
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 2, 2013

210 | P a g e
www.ijacsa.thesai.org

GASolver-A Solution to Resource Constrained
Project Scheduling by Genetic Algorithm

Dr Mamta Madan
Professor(Comp science)

Vivekananda Institute of Professional Studies,
Affiliated to GGSIPU AU-Block Pitam PuraDelhi, India

Mr Rajneesh Madan
Architect,

NIIT Technologies Ltd., Gurgaon-11

Abstract-The Resource Constrained Scheduling Problem
(RCSP) represents an important research area. Not only exact
solution but also many heuristic methods have been proposed to
solve RCPSP (Resource Constrained Project Scheduling
Problem). It is an NP hard problem. Heuristic methods are
designed to solve large and highly Resource Constrained software
projects. We have solved the problem of resource constrained
scheduling problem and named as GASolver. It is implemented
in C# using .net platform. We have used Dependency Injection to
make the problem loosely coupled, so that other arena of
scheduling like Time Cost Tradeoff (CT), Payment Scheduling
(PS) etc can be merged with same solution in the future. We have
implemented GASolver using Genetic Algorithm (GA).

Keywords-Genetic Algorithm; Dependency Injection;
GASolver.Core; Resource Constrained Scheduling.

I. INTRODUCTION

The Resource Constrained Project Scheduling Problem
represents an important research problem. Not only exact
solution but also many heuristic methods have been proposed
to solve RCPSP. It being an NP hard problem, Alcaraz and
Maroto [5] mentioned that the optimal solution can only be
achieved by exact solution procedures in small software
projects, usually with less than 60 activities, which are not
highly resource constrained.

Therefore heuristic methods are designed to solve large and
highly Resource Constrained software projects. Mohring [6]
mentioned that RCPSP is one of the most intractable problems
in operations research and many latest optimization techniques
and local search were applied to solve it. We have solved the
problem of resource constrained scheduling problem and
named as GASolver. It is implemented in C# using .net
platform. We have used Dependency Injection (DI) to make
the problem loosely coupled, so that other arena of scheduling
like Time Cost Tradeoff, Payment Scheduling etc can be
merged with same solution in the future. We have implemented
GASolver using Genetic Algorithm. The problem statement is
explained in the following section. Problem Statement for
RCPSP (Resource Constrained Project Scheduling Problem)

What is the best way to assign the resources to the activities
at specific times such that all of the constraints are satisfied and
the best objective measures are produced?

II. GENETIC ALGORITHM

Genetic algorithms (GAs) are search algorithms that are
conceptually based on the methods that living organisms adapt

to their environment. These methods, known as natural
selection or evolution, combine the concept of survival of the
fittest among string structures with a structured yet randomized
information exchange to form a search algorithm with some of
the innovative flair of human search. In each generation, a new
set of string structures is created from (bits and pieces of) the
fittest strings from the previous generation and occasionally a
randomly altered new part. This process of exploiting historical
data allows the GA to speculate on new search points that will
improve performance thus producing better solutions. Genetic
algorithms were initially developed by JohnH.Holland, a
professor of psychology and computer science at the University
of Michigan. As an optimization tool, the Genetic Algorithm
attempts to improve performance leading to an optimal
solution.

In this process, there are two distinct steps, (1) the process
of improvement and (2) reaching the optimum itself. Of these
two steps, the most important is the process of improvement. In
complex systems, due to the potential high costs involved,
reaching the optimum solution may not be justified as long as
continuous improvement is being made and an optimal
(desirable) solution can be found.

Genetic algorithm (GA) [1][2][3] is a pioneering method of
metaheuristic optimization which originated from the studies of
cellular automata of Holland in the 1970s. It is also known as
an evolutionary algorithm and a search technique that copies
from biological evolution. In Genetic Algorithm, a population
of candidate solutions called individuals evolves toward better
solutions from generation to generation.

ADVANTAGES OF GENETIC ALGORITHM

 GA can quickly scan a vast solution set. Bad proposals
do not affect the endSolution negatively as they are
simply discarded.

 The inductive nature of the GA means that it doesn’t
have to know any rules of the problem - it works by its
own internal rules. This is very useful for complex or
loosely defined problems.

 They efficiently search the model space, so they are
more likely (than local optimization techniques) to
converge toward a global minima.

