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Abstract—To determine the root causes or sources of variance 

of bad quality in supply chains is usually more difficult because 

multiple parties are involved in the current global manufacturing 

environment. Each component within a supply chain tends to 

focus on its own responsibilities and ignores possibilities for 

interconnectivity and therefore the potential for systematic 

quality assurance and quality tracing. Rather than concentrating 

on assigning responsibility for “recall” incidents, it would be 

better to expend that energy on constructing a collaborative 

system to assure product quality by employing a systematic view 

for the entire supply chain. This paper presents a systematic 

framework for intelligent collaborative quality assurance 

throughout an entire supply chain based on an expert system for 

implementing two levels of quality assurance: system level and 

component level. This proposed system provides intelligent 

functions for quality prediction, pattern recognition and data 

mining. A case study for wind turbines is given to demonstrate 

this approach. The results show that such a system can assure 
product quality improved in a continuous process. 
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I. INTRODUCTION  

Quality is a critical requirement for customers, especially 
in the case of expensive and complex products. In recent 
years, an increasing number of product recalls are occurring. 
Such product recall incidents have resulted in serious 
customer dissatisfaction and significant company losses in 
both image and business. Rather than argue who ought to 
apologize to the “recall” incidents, it would be better to 
expend that energy on constructing a collaborative system to 
assure product quality by employing a systematic view for the 
entire supply chain. A product supply chain can encompass 
multiple, diverse parties in the current global manufacturing 
environment. Each functional part in supply chain tends to 
focus on its own responsibilities, resulting in a lack of strong 
interconnected infrastructure to support systematic quality 
assurance, such as clear management structure and a quality 
tracing enabled data collection framework. It is therefore often 
difficult to identify or trace the exact reason for bad quality. 
How to ensure product quality collaboratively becomes a vital 
task for the companies along the supply chain. 

Supply chain management (SCM) was defined as the 
management of a network of interconnected businesses 
involved in the ultimate provision of product and service 
packages required by the end customers. It spans all 
movement and storage of raw materials, WIP inventory and 
finished goods from point-of-origin to point-of-consumption. 
A good SCM is essential for companies to meet global 
competition. Nowadays, many manufacturers and service 
providers collaborate with their suppliers and upgrade their 
purchasing and supply management functions from a clerical 
role, to an integral part of SCM. In terms of possessing a 
systematic quality assurance function and a collaborative data 
collection framework for quality tracing, gaps still exist. 

Quality assurance was defined as “a strategic management 
function concerned with the establishment of policies, 
standards and systems for the maintenance of quality”[1]. 
Later, as a result of benchmarking studies, Baines and Ryan 
determined that quality assurance could be identified as [2]: 

1) A tool to demonstrate regulatory compliance; 

2) A business efficiency tool to ensure product quality 

and minimize hygienic risks; 

3) A communication tool to customers and consumers, 

wherever they are in the world. 
Quality assurance becomes increasingly important in 

integrated SCM [3-4]. As for the methodologies, the majority 
of prior works tend to conduct failure testing or statistical 
control to improve quality assurance system [5-9]. Over the 
past thirty years, considerable advances have been made in 
computational intelligence. Various intelligent technologies 
and/or algorithms like artificial neural networks genetic 
algorithms, fuzzy/logic systems, learning algorithms, and 
metaheuristics have been developed for realizing intelligent 
control or expert systems [10]. Compared to traditional 
statistical control based quality assurance, computational 
intelligence technologies have advantages for making 
intelligent decisions such as quality prediction and pattern 
recognition for the situations with high complexity. If the 
quality can be predicted before production, it will greatly help 
avoid generating bad products. Designer can forecast the 
quality and thus optimize designed settings and tighter 
tolerance before releasing the design, while downstream 
parties, such as manufacturing, can optimize real settings in 
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the similar way prior to production.  And moreover, if the 
quality can be classified into several levels such as “good 
quality”, “average quality” and “bad quality,” products 
classified lower than “good quality” can be analyzed and 
traced back to the settings of the impact factors in order to 
determine the root cause of quality deficiencies. Through such 
analysis, the rules of best settings can be obtained, and the 
necessary changes in product or process design can be 
determined. Hence, providing intelligent functions such as 
quality prediction, pattern classification and data mining can 
improve quality by improving overall design; in addition, such 
functions can help optimize quality assurance for other 
downstream parties as well. Currently, there exists little 
research [11] on developing such intelligent systems for 
quality improvement in industry process. Extensive space 
could be explored to improve the performance of collaborative 
quality assurance.  

With the consideration of the significance in closing above 
mentioned gaps, this paper will base on computational 
intelligence technologies to establish a collaborative quality 
assurance expert system for machinery products to ensure and 
improve their quality continuously. 

This paper is structured as follows. In Section 2, the 
methodology of collaborative quality assurance in SCM is 
proposed. Section 3 takes wind turbine as a case to 
demonstrate the methodology. Finally, conclusions and future 
work are provided in Section 4. 

II. METHODOLOGY FOR COLLABORATIVE QUALITY 

ASSURANCE IN SCM 

Methodology to develop the collaborative quality 
assurance expert system in SCM is provided in this section. 
Quality and quality assurance will be defined first. Three 
conceptual frameworks, including a management model, a 
technical model and a database management model, will be 
established to help guide the coordination of quality assurance 
along the whole supply chain. Intelligent functions such as 
quality prediction, pattern recognition and knowledge mining 
will be designed in the technical model to support two levels 
of collaborative quality assurance in SCM: system level and 
component level. 

A. Problem formulation  

1) Quality 
It is important to realize that quality is determined by the 

intended users, clients or customers, not by society in general. 
'Expensive' does not always mean 'high quality'. Even goods 
with low prices can be considered quality items if they meet a 
market’s requirements.  

