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Abstract—For many space missions using satellite constella-

tions, symmetry of satellites distribution plays usually a key role.

Symmetry may be considered in space and/or in time distribution.

Examples of required symmetry in space distribution are in

Earth observation missions (either, for local or global) as well

as in navigation systems. It is intuitive that to optimally observe

the Earth a satellite constellation should be synchronized with

the Earth rotation rate. If a satellite constellation must be

designed to constitute a communication network between Earth

and Jupiter, then the orbital period of the constellation satellites

should be synchronized with both Earth and Jupiter periods

of revolution around the Sun. Another example is to design

satellite constellations to optimally observe specific Earth sites or

regions. Again, this satellites constellation should be synchronized

with Earth’s rotational period and (since the time gap between

two subsequent observations of the site should be constant) also

implies time symmetry in satellites distribution. Obtaining this

result will allow to design operational constellations for observing

targets (sites, borders, regions) with persistence or assigned revisit

times, while minimizing the number of satellites required.

Constellations of satellites for continuous global or zonal Earth

coverage have been well studied over the last twenty years,

are well known and have been well documented [1], [2], [7],

[8], [11], [13]. A symmetrical, inclined constellation, such as a

Walker constellation [1], [2] provides excellent global coverage

for remote sensing missions; however, applications where target

revisit time or persistent observation are important lead to

required variations of traditional designs [7], [8]. Also, few results

are available that affect other figures of merit, such as continuous

regional coverage and the systematic use of eccentric orbit

constellations to optimize“hang time” over regions of interest.

Optimization of such constellations is a complex problem and the

general-purpose constellation design methodology used today is

largely limited to Walker-like constellations.

As opposed to Walker Constellations [1], [2], which were

looking for symmetries in inertial reference frame, Flower

Constellations [11] were devised to obtain symmetric distributions

of satellites on rotating reference frames (e.g., Earth, Jupiter,

satellite orbit). Since the theory of Flower Constellations has

evolved with time the next section is dedicated to the summary

of the theory up to the current status. The FCs solution space

has been recently expanded with the Lattice theory [13], [14],

encompassing all possible symmetric solutions.

I. FLOWER CONSTELLATIONS THEORY

The FC theory, devised and developed at Texas A&M [11],
is a natural extension of the theory of compatible orbits. When
an orbit is compatible, the satellite trajectory in the rotating
frame becomes a closed-loop trajectory. The original theory
defines a Flower Constellation a set of Ns satellites following
the same (closed) trajectory with respect to a rotating reference
frame fixed to the Earth. This condition implies

1) The period of revolution, Tp, of each satellite about the
Earth is a rational multiple of the period of rotation of
the Earth, Td. That is, NpTp = NdTd for some positive
(coprime) integers Nd and Np.

2) The orbital parameters a, e, i and ω are the same for all
the satellites.

3) The mean anomaly at epoch Mi and the right ascension
of the ascending node Ωi of the orbit of each satellite
satisfy NpΩi = −NdMi mod (2π).

The first item guarantees that the trajectory in the rotating
frame is closed (loop completed by the repetition period,
Trep = Np To = Nd T⊕). In particular, in the Earth-Centered
Earth-Fixed (ECEF) rotating frame, the compatible orbit be-
comes a repeating ground-track orbit.. The second and third
item are necessary and sufficient conditions to have all the
satellites on the same trajectory (a complete proof of this fact
is given in [32]). To capture the key idea of FCs let’s consider
Fig. 1. This figure shows a FC made of 4 satellites moving in 8
hr equatorial orbits with the four major axes orthogonal. Since
24/8 = 3, each satellite passes through 3 apogees per day. By
judicious phasing, the satellites all move on the same Earth-
Fixed (EFEC) relative trajectory (red curve with the 3 apogees
120◦ apart in Fig. 1). Furthermore, the three apogee loops in
an ECEF frame are traversed very slowly with a hang time of
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Fig. 1. All 4 satellites are on the same space track (red trajectory; fixed in
ECEF).

about 5.3 hr for each satellite to traverse its 3 apogee loops
per day, therefore each of the 4 satellites spends about 2/3 of
a day near apogee. Notice these loops lie in a small region in
ECEF, and through intelligent design, 3 satellites are always
in the apogee loops, and the 4-th is en-route from perigee
to replace the satellite ready to exit the apogee loop. This
pattern of always having 3 satellites near apogee enables 24/7
persistence over three regions with only 4 MEO satellites. This
is one of an infinite family of possibilities, and optimizing over
these constellations is the first step of the proposed research.