 There is no need of linearization of the problem.
 There is no need to compute partial derivatives.
 More probable models are sampled more frequently

than less probable ones

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 2, 2013

211 | P a g e
www.ijacsa.thesai.org

III. RELATED WORK

In 1978, Stinson et al.[9] formulated the multiple resource-
constrained scheduling problem as an integer programming
problem and advanced a branch-and-bound algorithm for
solving it. The algorithm they developed was similar to branch-
and-bound algorithm with differences in the node selection
heuristics employed and the number of resources handled
(Johnson's algorithm allows for a single resource). In their
algorithm, branching corresponds to creating new partial
feasible schedules from given partial feasible schedules.

An experimental investigation was completed in 1988 by
Dumond and Mabert[4]. They studied RCPSP in an
environment where new software projects arrive continuously
or randomly to a system in which software projects share
common resources and receive completion deadlines. Dumond
and Mabert tested the performance of four due date procedures
and five scheduling heuristics with full control on the due date
assignment. A second test was conducted to examine the
performance of the due date procedures when deadlines were
set externally. Their experimental results failed to indicate a
rule that uniformly outperformed the others.

In 2006 an improved Particle Swarm Optimization (PSO)
algorithm[10] for resource-constrained software project
scheduling problem was proposed. Improvements based on the
basic PSO include: the particle swarm is initialized by heuristic
rule to improve the quality of particles; inertia weight was self-
adapted with iteration of the algorithm to decelerate the speed
of particles; crossover mechanism of genetic algorithm were
applied to particle swarm to enable the exchange of good
characteristics between two particles.

Computational results for software project instances of
PSPLIB demonstrate that this improved PSO was effective as
compared with other mataheuristic approaches

In 2007 YanLiu presented a fuzzy genetic algorithm for
software project scheduling problem with resource constraints
and uncertain activity duration [11]. The objective of this
research was to minimize the fuzzy software project make
span. Firstly, fuzzy set was used to represent the uncertainty of
activity duration and the corresponding comparison method of
fuzzy number called integral value approach was introduced.
Second, three genetic operators were used to search for an
approximate shortest software project make span. Therefore,
this study provided another metaheuristic method for solving
resource-constraint software project scheduling problem with
uncertain activity duration.

In 2009 itself Mohammad Amin Rigi, Shahriar
Mohammadi K. N. Toosi [8] proposed a new evolutionary
approach to resource constrained software project scheduling
problem. Hybrid genetic algorithm (GA)-constraint satisfaction
problem (CSP) has been applied to solve resource constrained
software project scheduling (RCPS). GA’s task was to find the
best schedule. Their approach has used CSP in order to
overcome the existing inconsistencies in activities precedence
and resources conflicts. A full state CSP with min-conflict
heuristic has been used for solving precedence conflicts and a
simple iterative CSP is used to resolve the resource conflicts.

A more realistic resource-constrained software project-
scheduling was solved in 2010[7]. A model that is applicable to
real-world software projects, with discounted cash flows and
generalized precedence relations is investigated under inflation
factor such that a bonus–penalty structure at the deadline of the
software project is imposed to force the software project not to
be finished beyond the deadline. The goal was to find activity
schedules and resource requirement levels that maximized the
net present value of the software project cash flows. A Genetic
Algorithm (GA) is designed using a new three-stage process
that utilizes design of experiments and response surface
methodology. The results of the performance analysis of the
proposed methodology showed an effective solution approach
to the problem.

IV. SOLUTION TO RESOURCE CONSTRAINED PROJECT

SCHEDULING PROBLEM

To implement RCPSP using GA we need to address the
following objectives:-

A. method of specifying the relationships between the tasks.

B. description of resources, skill, salary to perform the tasks.

C. The representation of the chromosome.

D. Implementation of selection, crossover and mutation
function.

E. Calculation of an objective function to evaluate the best
schedule and optimal cost.

F. Class Diagram and Implementation Details of RCPSP.

A. A method of specifying the relationships between the tasks

A project is best represented as a Task Precedence Graph
(TPG).A TPG is an acyclic directed graph consisting of a set of
tasks and a set of precedence relationships. With the help of
Task Precedence Graph we will be able to set the precedence
for each task. The Task Precedence graph is shown below in
the form of Table.