Quality ultimately is measured in terms of customer 
satisfaction. Customers may have various measurements, such 
as number of product recalls, number of maintenance fix 
requests per year, defects found after product delivery per 
function point, cost of defects (e.g. annual maintenance costs), 
costs of quality activities (e.g. costs of inspections, 
diagnostics, test execution, defect tracking, preventive 
measures and QA education), mean time between failure 
(MTBF), mean time to repair (MTTR), and so on, to check the 

product quality characteristics like functionality, reliability, 
safety, efficiency, and maintainability. 

 For this paper, no matter what a customer’s requirements 
are, a product that is closest to meeting these requirements is 
considered to be of good quality. 

2) Quality Assurance 
Quality Assurance, or QA for short, was described as a set 

of activities intended to ensure that products (goods and/or 
services) satisfy customer requirements in a systematic, 
reliable fashion. QA can’t absolutely guarantee the production 
of quality products, unfortunately, but makes this more likely. 
Two objectives are therefore set for achieving the optimal QA 
(see Figure 1). 

a) Objective 1: To optimize the design of product  

Customer requirements will be translated by designers into 
parameters for what constitutes a high quality product. This 
paper assumes that designers will provide the optimal value 
setting and tolerance of all possible quality impact factors in 
advance, including raw material specification, product 
dimensions, manufacturing environment, machine statuses, 
delivery requirements and so on.  The evaluation criterion of 
an optimal design is that the design can best meet customer-
defined requirements. The objective 1 is identified as: 

To Minimize Difference 1 = Design Setting - Customer Requirement 

b) Objective 2: To maximize the compliance with design  

Given an optimal design, quality assurance will attempt to 
make the real value setting of each quality impact factor along 
supply chain (e.g. raw material, manufacturing, delivery) in 
line with those of the design, so as to meet the functionality or 
the specifications of design. This objective can also be 
represented as minimizing the difference between real settings 
and design settings, that is: 

To Minimize Difference 2 = Real Setting – Design Setting 

The difference 2 is essentially the deviation of real settings 
from design settings. A maximum acceptable deviation from a 
nominal design setting is called tolerance.  

The scales of the differences of different factors are not the 
same. A Compliance Index (CI) is defined to represent the 
degree of accuracy of the real setting in comparison to the 
design setting in a standardized scale from 0 to 1. A value of 0 
means that the real setting matches design requirements 
perfectly, while a value of 1 means that real settings do not 
adequately match design requirements. These values can be 
obtained by 

                                           (1) 

where R and D represent the real setting and design setting 
for a same impact factor, respectively. If the setting of certain 
input factors for the best design is zero, then the following 
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equation could be used to calculate the compliance index: 

                            (2) 

Objective 2 is therefore to “Minimize CI”.   

Accordingly, QA includes two activities in this study: to 
design the best regulation of the quality related factors which 
rely on raw materials, assembly, components and overall 
products, as well as the services related to production, 
inspection and delivery processes; and to seek the maximum 
compliance between each real factor setting and their 
corresponding design factor settings.  

3) Closed loop quality assurance improvement to 

guarantee good 
An expert system based closed loop quality assurance 

improvement process is proposed in Figure 1 to fulfill the 
above two objectives continuously. There are multiple factors 
(e.g. raw material factors, manufacturing environment factors, 
machine factors, assembly factors, delivery factors, etc) 
throughout supply chain that may influence product quality in 
various ways and in dynamic situations. The individual and 
combined influence of multiple factors on quality is unclear. 
The rules of knowledge base will be obtained from the 
intensive study of the impact of multiple factors on product 
quality by the expert system. The product quality will be 
predicted and patterns will be recognized. The features 
indicative of bad quality will be extracted and feedback to 
designers to determine, and improve upon, parameter settings 
and tolerances for bad quality. The deviation of real settings 
from nominal design settings on multiple factors will also be 
studied in order to provide knowledge for compliance 
improvement. Once the root causes for bad quality are 
determined, they will be delivered to appropriate personnel for 
quality improvement. The above improvement of design and 
compliance will be made in a continuous process. 

 
Fig. 1. Closed Loop Improvement Method To Guarantee A Good Quality 

Assurance In SCM. 

The management-level method for guaranteeing the 
quality impact factor setting’s compliance with design is 
demonstrated in Section 2.2, while the expert system for 
studying multi-factor impacts on quality, providing intelligent 
functions such as prediction, pattern recognition, and 
generating the knowledge bases for above two objectives is 
presented in Section 2.3. The distributed database 

management system proposed in Section 2.4 can help a user 
trace back the situation in which a quality issue has been 
discovered. 

B. Management Structure for collaborative quality assurance 

Assuming that a certain design is optimal, an order 
oriented collaborative quality assurance team management 
mode is proposed in order to assure the supply chain factor 
settings’ compliance with the design.  

For the products of the same order, a quality assurance 
(QA) team will be organized among all the parties along the 
supply chain. The system supplier needs to take direct 
responsibility for delivering the product (a complete 
assembled system is defined as a product) to end users and it 
also needs to guarantee the quality of the components 
outsourced. The system supplier has a good connection to the 
end user and component suppliers. Considering these 
connections, the system supplier is the best party to lead the 
quality assurance team. Each quality related department, such 
as system level design, assembly process and delivery, 
component level design, raw material supply, manufacturing, 
and delivery will work together for QA.   