A. From original theory to Lattice theory

In addition to a resonant period Tp =
Nd

Np
Td we can impose

the relation NpΩ = −NdM for all satellites. This condition
gives some degrees of freedom for selecting the locations of
the satellites in the (Ω,M)-space, to get symmetries in space
by using phasing parameters (Fn, Fd, and Fh). This procedure
allows a maximum of NdFd/G satellites in a FC, where G =
gcd(Nd, NpFn +FdFh). A FC with the maximum number of
satellites allowed by the previous formula is called a Harmonic
FC (HFC). The satellites in a HFC exhibit a shape-preserving
dynamic, thus behaving like a true rigid body in space. The
use of phasing parameters to design FC and HFC is simple,
but some number-theoretic problems have been recently found
[28] to generalize the theory. The following list describes some
of these problems:

1) Equivalency Problem. Many combinations of input pa-
rameters can give the same FC. For HFC a complete
solution of this problem has been found [1]. It has
been shown that 3 invariants are sufficient to uniquely
characterize them: the number of satellites per orbit Nso,
the number of orbits No = Fd, and a configuration
number, Nc. Formulas to compute these invariants are
known.

2) Similarity Problem. Two equivalent HFC with a different
Np/Nd ratio may have the same relative dynamics while
rotating at different velocities. Reference [1] provides a
complex algorithm to compute all similar (homotetic)
HFC with given invariants (Nso, No, Nc).

3) Geometric properties of HFC. The number of perigees
and apogees of a HFC is time invariant. How to compute

these geometric invariants requires further research. This
problem is connected with the problem of computing the
number of axial symmetries of rigid bodies.

4) Time and space uniform FC. The satellites of a FC
are all located in a single closed-loop trajectory in the
rotating frame that depends only on the ratio Nd/Np.
By dividing this relative orbit in equally spaced time
intervals, we obtain a FC whose time gap between 2
subsequent observations of the same target is constant
(time-uniform). This is achieved by introducing a new
mean anomaly (Flower Anomaly) to map the (Ω,M)-
space in time [1] by direct application of the Chinese
Remainders Theorem. Space-uniform FCs for world-
wide targets are obtained through optimization of the
Thompson problem (uniformly points distribution over
a sphere).

All these problems have been addressed using the phasing
parameters has and have been recently solved [9] with a new
FC theory (Lattice FC). The new approach decouples the
compatibility condition and the shape parameters. The -space
satellite locations (mathematically described as a torus) are
given by all the solutions of a modular system of equations.

LPk =

�
a b

c d

��
Ωk

Mk

�
=

�
0
0

�
mod (2π)

The four integer parameters in these equations (a, b, c, d)
give a new meaningful matrix associated with the FC. The
number of orbits NΩ, the number of satellite per orbits Nso,
and the configuration number Nc can be derived from the
Lattice matrix (L) by computing it Smith-Hermite normal form

H =

�
NΩ 0
Nc Nso

�
where H = LU, and U ∈ GL2(Z)

All the possible ratios Nd/Np for the FC come from this
matrix. With the new Lattice theory the solutions of problems
1-3 are straightforward, and all the possible symmetric FC can
be defined with a given number of satellites.

II. CONSTELLATION DESIGN CONSIDERATIONS

The 2D Lattice theory has then evolved into a 3D Lattice
theory [14] allowing to design satellite constellations at any

inclination using elliptical orbits and under the J2 effect. The
satellites phasing is obtained as solution of the 3× 3 Hermite
normal form
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N

3
c Nω 0

N
1
c N
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c N

�
so
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ωijk − ω1

Mijk −M1




 = 2π






i
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However, designing an 3D Lattice Flower Constellation
(3D-LFC) requires more than selecting the six integer param-
eters in Eq. (1). The semi-major axis (a), eccentricity (e), and
inclination (i) that are in common to all satellites must be
selected. Additionally, the RAAN (Ω1), argument of perigee
(ω1), and mean anomaly (M1) of the first reference satellite
can also be selected arbitrarily without affecting the relative
phasing within the constellation.
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Thus, an 3D-LFC requires six integer parameters and six
continuous parameters. Essentially, the six continuous param-
eters define the orbit elements of the first satellite, and the
six integer parameters phase all other satellites relative to that
one. Each of the continuous parameters is subject to particular
considerations as described in the following sections.