TABLE I. TASK PRECEDENCE GRAPH FOR RCPSP

The task precedence graph describes that Task T1 and T2
are not dependent on any task although for task T3 to finish,
Task T1 should be completely finished. Similarly for task T4 to
complete, Task T1 and T3 should finish and so on. Thus Task

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

T1 0 0 1 1 0 0 0 0 0 0 0 0

T2 0 0 0 0 1 0 0 0 0 0 0 0

T3 0 0 0 1 0 0 0 0 0 0 0 0

T4 0 0 0 0 0 0 1 0 0 0 0 0

T5 0 0 0 0 0 0 0 0 0 0 0 0

T6 0 0 0 0 0 1 0 1 1 0 0 0

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 2, 2013

212 | P a g e
www.ijacsa.thesai.org

Precedence Graph enables us to set the precedence for various
tasks and maintains the order of execution of tasks.

B. Description of resources, skills, salary to perform the tasks

Fig. 1. Data Descriptions for RCPSP

 Figure 1 above demonstrates the description of relationship
for Resource Constrained database.

C. Representation of the chromosome for RCPSP

Before Implementation any application with genetic
algorithm, the most important part of genetic algorithm is to
decide the structure for a genome. The genome is an essential
part of genetic algorithm as it will be generated randomly. The
genome for our problem is a two-dimensional array consisting
of employees and tasks. We will randomly generate the
employees who can work on these tasks as the random
numbers generated between 0 and 1. The chromosome
structure is shown below.

TABLE II. CHROMOSOME STRUCTURE FOR RCPSP

D. Design of operators for Genetic Algorithm

The three critical functions of genetic algorithm are
selection, crossover and mutation. These are to be designed for
a specific problem. We have designed these operators for
RCPSP and they are explained below.

SELECTION:
We initially generate a 2 dimensional array of the above

mentioned genome of employee who can work on various

tasks. First we check the validity of genome by checking the
following

1) Have obeyed the task precedence relationship
2) Have fitness better than death fitness variable
3) Obeys employee skill matrix
Here the death fitness variable signifies the fitness of the

genome. If the fitness of the genome is -1 , (value of death
fitness) then the genome is an invalid genome. We calculate the
fitness of the genome. We select only those genome which are
good reproducers i.e. which can reproduce. If the fitness is
better, only then it will reproduce otherwise it is removed from
the genome list and if it is able to reproduce it will be added to
the list of genomes which will be further utilized for crossover
and mutation. This way we will be able to select the genomes
which have the capability to reproduce further.

Crossover

The crossover operator mimics the way in which bisexual
reproduction passes along each parents good genes to the next
generation. Normally, two parents Genomes create two new
offspring Genomes by combining their “genes” using one point
crossover. Let’s take an example of two genomes which are
successfully randomly generated and passed the first operator
of genetic algorithm.

Before crossover

Randomly we have chosen two genomes from the list of
selected genomes which can reproduce well. They are
represented as Genome1 and Genome2.

TABLE III. GENOME 1

The crossover can be performed row wise as well as

column wise. Let’s take we have randomly generated the row
wise crossover point as 2. So we will swap genome 1 and
genome2 after T2, the two baby genomes will be as follows:

After Crossover

TABLE IV. GENOME 2

 T1 T2 T3 T4

Emp1 0 1 0 1

Emp2 1 0 1 0

Emp3 1 0 0 1

Emp4 0 0 1 1

 E1 E2 E3 E4 E5 E6 E7
T1 1 0 0 0 0 0 0
T2 0 0 0 0 0 0 1
T3 1 0 0 0 0 0 1
T4 1 1 1 0 1 0 0
T5 1 1 1 0 1 0 0
T6 1 1 1 0 1 0 0

 E1 E2 E3 E4 E5 E6 E7
T1 1 0 0 0 0 0 0
T2 0 0 0 0 0 0 1
T3 1 0 0 0 0 0 1
T4 1 1 1 0 1 0 0
T5 1 1 1 0 1 0 0
T6 1 1 1 0 1 0 0

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 2, 2013

213 | P a g e
www.ijacsa.thesai.org

TABLE V. BABY GENOME1

We have thus four genomes after crossover. They are
Genome1, Genome2 and two 2 baby genomes. They will be
sorted according to the fitness values and best of the two are
stored in the list of genomes. We have used row wise
crossover, we will also perform column wise crossover. We
will generate a random number and based on that random we
will decide for row wise or column wise crossover operator.