After receiving the customer expectations of what they 
expect from a product, system level QA will design the 
optimal regulations (e.g. parameter value setting and tolerance 
setting for materials, manufacturing and delivery along supply 
chain) for the best quality product. The quality parameters for 
components will be delivered to each component QA as a 
customer requirement. Component QA will continue to update 
the optimal settings for a component if the customer 
requirements received need to be amended, or if new 
requirements are identified. The designed settings will then be 
passed to each party along the component supply chain.  

Each downstream party will check the compliance of real 
settings with design settings after it completes its part. If the 
completed part passes the quality compliance check, then it 
will be delivered to its upstream party. If all parties, including 
those responsible for raw materials, manufacturing and 
delivery, have finished their check, a total quality assurance 
(TQA) will be carried out before the completed component is 
sent for system level assembly. System level QA will start 
after all component level QAs are completed. The same 
quality compliance check will be conducted for the system 
assembly process and its delivery path. The customer will do a 
TQA for the final assembled product. Those products which 
fail the TQA will be sent back for rework. 

C. Two levels of quality assurance expert system in SCM 

Ensuring a high level of quality for products throughout a 
supply chain is a much-needed perspective into the SCM due 
to the importance of quality in terms of improving system 
reliability and customer satisfaction. Various factors along a 
supply chain can influence the quality of a product. 
Determining the impact of multiple factors on product quality 
is of significant importance in providing useful information to 
improve quality assurance. Few quality assurance approaches 
can satisfy this need due to the complexity of the real 
situation. This section will propose a quality assurance expert 
system to close this gap. As the product (or system) and each 
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of its components have their own supply chains, the 
framework for the expert system is developed based on two 
levels: system-level quality assurance and component-level 
quality assurance. 

1) System level quality assurance in SCM 
The procedure for conducting system level quality 

assurance is illustrated in Figure 2. As indicated in the 
procedure, the supply chain of the product (or system) is 
identified first. The criteria for what constitutes system-level 
quality, such as reliability, based on the customer 
requirements, are then defined. Component level quality 
assurance is one important step for guaranteeing system level 
quality assurance. Theoretically speaking, quality assurance 
for each component will ensure the optimal result, in terms of 
quality, for the overall product. However in reality, it is not 
necessary to research each component, and it would be costly 
to do so. Thus, it becomes essential to balance the costs versus 
the benefit first. For the situation in which it is not cost 
effective to do quality assurance for each component, the 
critical component analysis and selection needs to be 
conducted. Subsequently, it is vital to define component-level 
quality for the chosen critical component(s) in order to 
conduct component-level quality assurance. The factors of the 
component that are most indicative of quality will be selected 
for studying their impact on the defined component-level 
quality. With this information, the component-level quality 
assurance expert system can be constructed. The comparison 
of component quality performance before and after applying 
the proposed system will be used for evaluation and to 
determine if improvements to the system can be made. The 
customer’s requirements are another criterion for making a 
quality determination. The order of using these two criteria 
can be adjusted according to the target of the quality 
improvement. Once the quality of all the studied components 
is improved to meet the defined requirements, the overall 
quality of the product will be evaluated to see whether it can 
meet the system requirements. If not, the prior steps should be 
revisited in order to continue improving the component-level 
quality. Therefore, through the procedure of system-level and 
component-level quality assurance, the quality of product can 
be better ensured. 

2) Component level quality assurance in SCM 
A component-level quality assurance expert system has 

been designed (Figure 3) for improving component quality 
based on the study of the impact of multiple factors on quality. 
For each component, the selection of factors from different 
parties along component supply chain, and the quality of the 
components produced, will be determined. The database 
system for data collection is presented in following section. 
Some samples will be selected from the database and input as 
training data for the expert system.  

One major function of the expert system is to provide a 
scientific way for quality prediction and quality classification. 
For this purpose, quality forecasting and quality classification 
models will be built based on the training data. Inputting any 
test sample of impact factors, the forecasting model will 
predict the corresponding quality. For the predicted quality, 
the quality pattern recognition model will identify the pattern 
that it belongs to. The designer can use this system to test if 

the design settings will result in a good or bad quality product 
before releasing the design to downstream parties. 
Downstream parties, such as manufacturing, can apply the 
proposed system to predict the quality of products to be 
produced based on simulated real settings. They are then able 
to optimize their real settings before production. With this 
intelligent measurement system, tremendous loss from 
incorrect design settings or incorrect real settings will be 
saved. 

 
Fig. 2. System level quality assurance in SCM. 

 
Fig. 3. Component level quality assurance in SCM 

The expert system has another function: to generate 
knowledge bases for design improvement and compliance 
improvement for achieving the best quality assurance. For 
instance, a correlation study of the impact factors and their 
affect on quality will reveal the critical impact factors that 
have bigger influence on bad quality. Further data mining 
conducted on bad quality patterns, such as a histogram of each 
critical impact factor, is helpful to find the features (i.e. range 
of settings) that result in bad quality. The knowledge obtained 
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will be shared with the designer for better design settings and 
tighter tolerances and hence avoid designs that result in bad 
quality. For other parties in a supply chain, the analysis of the 
difference between their input factors and those indicative of 
good quality will show them how to adjust their settings to 
improve their compliance with the design settings. 

 

3) Distributed database management system for 

quality assurance 
Data collection for quality assurance is a challenge 

because it requires the cooperation of the different parties 
within the whole supply chain. A good organization with 
clearly assumed responsibility is important for successful data 
collection.  

This paper thus presented a distributed quality assurance 
database management system (see Figure 4), in which one 
quality assurance database (QADB) is associated with each 
supply chain party, all quality assurance databases are 
connected via internet, and are under the control of a central 
database management system (CDBMS). It is suggested that 
the CDBMS be managed by the system supplier, while the end 
user has authorization to access and manage the QA 
information of the products they ordered. Consistent data 
recording and assessment and documentation integrity is 
necessary. Each produced part, including components and 
final product, is attached with an e-tag, such as a Radio 
Frequency Identification (RFID), which stores its basic 
information and path for accessing its QADB.    

