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Abstract—We believe that there is no real data protection 

without our own tools. Therefore, our permanent aim is to have 

more of our own codes. In order to achieve that, it is necessary 

that a lot of young researchers become interested in 

cryptography. We believe that the encoding of cryptographic 

algorithms is an important step in that direction, and it is the 

main reason why in this paper we present a software 

implementation of finding the inverse element, the operation 

which is essentially related to both ECC (Elliptic Curve 
Cryptography) and the RSA schemes of digital signature. 
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I. INTRODUCTION 

It has already been mentioned that we believe the best 
protection is achieved by developing our own software. 
However, this process requires a lot of knowledge, skills, 
patience and great responsibilities [7], provided that the 
undisputed cryptic of cryptography itself was previously 
overcome and that there are courage and willingness to enter 
more deeply into the matter. 

In this paper we want to show that it is possible to 
implement the inverse element without any software-hardware 
facilities (in the arithmetic of large numbers), which is a very 
important operation in the process of realization of both 
leading schemes of a public key – ECC and RSA [1] [4] [6]. 

II. TASK AND AIM 

In the arguments for and against in a trial of strength of 
ECC and RSA, the simple fact that they are performed by the 
same tools made for operations with large numbers, is usually 
overlooked. Mathematical bases of RSA and ECC are 
completely different [1] [5], but they need the same 
operations: addition, subtraction, multiplication, division, 
finding the remainder, calculating d from the equation e*d ≡  1 
(mod p) for fixed values of e and p, and more joint auxiliary 
operations needed for the realization of a digital signature. 

When it comes to joint operations, we have opted for 
finding the inverse element. Therefore, we will present a brief 
review of the RSA and ECC and point out those steps in 
algorithms in which it is necessary to calculate the inverse 
element. 

A. Algorithm Key Generation for the RSA Signature Scheme  

As we can see, for the given public key e and the number 
ɸ, d should be calculated from the equation in order to get e 
private key – the most important element of the RSA digital 
signature scheme, or, in other words, we should find the 
inverse element of the element e. 

Sumary: each entity creates an RSA public key and a 
corresponding private key. Each entity A should do the 
following [1]: 

1) Generate two large distinct random primes p and q, 

each roughly the same size (see x11.3.2). 

2) Compute n = pq and = (p − 1)(q − 1). 

3) Select a random integer e, 1 < e <  such that gcd(e, 

) = 1. 

4) Use the extended Euclidean algorithm ([2]) to 

compute the unique integer      

d, 1 < d < , such that ed 1 (mod ) 

5) A’s public key is (n; e); A’s private key is d 

As we can see for a given public key e and modulo , we 
have to find inverse element d- secret key- for RSA digital 
signature. So, finding the inverse element is very important 
stage the RSA signature scheme. 

B. The shortest of the ECC   

 Efficient and secure public-key cryptosystems are 
essential in today’s age of rapidly growing Internet 
communications. Elliptic curve scalar multiplication in 
particular, which refers to the operation of multiplying a large 
integer by a point on an elliptic curve, is crucial for both data 
encryption technology as well as testing the security of 
cryptographic systems.[5] 

In reality it’s very hard to find k (large number) that 
k*P=Q where P and Q are given  points on an Eliptic curve.(P, 
Q are public keys, and k is private or secret key)  

Practicaly we have to solve P+P and P+Q to get thrid 
point R=P+P or R=P+Q.  

To put it simply, in the field, say Fp , where p is prime, for 
two points  P(xp,yp), Q(xq,yq) on an elliptic curve, using chord-
tangent-rule, to give the third elipting curve point R(xr,yr).   

Coordinates of the third point are calculated by the 
following formulas: 

xr = ((yq – yp)/ (xq – xp))
 2 –xp - xq ,   

yr =((yq – yp)/ (xq – xp))(xp- xr)-yp 

It is obvious that it is very important to find  (xq – xp)
-1 

III. CODE FOR FINDING THE INVERSE ELEMENT 

In the previous paragraph, we pointed out the place and 
significance of finding the inverse element of a fixed element 
in the field Fp, where p is a prime. Since our goals are to avoid 
the general story and to develop the software that can operate 
in real conditions (with large numbers), in this paragraph we 
will present the code by which we can solve the equation ed ≡ 
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1 (mod ɸ)  for (arbitrarily) large fixed number ɸ and the fixed 
e. 