TABLE VI. BABY GENOME 2

MUTATION

Following the crossover operator the offspring may be
mutated by the mutation operator. Mutation is basically to get
some variation in the result. Similar to random mutation in the
biological world, this function is intended to preserve the
diversity of the population, thereby expanding the search space
into regions that may contain better solutions. Here for problem
of Resource Constrained Project Scheduling, we have a two
dimensional array of genome.

TABLE VII. GENOME BEFORE MUTATION

TABLE VIII. GENOME AFTER MUTATION

We randomly pick a genome. We randomly generate an
index value, pick any array value randomly, e.g. (4, 3).
Presently the array value of this cell is one. We flip this value
to zero. And index (5,4) which is 0 is flipped to 1. This way we
can have variation in the genome results. After mutation we
again calculate their fitness and put it in the final list of
genomes.

E. Calculation of an objective function to evaluate the best
schedule

Our objective is to find a schedule which should finish in
minimum duration and should have an optimal cost. Another
important objective is that no task should be undone. Our
project will not be complete if any of the tasks is left
incomplete, so we have maintained a check that no task is left,
it should be managed by at least one of the employee. We have
made functions like calculate project duration () that is to
calculate the duration of the entire project which is shown
below with the help of an example. Let say we have chosen this
genome to calculate the project duration and project cost which
is mentioned below.

TABLE IX. GENOME 1

TABLE X. TASK VS ESTIMATED DAYS

As mentioned earlier the task and Estimated man days are
also stored in the above Table. Based on the Task and Estimate
days, we have calculated the Task Duration of Genome as
shown in Table 11.

 E1 E2 E3 E4 E5 E6 E7

T1 1 0 0 0 0 0 0

T2 0 0 0 0 0 0 1

T3 1 0 0 0 0 0 1

T4 1 1 1 0 1 0 0

T5 1 1 1 0 1 0 0

T6 0 0 1 1 1 1 1

 E1 E2 E3 E4 E5 E6 E7
T1 1 0 0 0 0 0 0
T2 0 0 0 0 0 0 1
T3 1 0 0 0 0 0 1
T4 1 1 1 0 1 0 0
T5 1 1 1 0 1 0 0
T6 1 1 1 0 1 0 0

 E1 E2 E3 E4 E5 E6 E7
T1 1 0 0 0 0 0 0
T2 0 0 0 0 0 0 1
T3 1 0 0 0 0 0 1
T4 1 1 1 0 1 0 0
T5 1 1 1 0 1 0 0
T6 1 1 1 0 1 0 0

 E1 E2 E3 E4 E5 E6 E7

T1 1 0 0 0 0 0 0

T2 0 0 0 0 0 0 1

T3 1 0 0 0 0 0 1

T4 1 1 0 0 1 0 0

T5 1 1 1 1 1 0 0

T6 1 1 1 0 1 0 0

 E1 E2 E3 E4 E5 E6 E7
T1 1 0 0 0 0 0 0
T2 0 0 0 0 0 0 1
T3 1 0 0 0 0 0 1
T4 1 1 1 0 1 0 0
T5 1 1 1 0 1 0 0
T6 1 1 1 0 1 0 0

T1 T2 T3 T4 T5 T6

20 10 15 25 7 10

and

Ba
as

F.

Pri
nat
pro
by
F(x
suc
fitn
obj
fun
mi

obj
des

T1

T2

T3

T4

T5

T6

t1
t2
t3
t4
t5
t6

TABLE X
CHR

TABLE X

On the basis
d shown in Ta

Thus the pro
ased on the sal
the summation

Fitness Func

Genetic Alg
inciple of natu
turally suitab
oblems are us
 some suitabl
x) is first de
ccessive genet
ness function c
jective functio
nction and f(x)
inimization pro

F(x)= 1/(1+f

In our case
jective functi
scribed in the

Therefore

E1 E2

1 1 0

2 0 0

3 1 0

4 1 1

5 1 1

6 1 1

20

t1
1 0
2 0
3 0
4 0
5 0
6 0

20

XI. TAS
ROMOSOME

XII. PRO

 of Table 11,
able 12.

oject Duration
lary of variou
n of these enti

ction

gorithm mimi
ure to make a s
le for maxim
ually transform
le transformat
erived from o
tic operations.
can be
on F(x) =f
) is the ob
oblems:

f(x))

for RCPSP,
ion ,the fitne
above equatio

E3 E4

0 0

0 0

0 0

1 0

1 0

1 0

10 7.
5

t2 t3
0 1
0 0
0 0
0 0
0 0
0 0

10 27
.5

SK DURATION FOR

OJECT DURATION

the project du

comes out to
s skills, Projec
ire task cost.

ics the survi
search process

mization probl
med into max
tion. In gener
objective fun
. For maximiz

considered t
f(x). Where F
bjective fun

Since we hav
ess function
on.