 

 
Fig. 4. Distributed quality assurance database management system. 

When a quality problem occurs during usage, the end user 
may trace back its causes. If the source of the problem cannot 
be located, they may input the order number into the CDBMS 
to find the system ID and then trace the system delivery status 
and production status. If there is no problem with the system 
level process, then the user can continue to trace the issue 
back to the delivery status, production status and even to the 
raw material status for each component, with the assistance of 
each QADB. This process is conducted until it is determined 
at which stage the quality issue originated.   

If the user knows the problem component, he can trace 
back the component status in the corresponding QADB 

directly with the assistance of the component ID and other 
relative information read from its e-tag. 

Although manufacturers and suppliers have noticed the 
importance of quality assurance for wind turbines, they 
usually confine their quality assurance efforts to their specific 
realm, which does not make use of potential opportunities for 
collaboration. For example, designers only focus on how to 
improve product design, while manufacturers only focus on 
how to ensure quality during assembly and production and 
distributers on storage, delivery and logistics. Ignoring the 
interrelationship between them may easily cause bad products 
due to poor quality coordination.  Thus, it becomes essential to 
study the relationship between all parts in supply chain and 
build a collaborative model for quality assurance. 

Considering the marvelous long term growth of wind 
turbine, and its utmost needs for collaborative quality 
assurance, it will be taken as an example to demonstrate the 
proposed systematic framework for quality assurance in 
supply chain based on the study of the relationship between 
the critical impact factors and product quality. Through the 
successful application of this proposed methodology, this 
collaborative quality assurance model can be certainly 
applicable to some other machinery products. 

D. Identify the supply chain for a wind turbine 

A wind turbine has a unique and internationally distributed 
supply chain the parameters of which is strongly influenced by 
the recent increase in wind turbine production. The 
components of wind turbines have their corresponding supply 
chains as well. A typical supply chain for a wind turbine is 
demonstrated in Figure 5. A general supply chain may have 
warehouses, distribution centers or retailers between the 
manufacturer and customer. However, in this study, the supply 
chain can be simplified as a wind turbine is the kind of 
customized products which is usually directly delivered from a 
wind turbine manufacturer to their customers. 

 
Fig. 5. A typical supply chain for wind turbine. 

Based on the framework in Section 2.3, first, system level 
quality for awind turbine can be defined as high reliability of 
wind turbine to ensure smooth operation. Through 
understanding the structure of a wind turbine, its components 
can be analyzed so as to define component level quality. A 
collaborative quality assurance model for component level 
will be discussed in the following sections, which can be 
applied as quality assurance model for the system level too by 
defining the system quality index and its corresponding impact 
factors. 

E. Select critical components of wind turbine  

The general structure of wind turbine is shown in Figure 6 
[12]. The main parts of a wind turbine (as shown below ) are 
the rotor, blades, brake, controller, gear box, generator, high-
speed shaft, low-speed shaft, nacelle, pitch, wind direction, 

System Delivery QADBSystem Assembly QADB

System ID

Customer traces back causes 

of bad quality product 

Central database 

management system 

(CDBMS) 

Order ID

Raw 

Material

QADB

Raw 

Material

QADB

Delivery

QADB

Manufacturing

QADB

Component 1 ID 

Delivery

QADB
Manufacturing

QADB

Component 2 ID 

Raw 

Material

QADB

Delivery

QADB
Manufacturing

QADB

Component 3 ID 

Component ID

 Component ID (e.g. RFID) 

Reader

Study the effect of different 
factors on product quality 

Conclude reasons for product 
problems in different 

situations and build up 
knowledge base for them 

Establish Machine Learning 
Model to learn the 

relationship between impact 
factors and product quality   

Study the situation that 
quality defect is caused 
by raw material problem  

Study the situation that 
quality defect is caused 

by machine problem  

Study the situation that 
quality defect is caused 

by process problem 

Study the situation that 
quality defect is caused 

by design problem  

Mining Reasons for Quality Defects 

Diagnosis of product quality problem 
If a quality defect occurs, diagnose 
the root cause by mapping it to the 
situation/status in the knowledge 

Given a set of factor statuses as 
input, predict the product quality  

Prognosis of product quality 
problem 

Making Decisions for Quality Assurance 

Continuous learning & 

enriching knowledge base 

Monitor factors and 
collect impacts from 

machine aspect 

Monitor factors and 
collect impacts from 

process aspect 

Monitor factors and 
collect impacts from 

design aspect 

Monitor factors and 
collect impacts from 
raw material supplier  

Pass the knowledge to 
designer for redesign 

Design based  
Quality Assurance  

Material-based  
Quality Assurance 

Pass the knowledge to 
suppliers to improve 

material quality 

Machine based  
Quality Assurance 

Pass the knowledge to 
machine supplier or 
operator to optimize 
machine setting or 
redesign machines 

Process based  
Quality Assurance 

Pass the knowledge to 
process manager for 

optimal process control  

Study the effect of different 
factors on product quality 

Conclude reasons for product 
problems in different 

situations and build up 
knowledge base for them 

Establish Machine Learning 
Model to learn the 

relationship between impact 
factors and product quality   

Study the situation that 
quality defect is caused 
by raw material problem  

Study the situation that 
quality defect is caused 

by machine problem  

Study the situation that 
quality defect is caused 

by process problem 

Study the situation that 
quality defect is caused 

by design problem  

Mining Reasons for Quality Defects 

Diagnosis of product quality problem 
If a quality defect occurs, diagnose 
the root cause by mapping it to the 
situation/status in the knowledge 