A. The Code for Calculating the Inverse Element – Delphi 7 

Console Application  

In order to calculate the inverse element, it is necessary to 
encode Binary extended gcd algorithm. For the fixed inputs e 
and ɸ, wwe will get the output d, and this will be the solution 
of the modular equation above. 

Program for_inverse; 

{$APPTYPE CONSOLE} 

uses SysUtils, Unit22; 

label 1,2; 

var a,b,c,g,u,v,a1,b1,d:array[0..nn1] of integer; 

gcd,w:array[0..nn] of integer; 

i,s1,s2,i1,p1,c1:integer; 

ff:file of integer; 

 x,y,k:array[0..nn] of integer; 

k1:longint; 

begin 
s1:=0; s2:=0; 

writeln('calculating the inverse element'); 

 assign(ff,'brojfi.dat'); rewrite(ff); 

   {Example module (10111)-binary, (23)-decimal} 

    x[0]:=1;x[1]:=1;x[2]:=1;x[3]:=0;x[4]:=1; 

write(ff,x[0]);write(ff,x[1]);write(ff,x[2]);write(ff,x[3]);write(f

f,x[4]); 

reset(ff); i:=0; 

while not eof(ff) do 

begin 

read(ff,x[i]); i:=i+1; 

end; 
assign(ff,'javni.dat'); rewrite(ff); 

{Example elements (100)-binary, 4 decimal} 

y[0]:=0;y[1]:=0;y[2]:=1;y[3]:=0; 

write(ff,y[0]);write(ff,y[1]);write(ff,y[2]);write(ff,y[3]); 

reset(ff); i:=0; 

while not eof(ff) do 

begin 

read(ff,y[i]); i:=i+1; 

end; 

s1:=0; s1:=0;s2:=0; 

  for i:=0 to nn do 
 begin 

 g[i]:=0;u[i]:=0;v[i]:=0;a[i]:=0;b[i]:=0;c[i]:=0;d[i]:=0;w[i]:=0; 

  end; 

    g[0]:=1;p1:=0; 

   while ((x[0]=0) and (y[0]=0)) do 

   begin 

    for i:=1 to nn do  begin 

    x[i-1]:=x[i]; y[i-1]:=y[i];end; 

     for i:=nn-1 downto 0 do g[i+1]:=g[i]; 

  g[p1]:=0;p1:=p1+1; end; 

     for i:=0 to nn do begin 
   u[i]:=x[i]; v[i]:=y[i];end; 

     a[0]:=1;b[0]:=0;c[0]:=0;d[0]:=1; 

     1:   while u[0]=0 do 

    begin 

          for i:=1 to nn do u[i-1]:=u[i]; 

                if ((a[0]=0) and (b[0]=0)) then begin 

                    for i:=1 to nn do a[i-1]:=a[i]; 

                     for i:=1 to nn do b[i-1]:=b[i];  end 

                                     else  begin 
                                    saberi(a,y,w); 

                       for i:=1 to nn do w[i-1]:=w[i]; 

                       for i:=0 to nn do a[i]:=w[i]; 

                     oduzmi(b,x,w); 

                       for i:=1 to nn do w[i-1]:=w[i]; 

                       for i:=0 to nn do b[i]:=w[i]; end;end; 

      while v[0]=0 do begin 

           for i:=1 to nn do v[i-1]:=v[i]; 

            if ((c[0]=0) and (d[0]=0)) then begin 

                for i:=1 to nn do c[i-1]:=c[i]; 

                 for i:=1 to nn do d[i-1]:=d[i]; end 

                          else  begin 
                        saberi(c,y,w); 

                    for i:=1 to nn do w[i-1]:=w[i]; 

                    for i:=0 to nn do c[i]:=w[i]; 

                    oduzmi(d,x,w); 

                    for i:=1 to nn do w[i-1]:=w[i]; 

                    for i:=0 to nn do d[i]:=w[i]; end; veci1(v,s1);   