E5 E6 E

0 0 0

0 0 1

0 0 1

1 0 0

1 0 0

1 0 0

6.25 1.7

t4 t5
1 0
0 1
1 0
0 0
0 0
0 0

33.75 11.7

(

ww

R RANDOM

uration is calcu

o be 36.25 Ma
ct cost is calcu

ival of the
s. Therefore, G
lems, minimi

ximization pro
ral fitness fun

nction and us
zation problem
to be the sam
F(x) is the f

unction.

ve to minimiz
 will be sam

7 Task
Duratio

20

10

7.5

6.25

1.75

2.5

75 2.5

 t6
0
0
0
1
0
0

75 36.25

(IJACSA) Intern

ww.ijacsa.thesa

ulated

andays
ulated

fittest
GAs is
zation

oblems
nction
sed in
ms, the
me as
fitness

For

ze the
me as

w1

dur
mo
can
dur
for

pre
gen
be
con

A.

resp
sele
also
diff
thei
GA
esse

Fig.

con
wor

loo
RC

on

national Journa

ai.org

Fitness= 1/1+

Where
*projectdurati

Where w1 a
ration and proj
re crucial for

n decide the w
ration, the wei
cost also and

So we comp
vious genera

nerate various
achieved. Th

nsole applicatio

V. CLASS

GASolver.Cor

GASolver .Co
ponsible for i
ection, crosso
o provides a
ferent genome
ir problem.

ASolver.Core.
entially is coll

 2. Class diagram

RCProjectSch
ntract IGenom
rry about actua

Hence with t
sely coupled

CProjectSchedu

al of Advanced C

+functionvalue

function
ion+w2*projec

and w2 are t
ject cost respe
our organizat

weights. If w
ght of duration
vice versa.

pare the fitn
ated genome

generation an
he best fit gen
on.

DIAGRAM AN

re

ore is the main
implementing

over and muta
contract IGe

es who wish t
 Following

It has a popu
lection of simi

m for GASolver

hedulingGenom
me, as shown

al implementa

the use of int
and there i

ulingGenome

Computer Scien

e

n v
ctcost.

the weights a
ectively. Depe
tion whether c
e have to giv
n will be incre

ness of this g
and iterate

nd looks for b
nome will be

ND IMPLEMENT

n component o
all the three

ation on vario
enome to b
to use GASol
g is the c
ulation (gener
ilar genomes.

me impleme
in Figure 2 b

ation of genom

terface IGenom
is no direct
and population

nce and Applica
Vol. 4, No. 2,

214 | P a

value

attached to pr
ending on whi
cost or duratio
ve more weig
eased and sim

genome, with
this process

best fitness tha
e displayed by

TATION DETAI

of the solution
e operators na
ous generation

be implemente
lver for optim
class diagram
ration) class w

ents a com
below, it doe

me.

me, the soluti
coupling bet
n class.

ations,
, 2013

a g e

=

roject
ich is

on we
ght to

milarly

h the
and

at can
y the

LS

n. It is
amely
ns. It
ed in

mizing
m of
which

mmon
es not

ion is
tween

Fig

cre
act
RC
act
cla
cou
dep
ov

Fig

B.

con
RC
IG
me
gen
the
RC

GA
RC
inj

g. 3. RCProjectS

GASolver.Co
eating collectio
tual imp
CProjectSched
tual genome o
ass to that gen
uld not be
pendency inje
ercome this pr

g. 4. GASolver’s

GASolver.RC

GASolver.RC
nstrained

CProjectSched
Genome. This
ethods for mu
nome. RCPSP
e connection
CPSP database

Above diagra
ASolver.Core
CProjectSched
ection contain

chedulingGenom

ore populatio
on of genome
plementation
dulingGenome
object since it
nome impleme
used for oth

ection object o
roblem.