Given a set of factor statuses as 
input, predict the product quality  

Prognosis of product quality 
problem 

Making Decisions for Quality Assurance 

Continuous learning & 

enriching knowledge base 

Monitor factors and 
collect impacts from 

machine aspect 

Monitor factors and 
collect impacts from 

process aspect 

Monitor factors and 
collect impacts from 

design aspect 

Monitor factors and 
collect impacts from 
raw material supplier  

Pass the knowledge to 
designer for redesign 

Design based  
Quality Assurance  

Material-based  
Quality Assurance 

Pass the knowledge to 
suppliers to improve 

material quality 

Machine based  
Quality Assurance 

Pass the knowledge to 
machine supplier or 
operator to optimize 
machine setting or 
redesign machines 

Process based  
Quality Assurance 

Pass the knowledge to 
process manager for 

optimal process control  

Study the effect of different 
factors on product quality 

Conclude reasons for product 
problems in different 

situations and build up 
knowledge base for them 

Establish Machine Learning 
Model to learn the 

relationship between impact 
factors and product quality   

Study the situation that 
quality defect is caused 
by raw material problem  

Study the situation that 
quality defect is caused 

by machine problem  

Study the situation that 
quality defect is caused 

by process problem 

Study the situation that 
quality defect is caused 

by design problem  

Mining Reasons for Quality Defects 

Diagnosis of product quality problem 
If a quality defect occurs, diagnose 
the root cause by mapping it to the 
situation/status in the knowledge 

Given a set of factor statuses as 
input, predict the product quality  

Prognosis of product quality 
problem 

Making Decisions for Quality Assurance 

Continuous learning & 

enriching knowledge base 

Monitor factors and 
collect impacts from 

machine aspect 

Monitor factors and 
collect impacts from 

process aspect 

Monitor factors and 
collect impacts from 

design aspect 

Monitor factors and 
collect impacts from 
raw material supplier  

Pass the knowledge to 
designer for redesign 

Design based  
Quality Assurance  

Material-based  
Quality Assurance 

Pass the knowledge to 
suppliers to improve 

material quality 

Machine based  
Quality Assurance 

Pass the knowledge to 
machine supplier or 
operator to optimize 
machine setting or 
redesign machines 

Process based  
Quality Assurance 

Pass the knowledge to 
process manager for 

optimal process control  



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 4, No. 2, 2013 

41 | P a g e  
www.ijacsa.thesai.org 

wind vane, yaw drive and yaw motor. Most turbines have 
either two or three blades. Wind blowing over the blades 
causes the blades to "lift" and rotate. Generally, the blades and 
the hub together are called the rotor. When the blades rotate, 
the gears rotate; the gears connect the low-speed shaft to the 
high-speed shaft and increase the rotational speeds from 
approximately 30 to 60 rotations per minute (rpm) to 
approximately 1000 to 1800 rpm, which is the rotational speed 
required by most generators to produce electricity. Generally, 
the gear box is the most costly part of a wind turbine. 

 

Fig. 6. General structure of wind turbine. 

Although a wind turbine is comprised of many 
components, it is more cost effective to focus on the critical 
components for quality assurance. In order to identify the 
critical components of a wind turbine, the typical way is to 
determine which component has the greatest influence on 
wind turbine breakdowns. In recent years, numerous failure 
surveys have been conducted on wind turbines. A downtime 
distribution was presented in [13], based on a population of 
German wind turbines. Braam and Tavner both provided 
recent studies on failure probabilities [14-16]. McMillan and 
Ault then selected four component categories from these 
multiple sources and illustrated their annual probability of 
failure on the same chart [17]. They further used this data to 
study reliability benchmarks [18]. This paper summarizes their 
researches in Figure 7 to illustrate the effect of both the failure 
probability and downtime distribution of four components of 
wind turbines, namely the electronics & controls, rotor blades, 
gearbox and generator. The X value is the downtime 
distribution data from Winstats Newsletter[13], meanwhile, 
while the Y value is the failure probability from the surveys 
for the same component [14-16]. It should be noted that each 
component has three samples marked in different colors. The 
plot area is divided into four quarters, namely quadrants 1 to 
4, based on the high or low values of the axis. All gearbox & 
bearing samples, as well as all generator samples and some 
blades samples, fall in quadrant 4, which shows that all these 
components have a high downtime distribution with 
comparatively a low failure probability. Therefore, gearbox, 
generator and rotor blades are taken as more critical 
components.  

 

Fig. 7. Wind Turbine Critical Components Selection Based On Integrated 
Failure Effect Study. 

F. Define component level quality 

Component level quality assurance will then be established 
for the component selected with its corresponding quality 
criteria (i.e. rules in quality assurance model) and impact 
factors. As shown in Figure 6, bearings are key sub-
components in both gearboxes and generators, which are two 
critical components of wind turbines. It is thus taken as an 
example in the following sections to demonstrate the approach 
of building component level quality assurance model. This 
approach can be applied to other components.  

        
Fig. 8. Fault of bearing. 

TABLE I.  PRIMARY TYPES OF QUALITY RELATED BEARING DAMAGES. 