A. Semi-major axis and eccentricity

The orbit semi-major axis and eccentricity are common
among all satellites in the constellation, and are typically
bounded by some minimum and maximum altitudes. Typically
these bounds are a result of sensor or antennae limitations.
Requiring hardware that can operate at varying altitudes is a
significant limitation on the use of elliptic orbits.

The semi-major axis can also be chosen to provide repeating
ground-tracks as in the Walker or in the 2D-LFC theories.
Satellites with the same argument of perigee can also be placed
on the same repeating ground-track through judicious selection
of the parameters (Np, Nd).

B. Inclination

The inclination of the orbits has significant impact on
the coverage provided by a 3D-LFC. Even in circular orbit
constellations, certain inclinations result in satellites colliding,
whereas others permit near perfect phasing as a satellite from
one plane passes directly between two satellites from another
plane.

Considering two satellites in circular orbits with the same
altitude, the closest approach between the two satellites, ρmin,
can be analytically computed from the equations [26]






∆F = ∆M − 2 arctan [− tan(∆Ω/2) cos i]
cosβ = cos2 i+ sin2 i cos∆Ω

ρmin = 2

�����

�
1 + cosβ

2
sin

�
∆F

2

������

(2)

where ∆M and ∆Ω are the difference in orbit elements of
the two satellites and i is the inclination angle common to
both. Note that ρmin must be scaled by the orbit radius to
find the physical approach distance. The minimum distance
encountered within a constellation of circular orbits can be
computed by calculating this approach distance for all pairs
of satellites. Perfect juggling requires that no two satellites
are ever closer than half the distance between two consecutive
satellites in the same orbit. We can scale the minimum ap-
proach distance such that zero corresponds to collision and one
corresponds to perfect juggling. Using this scaling, the results
for the 27/3/1 Walker constellation are plotted in Fig. 2 as a
function of inclination angle. Note the peak near an inclination
of 56◦, the chosen inclination for the Galileo GNSS system
[27]. This clearly indicates that even though inclination is
technically a continuous parameter, there exist discrete values
of inclination that maintain high levels of uniformity in the
distribution of satellites. Equation (2) only applies to circular
orbits, but similar derivations can be made for elliptic orbits
with same value of perigee argument

Fig. 2. Minimum encounter distance in the 27/3/1 Walker constellation as
a function of inclination.

C. Selecting Ω1, ω1, and M1

The values of (Ω1,ω1,M1) provide the three angular el-
ements of the reference satellite (i, j, k) = (0, 0, 0). Though
each of them could be drawn from [0, 2π), each can be further
bounded by constellation considerations once the 6 integer
parameters have been chosen.

Ref. ? has proven thal 3D-LFC can be described using
values of (Ω1, ω1, M1) in the ranges





Ω1 ∈
�
0,

2π

No

�

ω1 ∈
�
0,

2π

NoNω
gcd(No, N

3
c )

�

M1 ∈
�
0,

2π

Ns
gcd(NoNω, N

2
cNo, NωN

1
c −N

2
cN

3
c )

�

(3)
All 3D-LFC can be described by values within these ranges

due to their uniform, symmetric nature. For general 3D-
LFC with a global coverage mission, the design parameters
(Ω1,ω1,M1) can simply be taken as zero. When zonal or
regional coverage is required, these variables significantly
effect coverage. Clearly, ω1 is significant for critically inclined
orbits, even when global coverage is considered, but has no
meaning when dealing with circular orbits.

If one is considering global coverage, these ranges may
not only be used for design purposes, they can also be
used as limits on orbit propagations, thereby substantially
reducing computation time. This is especially important given
the rotation of the apsidal lines requires significantly more
propagation than required for circular orbits. The optimal
bounds can reduce the computation time by a factor of No for
ω and a factor of NoNω for M for a total possible reduction
factor of N2

oNω . In the global navigation example of the next
section, with 27 satellites in 3 orbital planes, the optimal
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bounds of Eq. (3) reduce propagation time by a factor of
≈ 7.5 over these naive bounds when averaged over all 117
3D-LFC tested. Some of those 117 3D-LFC see a reduction
in propagation time of a factor of 81 (No = 3, Nω = 9). The
150 3D-LFC with 25 satellites and 5 orbital planes improve
propagation times by a factor of ≈ 13.5 on average, with a
few improving by a factor of 125 (No = 5, Nω = 5)!

