 

T2 0 0 0 0 0 0 1 

T3 1 0 0 0 0 0 1 

T4 1 1 0 0 1 0 0 

T5 1 1 1 1 1 0 0 

T6 1 1 1 0 1 0 0 

 E1 E2 E3 E4 E5 E6 E7 
T1 1 0 0 0 0 0 0 
T2 0 0 0 0 0 0 1 
T3 1 0 0 0 0 0 1 
T4 1 1 1 0 1 0 0 
T5 1 1 1 0 1 0 0 
T6 1 1 1 0 1 0 0 

T1 T2 T3 T4 T5 T6 

20 10 15 25 7 10 
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TABLE XIV. RCPSP DURATION OPTIMIZATION 

Generation Duration Cost 

1 53.83 3153140 

2 50.5 3109650 

44 47.5 2758670 

190 44.14 2589405 

194 40.14 2565615 

210 37.08 2702700 

308 33 2667710 

The Figure 6 below shows the graph of Duration 
Optimization. We can analyze from the graph that Project 
Duration is constantly decreasing during higher generations 
while Project Cost is varying between higher and lower values 
as the weight factor for Project duration is kept one and  project 
cost is kept at zero. 

 

Fig. 6. RCPSP Duration Optimization 

C. Test Case 3 

Find the optimum valid schedule, satisfying a composite 
function including cost and duration.  

This is the test case in which, we wish to optimize Cost and 
Duration both. We had two variables in the code, Cost and 
Duration.  

We changed the weight factor of cost to 0.5 and for 
Duration it is made to 0.5 i.e. focus is on optimizing both Cost 
and Duration. The results are shown below in Table 15. 

The Figure 7 shows the graph of Cost and Duration 
Optimization. We can analyze from the graph that Project 
Duration and well as Project Cost both are constantly 
decreasing during higher generations as the weight factor for 
Project duration is kept at 0.5 and Project Cost is also kept at 
0.5.                                                                                      

 

TABLE XV. RCPSP- DURATION AND COST 
OPTIMIZATION 

Generation 
Project 
Duration Project Cost 

1 72 3038030 

5 68 3013045 

8 73.75 3012420 

13 73 2946170 

127 41.67 2614705 

137 40 2507620 

157 44.17 2347185 
 

 

Fig. 7. RCPSP- Duration and Cost Optimization 

VII. CONCLUSION AND FUTURE DIRECTIONS 

Resource Constrained Project scheduling is an important 
problem as studied in literature survey. We have implemented 
this with Genetic Algorithm using C#.net.  Most of the 
solutions that existed earlier for RCPSP were not extendable. 
We have implemented GASolver .core using which any 
specific problem domain genome can be constructed. The 
fitness function is only to be specified by the project manager 
for their own specific domain.  The same GASolver .core can 
be extended to other important research areas like Time Cost 
trade off, Payment Scheduling problem etc. Once all these 
areas will be part of GASolver, it will be the complete solution 
to project scheduling problems. 

List of abbreviation: 

RCSP - Resource Constrained Scheduling Problem 

PS - Payment Scheduling 

DI - Dependency Injection 

CT - Cost Trade off 

GA - Genetic Algorithm 

PC - Project Cost 
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