Bearing damage Caused by Bearing damage Caused by 

wear abrasive particles flaking Preloading 

inadequate lubrication oval compression 

vibration axial compression 

smearing rollers and raceways Misalignment 

external surfaces Indentations 

roller ends guide flanges Smearing 

crack rough treatment deep seated rust 

excessive drive-up fretting corrosion 

smearing Fluting 

Cage damage vibration corrosion deep seated rust 

excessive speed fretting corrosion 

wear indentation Overloading 

blockage foreign particles 

The primary types of bearing damages are necessary to be 
well researched before building the component level quality 
assurance model. Bearings as prominent parts among the most 
important components in the majority of machines sometimes, 
do not always meet their life expectancy due to damages from 
multiple sources for diverse reasons, such as heavier loading, 
careless handling, ineffective sealing or unsuitable fits. Each 
of these factors produces its own particular type of damage 
and leaves its own special impact on a bearing. Thus, it is 
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essential to examine the damaged bearing and study the cause 
of the damage so as to provide support for quality assurance. 

Based on the most prevalent types of bearing damage (see 
Table 2), it can be seen that most damage is caused by quality 
issues along the supply chain. Hence, the quality index and the 
major impact factors influencing bearing quality will be 
identified and their relationship will be well studied by using 
this proposed model. 

As mentioned before, there exist various types of quality 
index according to customer requirement. Reliability is 
adopted in this section to represent the quality of the bearing. 
Other quality indices can also be considered in the same way, 
according to a customer’s requirements. In engineering, 
reliability is the ability of a system or component to perform 
its required functions under stated conditions for a specified 

period of time. The traditional notation for reliability is , 

while here it is shown as one index of quality, and is denoted 

as . Mathematically, reliability may be expressed as 

                         (3) 

where is the failure probability density function and  is 

the length of the period of time that is assumed to start from 

time zero . 

G. Identify quality impact factors for critical component 

By analyzing bearing damages and its causes, 19 main 
quality impact factors which can cover the majority of the 
causes of damage are selected for study. Five of them are 
factors related to raw material, six of them are about 
machining, four of them are machine status factors, three are 
manufacturing environment factors, and one is the delivery 
condition. Those 19 impact factors and 1 quality index (i.e. 
reliability of bearing) are listed in Table 3. 

As stated in the methodology section, the designed settings 
are assumed to be optimal. The quality assurance target of 
other parties is to make the real settings meet the designed 
settings. The deviations of real settings from design settings 
instead of the real setting values are studied because they can 
reflect the quality compliance level. The results of which can 
further help design tighter tolerances. As discussed in Section 
2.1, CI is introduced to transfer the different scales of the 
deviations to a standardized range, from 0 to 1. In terms of the 
chosen standard value range, 0 means the difference between 
real settings and designed settings is the smallest, while 1 
means the difference between them is the biggest. CI[Rlu] 
indicates the compliance index of lubricant in “Raw material” 
category. Equations (1) and (2) provide the method to 
calculate CI. The CIs of all selected impact factors are taken 
as the inputs of the quality assurance model. CI[Qre], the 
compliance index of reliability, is the output factor. CI[Qre] is 
calculated by , in order to make it comply with the 

CI of the input factors. That is 0 means the perfect case with 
the best reliability, while 1 reflects the worst one. 

H. Quality prediction and pattern recognition for critical 

component 

For the purpose of quality prediction and pattern 
recognition, many intelligent approaches can be used. In this 
study, two neural network models, called Feedforward neural 
network and self-organizing map neural network (SOM) are 
used. A Feedforward neural network is developed to predict 
the component quality and a self-organizing map (SOM) is 
built to classify the quality pattern, through learning the 
relationship between quality and its impact factors collected 
along the supply chain. 

1) Quality prediction 
A Feedforward neural network is an artificial neural 

network in which connections between the units do not form a 
directed cycle. 

TABLE II.  SELECTED IMPACT FACTORS AND QUALITY INDEX. 

Factors Notation 
Range 

of CI 

Input    

Raw material Lubricant Rlu [0,1] 

mounting 

pressure 
Rmp [0,1] 

seating out of 

alignment 
Rsa [0,1] 

foreign particles Rfp [0,1] 

material 

containing 
Rmc [0,1] 

Manufacturin

g 

inner diameter Mid [0,1) 

outer diameter Mod [0,1) 

surface 

roughness 
Msr [0,1) 

chamfer Mch [0,1) 

thickness Mth [0,1) 

ball diameter Mbd [0,1) 

 

Machine 

Balance Aba [0,1] 

Precision Apr [0,1] 

Health index Ahi [0,1] 

Vibration Avi [0,1] 

Environment Temperature Ete [0,1] 

Humidity Ehu [0,1] 

Dust tolerance Edt [0,1] 

Delivery 
Delivery 

condition 
Ddc [0,1] 

Output    

Quality index Reliability QRe (0,1] 

Note: CI range values have been standardized for all factors. 

CI Value range in “Manufacturing” represents the difference between real 

manufacturing setting and design requirements. 0 means no difference. The 

closer to 1, the bigger difference it is. So 0=perfect case; 1=worst case 

It is most commonly used with the back propagation 
algorithm that often has one or more hidden layers of sigmoid 
neurons followed by an output layer of linear neurons. In this 
network, the information moves in only one direction, 
forward, from the input nodes, through the hidden nodes and 
to the output nodes. There are no cycles or loops in this type if 
network. Multiple layers of neurons with nonlinear transfer 
functions allow the network to learn nonlinear and linear 
relationships between input and output vectors. A well learned 
network is often applied for function approximation or 
regression analysis tasks, including forecasting. Cost function 
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is an important concept in learning, as it is a measure of how 
far away we are from an optimal solution to the problem that 
we want to solve. Learning algorithms search through the 
solution space in order to find a function that has the smallest 
possible cost. A commonly used cost is Mean Square Error 
(MSE) which tries to minimize the average squared error 
between the network's output and the target value over all the 
example pairs. 

In this case study, for each selected impact factors and 
quality index, 1000 samples are collected and then their 
compliance indices are standardized into a range [0,1]. For 
each factor, 1000 standardized CI samples are stored in one 
factor vector, and 1000 quality index samples are in one 
quality index vector.  