To complete the picture with respect to other design meth-
ods, Walker’s phasing parameter in Ref. [3] is equivalent
to our M1. Dufour includes an ω1 in his elliptical Walker
constellations that is a multiple of another integer parameter
he introduces, but the range of ω1 is limited to [−π/2,π/2]
rather than the full allowable range of [−π,π] [24], [25]. The
continuous parameter used here clearly includes the discrete
values of Ref. [24], [25].

III. GLOBAL NAVIGATION SATELLITE SYSTEM

To examine the effectiveness of the 3D-LFC framework
for designing a global coverage constellation, we first use
the example of global navigation. Flower Constellations were
first studied for use in GNSS by Park [19], who found
improvements over the Galileo GNSS constellation by using
a combination of two Harmonic Flower Constellations found
by trial and error. Tonetti [22] ran a Genetic Algorithm
(GA) to improve upon Park’s results. Both of these Flower
Constellations were designed for 30 satellites and utilized
large numbers of orbital planes (15 and 30 respectively),
which is unattractive from a launch and operational standpoint.
Alternatively, Bruccoleri [21] found a Harmonic Flower Con-
stellation with 24 satellites that showed improved performance
over the GPS constellation. All three studies considered only
circular orbits rather than be restricted to a critically inclined
Flower Constellation with elliptic orbits. In this paper, in order
to validate the proposed design methodology, we consider
both 27 and 25 satellite 3D-LFC. We have not considered
the combination of two or more 3D-LFC into the same
constellation, as was done in Ref. [19], but this may yield
additional improved results.

A. Cost Function

As a cost function to drive these design studies, we consider
the Geometric Dilution Of Precision (GDOP), a measure of the
accuracy of a GNSS solution. The lower the value of GDOP,
the more accurate is the GNSS solution. GDOP is dependent
entirely on the geometry of the satellites within view of a
specific ground site and relies on the visibility matrix, given
by

A
T =

�
r̂1 r̂2 · · · r̂n
1 1 · · · 1

�
(4)

where r̂i is the unit vector from ground site to the i-th
satellite and n is the number of visible satellites. We defined
a minimum elevation angle of 10◦ to determine satellite
visibility in this simulation. We define the matrix H = A

T
A.

GDOP can then be calculated

GDOP =
�

tr (H−1). (5)

This compact equation is simple, but requires a matrix
inverse for every point (in time and space) that needs to
be evaluated, so here we derive a new equation with faster
computation. Since the trace of a matrix is the sum of its
eigenvalues, and the eigenvalues of a matrix inverse are the
inverses of the original matrix eigenvalues, we can rewrite the
computation of GDOP as

GDOP =

��

i

1

λi
(6)

where λi are the eigenvalues of H . Note that
�

i λi = 2n. This
alternate form of GDOP calculation reduced computation time
in MATLAB by more than a factor of two.

To evaluate the accuracy of a given GNSS constellation,
1,000 points were distributed uniformly around a spherical
Earth using an iterative electrostatic repulsion method (also
known as the Thomson problem). The constellation was propa-
gated using an initial argument of perigee of zero with 5◦ steps
in mean anomaly, and GDOP was calculated for all ground
sites at each of those times. The initial argument of perigee
was then rotated in 5◦ steps with mean anomaly propagation
performed at each step. This is a useful approximation of the
behavior of the constellation due to the low rate of rotation of
argument of perigee as compared to mean anomaly. The values
of GDOP from all of these evaluations were then averaged,
and we sought to minimize this mean GDOP value.