end; 

   i:=nn;veci1(u,s1); 

   while u[i]=v[i] do i:=i-1; 

   if i<0 then i:=i+1; 

   if u[i]>=v[i] then  begin 
      oduzmi(u,v,w); 

     for i1:=0 to nn do u[i1]:=w[i1]; 

     oduzmi(a,c,w); 

     for i1:=0 to nn do a[i1]:=w[i1]; 

     oduzmi(b,d,w); 

     for i1:=0 to nn do b[i1]:=w[i1]; end 

             else begin 

               oduzmi(v,u,w); 

     for i1:=0 to nn do v[i1]:=w[i1]; 

               oduzmi(c,a,w); 

               for i1:=0 to nn do c[i1]:=w[i1]; 

       oduzmi(d,b,w); 
     for i1:=0 to nn do d[i1]:=w[i1]; end; 

            s1:=0;veci1(u,s1); 

       if s1<>0 then goto 1; 

        for i1:=0 to nn do a1[i1]:=c[i1]; 

              for i1:=0 to nn do k[i1]:=d[i1]; 

   s1:=0;   veci1(g,s1);   s2:=0;   veci1(v,s2); 

if ((s1=1) and (g[0]=1) and (s2=1) and (v[0]=1)) then 

begin 

  s1:=0; 

   veci1(k,s1); 

  if s1<0 then begin 
  for i:=0 to nn do 

     k[i]:=abs(k[i]); 

         oduzmi(x,k,k); 

       end; 

  dokle(y,s2); 
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  dokle(k,s2); 

  assign(ff,'tajni.dat'); 

  rewrite(ff); 

 for i:=0 to s2 do 

    write(ff,k[i]); 

    reset(ff);    i:=0; 
    while not eof(ff) do 

    begin 

       read(ff,k[i]);       i:=i+1; 

       end; 

       dokle(k,s2); 

       for i:=s2 downto 0 do 

       write(k[i]);   writeln; 

  writeln('found a secret key for RSA-The inverse element for 

ECC'); 

  readln; 

     end 

  else 
  writeln('no inverse element, gcd(module,elements)<>1'); 

  readln; 

    end. 

B. The unit that serves the program above (III.A) 

The program above, together with the unit Unit22, can be 
run as a Delphi 7 console application in order to do the testing 
and present the result of the two examples on both schemes of 
a public key. 

Besides the basic operations in arithmetic of large 
numbers, the unit also contains some auxiliary functions. 

unit Unit22; 

 interface 

{  for larger numbers set larger nn, nn1 } 
const nn=100; 

const nn1=100; 

procedure saberi(x,y:array of integer;var w:array of integer); 

procedure oduzmi(x,y:array of integer;var w:array of integer); 

procedure veci1(var x:array of integer;var s:integer); 

procedure  dokle(var a:array of integer;var s1:integer); 

implementation 

procedure saberi(x,y:array of integer;var w:array of integer); 

var c1,i1,s1,s2:integer; 

begin 

s1:=0;s2:=0;veci1(x,s1);veci1(y,s2); 
if ((s1>=0) and (s2>=0)) then begin 

c1:=0; 

for i1:=0 to nn1 do begin 

  w[i1]:=(x[i1]+y[i1]+c1) mod 2; 

  if (x[i1]+y[i1]+c1)<2 then c1:=0 

                else c1:=1;end; 

  w[nn1]:=c1; end 

    else 

  if ((s1>=0) and (s2<0)) then begin 

  for i1:=0 to nn1 do y[i1]:=abs(y[i1]); 

    oduzmi(x,y,w);end 
        else 

       if ((s1<0) and (s2>=0)) then begin 

        for i1:=0 to nn1 do x[i1]:=abs(x[i1]); 

         oduzmi(y,x,w);end 

            else if ((s1<0) and (s2<0)) then begin 

          for i1:=0 to nn1 do x[i1]:=abs(x[i1]); 

            for i1:=0 to nn1 do y[i1]:=abs(y[i1]); 

            saberi(x,y,w); 

            for i1:=0 to nn1 do w[i1]:=-w[i1]; end; end; 
  procedure oduzmi(x,y:array of integer;var w:array of 

integer); 

  label 1; 

 var i1,c1,k,s1,s2:integer; 

 begin 

 s1:=0;s2:=0;veci1(x,s1);veci1(y,s2); 

  if ((s1>=0) and (s2>=0)) then begin 

  k:=0; 