In the Feedforward neural network model, the input is the 
vector of 19 factor vectors, and the output is the quality index 
vector. Two layers are set and the Levenberg-Marquardt rule 
is chosen to train this neural network model. The epoch is set 
to be 1000. The Mean Square Error (MSE) is used to examine 
the prediction performance. The MSE <=0.01 is set as 
threshold to stop training. After training, Feedforward neural 
network model could be used to predict CI of quality index 
(i.e. reliability of bearing) given any test sample. 

In Figure 9, the training results of the Feedforward neural 
network model, including the training state and the 
corresponding MSE (0.0068) are presented respectively. The 
results show that this Feedforward neural network model fits 
the samples to the degree that it is requested, which means this 
trained Feedforward neural network model can be used to 
predict the quality index based on the selected impact factors.  

The following are two examples in which the proposed 
model is used to predict the quality index for two test samples:   

Test sample vector of impact factors is: 
[0.32576;0.30902;0.30753;0.30937;0.28538;0.43926;0.44336;0.5208
1;0.45899;0.53185;0.48846;0.33633;0.3077;0.46696;0.35483;0.0902
69;0.044895;0.90836;0.77512].  
Quality index is predicted to be: [0.2925] 

 

 
Fig. 9. Training results of Feedforward neural network. 

Test sample vector of impact factors is: 

[0.8927;0.8942;0.9217;0.2920;0.1420;0.5032;0.4932;0.4675;0.5239;
0.5061;0.5018;0.8447; 0.7880; 0.9724; 0.1794; 0.9296; 0.9256; 
0.3489; 0.3816] 
Quality index is predicted to be: [0.9476] 

 

2) Quality pattern recognition 
In addition to being able to predict a certain quality index 

value, it would be advantageous to be able to determine the 
patterns of the whole values as well. For this purpose, SOM 
has been adopted to classify a certain quality index into 
various levels. If a certain pattern needs to be deeper studied, a 
specific analysis can be conducted for that. 

SOM is another type of artificial neural network that is 
trained using unsupervised learning to produce a low-
dimensional, discretized representation of the input space of 
the training samples. It produces a map to represent the input 
space of the training samples. It is different from other 
artificial neural networks in the sense that SOM uses a 
neighborhood function to preserve the topological properties 
of the input space. SOM has one layer with the neurons 
organized in a grid, which makes it useful for visualizing low-
dimensional views of high-dimensional data, —this function is 
akin to multidimensional scaling.  

SOM operates in two modes like most neural networks: 
training and mapping. Training builds the map using input 
samples. Mapping automatically classifies a new input vector. 
Training is a competitive process, also called vector 
quantization. Firstly, it will randomize the map's nodes' weight 
vectors, and then grab an input vector, traverse each node in 
the map, including the use of Euclidean distance formula to 
find similarity between the input vector and the map's nodes’ 
weight vector. It also includes the track of the best matching 
unit (BMU), the node that produces the smallest distance. 
Afterward, the nodes in the neighborhood of BMU will be 
updated by pulling them closer to the input vector. The whole 
procedure will be repeated till current iteration reaches the 
limit on time iteration. 

In this study, 1000 samples of quality index are used as 
training data to build a SOM neural network for quality 
pattern classification. Within SOM one layer is set, and the 
Batch unsupervised weight/bias training algorithm is chosen. 

In Figure 10, the results displayed by the developed of 
SOM are presented, in which 5 classes are obtained, after 
training. This means that the quality index can be classified 
into 5 levels: “very good quality”, “good quality”, “average 
quality”, “bad quality” and “very bad quality”, respectively.  

This SOM model can then be used for recognizing the 
quality pattern given a certain quality index value. For 
instance, the predicted quality index, 0.2925, in the 
abovementioned sample test 1, is classified by the SOM into 
class 2, which is considered to be of “good quality”; the 
quality index in sample test 2, 0.9476, is classified by the 
SOM into class 5, which is considered to be of “very bad 
quality”.  

 

 

 

Study the effect of different 
factors on product quality 

Conclude reasons for product 
problems in different 

situations and build up 
knowledge base for them 

Establish Machine Learning 
Model to learn the 

relationship between impact 
factors and product quality   

Study the situation that 
quality defect is caused 
by raw material problem  

Study the situation that 
quality defect is caused 

by machine problem  

Study the situation that 
quality defect is caused 

by process problem 

Study the situation that 
quality defect is caused 

by design problem  

Mining Reasons for Quality Defects 

Diagnosis of product quality problem 
If a quality defect occurs, diagnose 
the root cause by mapping it to the 
situation/status in the knowledge 

Given a set of factor statuses as 
input, predict the product quality  

Prognosis of product quality 
problem 

Making Decisions for Quality Assurance 

Continuous learning & 

enriching knowledge base 

Monitor factors and 
collect impacts from 

machine aspect 

Monitor factors and 
collect impacts from 

process aspect 

Monitor factors and 
collect impacts from 

design aspect 

Monitor factors and 
collect impacts from 
raw material supplier  

Pass the knowledge to 
designer for redesign 

Design based  
Quality Assurance  

Material-based  
Quality Assurance 

Pass the knowledge to 
suppliers to improve 

material quality 

Machine based  
Quality Assurance 

Pass the knowledge to 
machine supplier or 
operator to optimize 
machine setting or 
redesign machines 

Process based  
Quality Assurance 

Pass the knowledge to 
process manager for 

optimal process control  



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 4, No. 2, 2013 

44 | P a g e  
www.ijacsa.thesai.org 

 
Fig. 10. Training results of self-organizing map. 