B. Design Study: 27 Satellites

In this paper, we compare performance to the Galileo
constellation, designed as a 27/3/1 Walker constellation at
56◦ inclination and semi-major axis of 29,600 km [27], [28].
Initial design studies based on a variety of performance and
operational considerations led to this particular selection of
the number of satellites and number of orbital planes, so
those were held constant in this design paper. Once those
numbers are fixed, the Walker constellation framework allows
for just two design variables: the phasing parameter F and the
inclination angle. The phasing parameter is restricted to just
3 possible values. In contrast, the new 3D-LFC framework
allows for 117 unique combinations of the parameters {Nω ,
N

�
so, N1

c , N2
c , N3

c } and permits eccentricity to vary in addition
to the inclination angle. Additionally, elliptic orbits are cheaper
to launch into than circular orbits of the same semi-major axis,
so holding launch cost constant allows 3D-LFC with higher
altitudes. Thus, the search space is significantly expanded, yet
still contains the original Galileo constellation design.

Preliminary analysis to reduce the design space consisted
of evaluating all 117 3D-LFC over four values of eccentricity
and eleven values of inclination:

e ∈ [0.1, 0.2, 0.3, 0.4], and i ∈ [45◦, 47◦, · · · , 65◦].

Circular orbits were not considered because they all collapse
to C-LFC/Walker constellations. The inclination range was
chosen to place the Galileo optimal inclination of 56◦ in the
middle. The semi-major axis was held fixed at 29,655 km,
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corresponding to a repetition time of 17 orbits in 10 days. A
satellite was considered in view if it was at least 10◦ above
the horizon (grazing angle).

The constellations were evaluated for both mean GDOP and
maximum GDOP encountered throughout the propagation. As
a first cut, only solutions with a maximum GDOP below 6
were accepted (corresponding to the original requirements for
the GPS constellation [29], [30]). There were 9 3D-LFC out
of the original 117 that satisfied this requirement at a variety
of inclinations and eccentricities, all of the form




No 0 0
N

3
c Nω 0

N
1
c N

2
c N

�
so



 =




3 0 0
N

3
c 9 0

N
1
c 0 1





All of the minima for mean GDOP occurred in the inclination
range i ∈ [53◦, 59◦] over the full range of eccentricity.

This initial analysis was completed at a fixed altitude, but
one advantage of elliptical orbits is their ability to launch
into larger orbits for the same launch cost. The GIOVE-A
and GIOVE-B satellites, launched as test vehicles for Galileo,
launched into 190 km altitude circular parking orbits at an
inclination of 51.8◦ [31]. They were then boosted into their
final orbit using a simple two-burn maneuver. Using the
limiting case of a 60◦ final inclination, a minimum eccentricity
required to launch into an orbit of a given semi-major axis with
the same two-burn maneuver cost as Galileo can be calculated.

Following the design guidelines laid out by the Galileo
constellation design engineers, we seek a constellation with
a repeating ground-track with repetition times between 5 and
10 days. Shorter repetition times lead to the build up of
perturbations as the satellites pass over the same gravitational
disturbances repeatedly, whereas longer repetition times pose
operational challenges. Given these limitations and the desire
to keep the apogee below GEO, we selected nine values of
semi-major axis. Table I shows the different values of semi-
major axis, minimum eccentricity (for the same launch cost),
and maximum eccentricity (for apogee below GEO). Only
values of semi-major axis larger than the planned Galileo
system were considered because Ref. [28] shows that perfor-
mance improves as altitude increases (though with diminishing
returns, and they considered only circular orbits).

TABLE I
VALUES OF SEMI-MAJOR AXIS USED FOR GNSS OPTIMIZATION

Np Nd a (km) emin emax

17 10 29,655 0.045 0.424
13 8 30,561 0.078 0.382
8 5 30,878 0.089 0.368
11 7 31,252 0.101 0.351
14 9 31,464 0.107 0.342
13 9 33,057 0.151 0.277
10 7 33,302 0.157 0.268
7 5 33,753 0.168 0.251
11 8 34,161 0.177 0.236

For the second stage of the design study, another brute force
grid search was completed with inclination selected from i ∈

[52◦, 53◦, · · · , 60◦], semi-major axis and e = emin selected
from Table I, and the 3D-LFC parameters selected from the 9
3D-LFC down-selected in the first stage.