s Dependencies D

CPSP

CPSP is
project

dulingGenome
class is repr

utation, cross
PDataConnect
to database a

e.

am is depende
c

dulingGenome
ner.

me Class

on class is a
s objects, it m

of
. But we can
will tightly co
entation and t
her Genomes

oriented progra

Diagram

implementatio
schedulin

 class imp
resentation of
sover and cal
tion class is r
and fetching d

ency graph of
omponent
 using u

(

ww

also responsib
must know abo

IGenome
nnot instantiat
ouple the popu
the population
s. We have
amming princi

on of Res
ng pro
plements int
f genome an
lculating fitne
responsible m
different data

GASolver sol
insta

unity depen

(IJACSA) Intern

ww.ijacsa.thesa

le for
out the

e.g
te the

ulation
n class

used
iple to

source
oblem.
terface
nd has
ess of

making
from

lution.
antiate
ndency

A.

the

We
cha
mad

hig

G

1

3

6

6

7

9

Fig.

We
dec
vary
for

B.

irre

We
cha
mad
Dur
The

2
2
2
2
2
2
2
3

C
O
ST

national Journa

ai.org

V

Test Case 1

Find a valid
duration of th

This is the fir
e had two va
anged the weig
de to zero i.e.

Project Cost
h or low. The

TABLE X

Generations

1

3

61

66

73

94

 5. RCPSP-Cost

The above Fi
e can analyze
creasing during
rying between
Project Cost i

Test Case 2

Find a vali
espective of the

This is the tes
e had two va
anged the weig
de to zero i.e.
ration is fully
e results are sh

2300000
2400000
2500000
2600000
2700000
2800000
2900000
3000000

1

al of Advanced C

VI. TEST RESU

schedule that
he Project.

rst test case in
ariables in the
ght factor of c
the total focus

is fully optim
results are sho

XIII. OPTI

Project Du

t Optimization

igure 5 shows
from the grap
g higher gener
higher and lo

is kept one.

id schedule
e cost of the p

st case in whic
ariables in the
ght factor of d
the total focu

y optimized wh
hown below in

1 3 61
GENER

COST O

Computer Scien

ULTS AND ANA

has lowest (P

which, we wis
e code, cost
cost to one an
s is on project

mized while d
own below in T

IMIZED PROJECT C

uration

65

65

31.67

51.67

47

29.35

s the graph of
ph that Project
rations while
ower values as

that has op
project.

ch, we wish to
e code, cost
duration to on
us is on Projec
hile Cost may

n Table 14

66 73
RATIONS

OPTIMIZATIO

nce and Applica
Vol. 4, No. 2,

215 | P a

ALYSIS

PC), irrespecti

sh to optimize
and duration

nd for duration
cost.

duration may
Table 13.

COST

Project cost

2910910

2810910

2795520

2710040

2664760

2545550

f cost optimiza
t Cost is const
Project Durati
s the weight f

ptimized dura

o optimize dura
and duration

ne and for cost
ct Duration. Pr
y vary high or

0
10
20
30
40
50
60
70

94

D
U
R
A
TI
O
N

ON

ations,
, 2013

a g e

ive of

e cost.
. We
n it is

vary

0

0

0

0

0

0

ation.
tantly
ion is
factor

ation,

ation.
. We
t it is
roject
r low.

cost

Duration

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 2, 2013

216 | P a g e
www.ijacsa.thesai.org

TABLE XIV. RCPSP DURATION OPTIMIZATION

Generation Duration Cost

1 53.83 3153140

2 50.5 3109650

44 47.5 2758670

190 44.14 2589405

194 40.14 2565615

210 37.08 2702700

308 33 2667710

The Figure 6 below shows the graph of Duration
Optimization. We can analyze from the graph that Project
Duration is constantly decreasing during higher generations
while Project Cost is varying between higher and lower values
as the weight factor for Project duration is kept one and project
cost is kept at zero.

Fig. 6. RCPSP Duration Optimization

C. Test Case 3

Find the optimum valid schedule, satisfying a composite
function including cost and duration.

This is the test case in which, we wish to optimize Cost and
Duration both. We had two variables in the code, Cost and
Duration.

We changed the weight factor of cost to 0.5 and for
Duration it is made to 0.5 i.e. focus is on optimizing both Cost
and Duration. The results are shown below in Table 15.