The above two artificial neural network models constructs 
an intelligent measurement system which is capable of 
predicting the product quality and indentifying corresponding 
quality class for any given test sample. This method can also 
strongly help designers and other downstream parties conduct 
simulation based experiments to study the impact of designed 
settings or real settings on quality before real application. By 
comparing the values of the quality index generated on 
various simulated settings, the optimal setting could be found 
and applied before design regulation releases or before 
production starts.  

I. Knowledge for design and compliance improvement  

More data mining works, like correlation, distribution and 
comparison studies, can be conducted based on the above 
data, which help generate knowledge bases for optimizing 
quality assurance for both designers and other downstream 
parties. 

1)  Correlation study  
For determining the quality pattern, a correlation study of 

the impact factors and quality change will reveal the critical 
impact factors that have bigger impact on quality. In 
probability theory and statistics, correlation (often measured 
as a correlation coefficient) indicates the strength and 
direction of a linear relationship between two random 
variables. A number of different coefficients are used for 
different situations. The best known is the Pearson product-
moment correlation coefficient, which is obtained by dividing 
the covariance of the two variables by the product of their 
standard deviations, as shown below.  



  (4)               

where or is correlation between two 

random variables X and Y,  means covariance 

between X and Y, ,  are standard deviations, ,  

are expected values, and  is the expected value operator. 

The correlation is 1 in the case of an increasing linear 
relationship, −1 in the case of a decreasing linear relationship, 

and some value in between these two values in all other cases, 
indicating the degree of linear dependence between the 
variables. The closer the coefficient is to either −1 or 1, the 
stronger the correlation between the variables (see Table 4). 

TABLE III.  INTERPRETATION OF THE SIZE OF A CORRELATION. 

Correlation Negative Positive 

Small −0.3 to −0.1 0.1 to 0.3 

Medium −0.5 to −0.3 0.3 to 0.5 

Large −1.0 to −0.5 0.5 to 1.0 

All 1000 samples were selected for this correlation study. 
The correlations of each impact factor and quality index are 
plotted in a Radar chart (see top left chart of Figure 11). The 
results reveal that seven factors have stronger correlation with 
quality for the samples studied. Three are raw material factors, 
namely, seating out of alignment (Rsa), mounting pressure 
(Rmp), and Lubricant (Rlu); two are machine status factors, 
namely, Health index (Ahi), Precision (Apr), and Balance 
(Aba); and two are manufacturing environment factors: 
Humidity (Ehu), and Temperature (Ete).  

2)  Distribution study  
As the quality index can be traced back to the original 

collected impact factors data, for all bad quality indices, a 
further distribution analysis of the parameter settings of each 
critical factor can be conducted to illustrate that what range it 
is most in, which is very important information to posses for 
impact factor design.  

The distribution of all settings of the impact factor Rsa in 
very bad quality class (i.e. Class 5) is shown on top right chart 
in Figure 11. The range of settings is one type of feature of the 
root causes of bad quality, and should be avoided in design. 

3)  Comparison study  
For such parties as material, manufacturing, and delivery, 

they can simulate their real setting and predict the quality 
index before production using the proposed expert system. If 
the predicted quality is bad or very bad, then the system can 
do an analysis to check the difference between the impact 
factors settings of the bad quality predicted and those settings 
in a very good quality pattern.  

The bottom chart on Figure 11 presents an example of 
comparison, where the mean and range of each impact factor 
setting in very good quality pattern are compared with the real 
setting of each factor in test sample 2, which generated a very 
bad quality. The differences will feedback to instruct people 
how to adjust their settings to improve the compliance with 
design. 

J. System level quality assurance 

The procedures introduced in Section 3.3 to 3.6 are applied 
to all critical components. After all component level quality 
improvements have been completed, the system level quality 
will be improved as well. Like the impact factors in the 
component level quality assurance model, the impact factors 
for the system level quality assurance model are the factors 
influencing the quality of the wind turbines received by 
customers. The system level quality index is defined by 
customer requirements. A system level quality assurance 
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model can be constructed in the same way as that at the 
component level. By using the Feedforward neural network 
and SOM methods, the quality index of a wind turbine system 
can then be predicted and the pattern of quality index can also 
be identified. Useful knowledge can be obtained from data 
mining. By continuously measuring the quality index, 
classifying its pattern and redefining the impact factors’ 
settings, quality can be improved at both the system level and 
the component level until the quality index reaches the pre-
determined threshold. 

III. CONCLUSION AND FUTURE WORK 

The importance of performing quality assurance 
throughout an entire supply chain has been gradually gaining 
recognition by the decision makers in industry. In this study, 
the frameworks of collaborative quality assurance in a supply 
chain, including management model, technical model, and 
database model, were proposed so as to ensure high quality of 
products. In the wind turbine case study presented, bearings 
have been identified as an important component of wind 
turbines, and taken as an example to demonstrate the proposed 
component level quality assurance approach. 

 

Fig. 11. Knowledge mining results in quality assurance expert system 

The component quality assurance model acted as an 
intelligent measurement system, to predict quality and 
recognize the quality pattern given a set of quality impact 
factors. With these promising functions, designers can test 
whether the design settings will result in a good or bad quality 
product before releasing the design to downstream parties. 
Downstream parties, such as those responsible for 
manufacturing, can simulate different real settings to 

determine which may generate the best quality before 
production. More knowledge is mined based on the results 
through statistical analysis, such as correlation, distribution, 
and comparison, and feedback to designers and downstream 
parties for optimizing settings and tighter tolerance. With this 
intelligent quality assurance model, potential losses from bad 
design settings or incorrect real settings will be saved, and 
product quality will be ensured.  
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