After selecting the optimal inclination angle for each 3D-
LFC at each altitude, one 3D-LFC outperformed all others at
all altitudes:




No 0 0
N

3
c Nω 0

N
1
c N

2
c N

�
so



 =




3 0 0
2 9 0
0 0 1





As expected, the best performance occurred at the maximum
altitude with a = 34, 161 km and e = 0.177. The optimal
inclination was the same as that of Galileo: 56◦. The mean
GDOP of Galileo was calculated to be 2.32, whereas the mean
GDOP of this 3D-LFC designed constellation is 2.24 - an
improvement of 3.5%. Given an inclination of only 56◦ (as
opposed to 60◦), the minimum eccentricity to achieve the same
launch cost to this much larger orbit is 0.15. The mean GDOP
varies only slightly (by 0.005) over the allowable eccentricity
range, so eccentricity can be chosen based on other consid-
erations. For instance, small eccentricity is attractive from an
operational perspective, whereas larger eccentricity increases
the allowable on-orbit satellite dry mass.

This 3D-LFC exhibits an interesting property: the satellites
share the same geometry of the Galileo constellation at all
times, they simply vary in altitude over time. The geometry is
not an exact match, as the rotation of the argument of perigee
perturbs it somewhat, but the two constellations bear great
resemblance to one another. This “breathing” behavior, where
the 3D-LFC mimics a C-LFC but with varying altitude, will
occur for any 3D-LFC of the form




No 0 0
N

3
c Nω 0

N
1
c N

2
c N

�
so



 =




No 0 0
Nc Nso 0
0 0 1





where No, Nso, and Nc are the parameters of the associated
C-LFC.

The results of this study indicate that the Galileo constel-
lation, at a semi-major axis of almost 30,000 km and 27
satellites, is very nearly optimal. The original designers chose
a design point near the knee of the curve where increasing
number of satellites or altitude met with diminishing returns
[27], which is why the 3D-LFC design could only slightly
improve upon the original Galileo design.

C. Design Study: 25 Satellites

The ultimate goal of a constellation designer is a con-
stellation that maximizes performance while minimizing total
system cost. Toward that end, reducing the number of satellites
in a constellation, thereby eliminating its hardware and launch
vehicle costs is one of the most effective means of reducing
costs. We consider here the problem of designing an 3D-LFC
with 25 satellites, divided into 5 orbital planes, to see what
performance can be achieved while reducing the number of
satellites by two.
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The design approach is the same as in the previous section.
For the 25 satellite, 5 plane case, there exist 150 unique 3D-
LFC, and these were all studied over a range of eccentricities
and inclinations at the original Galileo altitude. The maximum
GDOPs encountered by the 25 satellite constellations were
significantly higher than the original 27 satellite study, so the
initial results were pared down by requiring the mean GDOP
to be less than 3 and the maximum GDOP to be less than
16. This left 8 different 3D-LFC which were effective at a
variety of eccentricities and inclinations. Table II shows the
configuration parameters for these 8 3D-LFC, all of which
had Nω = 5.

TABLE II
ELLIPTICAL FLOWER CONSTELLATION PARAMETERS FOR 25 SATELLITE

GNSS

N1
c N2

c N3
c

0 2 3
3 2 2
4 2 2
3 3 4
4 3 3
3 4 3
4 4 2
4 4 4

When the altitude was allowed to vary as in the previous
section (with e = emin), the maximum altitude was again the
most effective. Unlike the 27 satellite case, however, there was
significant variation in GDOP as a function of eccentricity,
so each of the 8 3D-LFC were analyzed over a range of
eccentricities at the maximum altitude.

The best 25 satellite constellation was found to be inclined
at 55◦ with an eccentricity of 0.207 and 3D-LFC parameters




No 0 0
N

3
c Nω 0

N
1
c N

2
c N

�
so



 =




5 0 0
4 5 0
4 4 1





The mean GDOP experienced with this constellation was
2.49, compared to the 2.24 of the 27 satellite 3D-LFC in
the previous section. This 10% reduction in mean accuracy
is significant, but may be warranted given the reduced costs
of a 25 satellite constellation. Of course, if the spare satellite
strategy employed is to place one spare satellite in every orbital
plane, then both the 27 satellite, 3 plane constellation and this
25 satellite, 5 plane constellation require 30 total satellites on
orbit. The major shortcoming of the 25 satellite constellation
is its maximum GDOP of 9.11, compared to a maximum
GDOP of 3.87 for the 27 satellite 3D-LFC. A value above
6 is considered unusable [29], so there are times at which
users would be unable to get a fix using this system.
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