The Figure 7 shows the graph of Cost and Duration
Optimization. We can analyze from the graph that Project
Duration and well as Project Cost both are constantly
decreasing during higher generations as the weight factor for
Project duration is kept at 0.5 and Project Cost is also kept at
0.5.

TABLE XV. RCPSP- DURATION AND COST
OPTIMIZATION

Generation
Project
Duration Project Cost

1 72 3038030

5 68 3013045

8 73.75 3012420

13 73 2946170

127 41.67 2614705

137 40 2507620

157 44.17 2347185

Fig. 7. RCPSP- Duration and Cost Optimization

VII. CONCLUSION AND FUTURE DIRECTIONS

Resource Constrained Project scheduling is an important
problem as studied in literature survey. We have implemented
this with Genetic Algorithm using C#.net. Most of the
solutions that existed earlier for RCPSP were not extendable.
We have implemented GASolver .core using which any
specific problem domain genome can be constructed. The
fitness function is only to be specified by the project manager
for their own specific domain. The same GASolver .core can
be extended to other important research areas like Time Cost
trade off, Payment Scheduling problem etc. Once all these
areas will be part of GASolver, it will be the complete solution
to project scheduling problems.

List of abbreviation:

RCSP - Resource Constrained Scheduling Problem

PS - Payment Scheduling

DI - Dependency Injection

CT - Cost Trade off

GA - Genetic Algorithm

PC - Project Cost

0

10

20

30

40

50

60

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

1 2 44 190 194 210 308

D
U
R
A
TI
O
N

C
O
ST

GENERATIONS

DURATION OPTIMIZATION

Cost

0

10

20

30

40

50

60

70

80

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

1 5 8 13 127 137 157

D
U
R
A
TI
O
N

C
O
ST

GENERATIONS

RESOURCE CONSTRAINT SCHEDULING‐PROJECT +
COST OPTIMIZATION

Project
Cost

Duration

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 2, 2013

217 | P a g e
www.ijacsa.thesai.org

REFERENCES

[1] Chambers LD (ed.) (1999) Practical handbook of genetic algorithms:
complex coding

systems. CRC Press, Boca Raton

[2] David E. Goldberg “ Genetic Algorithm, in search Optimisation and
Macine Learning

[3] Davis L (1991) Handbook of genetic algorithms. Van Nostrand
Reinhold, New York

[4] Dumond, J. and Mabert, V.A., "Evaluating Software project Scheduling
and Due Date Assignment Procedures: An Experimental Analysis",
Management Science, Vol. 34 No. 1, 1988, pp. 101-18

[5] J.Alcaraz, C.Moroto, “ A Robust Genetic Algorithm for resource
allocation in software project scheduling, Annals of operations Research
102(2001) 83-109.

[6] R.Mohring, A.Schulz, F.Stork, M.Uetz, “ Solving Software project
scheduling problems by minimum cut computations, Management
science 49 (3) (2003) 330-335

[7] Moslem Shahsavar a,1, Seyed Taghi Akhavan Niaki b,*, Amir Abbas

Najafi c,2 “An efficient Genetic Algorithm to maximize net present
value of software project payments under inflation and bonus–penalty
policy in resource investment problem”, 2010 Elsevier

[8] Mohammad Amin Rigi, Shahriar Mohammadi K. N. Toosi Finding a
Hybrid Genetic Algorithm-ConstraintSatisfaction Problem
basedSolution for ResourceConstrained Software project Scheduling
University of Technology, Industrial faculty, IT group Tehran, Iran,
2009 International Conference on Emerging Technologies.

[9] Stinson, J.P., Davis, E.W. and Khumawala, B.M., "Multiple Resource-
constrained Scheduling Using Branch-and-Bound", AIIE Transactions,
Vol. 10 No. 3, 1978, pp. 252

[10] Xinggang Luo 1,2, Dingwei Wang 2, Jiafu Tang 2, Yiliu Tu 3Resource-
Constrained Software project Scheduling Problem , Proceedings of the
6th World Congress on Intelligent Control and Automation, June 21 23,
2006, Dalian, China.

[11] Yan Liu1,2,Sheng-Li zharo2, Xi-Ping Zhang2, Guang-Qiandu2, A GA-
Based Approach for solving fuzzy siftware project scheduling
Proceedings of the Sixth International Conference on Machine Learning
and Cybernetics, Hong Kong, 19-22 August 2007.