1: c1:=0; 

 for i1:=0 to nn1 do begin 

  w[i1]:=abs(x[i1]-y[i1]+c1) mod 2; 

 if (x[i1]-y[i1]+c1 )>=0 then c1:=0 
            else c1:=-1; end; 

    if k=1 then 

   c1:=0; 

   if c1=-1 then begin 

    for i1:=0 to nn do x[i1]:=0; 

    for i1:=0 to nn do y[i1]:=w[i1]; 

     c1:=0;k:=1;goto 1;end; 

    if k=1 then 

    for i1:=0 to nn do w[i1]:=-w[i1];end 

    else if ((s1>=0) and (s2<0)) then begin 

       for i1:=0 to nn do y[i1]:=abs(y[i1]); saberi(x,y,w); 
          end 

        else if ((s1<0) and (s2>=0)) then begin 

            for i1:=0 to nn1 do x[i1]:=abs(x[i1]);saberi(x,y,w); 

           for i1:=0 to nn1 do w[i1]:=-w[i1];end 

              else if ((s1<0) and (s2<0)) then begin 

                 for i1:=0 to nn1 do x[i1]:=abs(x[i1]); 

                    for i1:=0 to nn1 do y[i1]:=abs(y[i1]); 

                    oduzmi(y,x,w); end; end; 

  procedure veci1(var x:array of integer;var s:integer); 

        var i1:integer; 

        begin 

        s:=0; 
        for i1:=0 to nn do s:=s+x[i1]; end; 

procedure  dokle(var a:array of integer;var s1:integer); 

begin 

s1:=nn; 

while a[s1]=0 do s1:=s1-1; 

end; 

 procedure koji(var u,v:array of integer;var l:integer); 

 var i:integer; 

 begin 

 l:=0; i:=nn; 

  while u[i]=v[i] do i:=i-1; 
   if i<0 then l:=0 

   else 

   if u[i]>v[i] then l:=1 

   else l:=-1; 

   end; 
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end. 

IV. EXAMPLES 

Here, we will give two examples to illustrate the use of 
inverse element in RSA and ECC. 

A. RSA example 

In [2] we can find solutions of the equation ed 1 (mod ) 

for fixed values e, and . More precisely, for the public key e, 

and a module  we can calculate the secret key d, element 
required for RSA scheme. 

If -module: 

10000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000000

000000010000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000000

000000000100000000000000000000000000100000000000000000000000000

000000000000000000000000100000000000000000000000000000000000000

110100011110100000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000000

000000000000010000000000000000000000000010000000000000000000000

000000000000000000000000000010000000000000000000000000000000000

000011010001111010000000000000000000000000100000000000000000000

000000010000000000000000000000100000000000000000000000000100000

000000110100011110000000000000000110100011110000000000000000000

000000000000000000000111100000100000000000000000000000000000101

0100001110100111000. 

e-public key: 111 

Then d-RSA secret key: 

10010010010010010010010010010010010010010010010010010010010

010010010010010010010010010010010010010010010010010010010010010

010010010010010010010010010010010010010010010010010010010010010

010010010010010010010010010010010010010010010010010010010010010

010010100100100100100100100100100100100100100100100100100100100

100100100100100100100100100100100100100100100100100100100100100

100100101001001001001001001001001001101101101101101101101101101

101101101101101101101110010010010010010010010010010010010010011

001110010000100100100100100100100100100100100100100100100100100

100100100100100100100100100100100100100100100100100100100100100

100100100100110110110110110110110110111001001001001001001001001

001001001001001001001001001011011011011011011011011011011011011

011111001011010100100100100100100100100101001001001001001001001

001001011011011011011011011100000000000000000000000000000100100

100101100000100010010010010010011001110010000000000000000000000

000000000000000000001000100101001001001001001001001001001001111

0010100010111111. 

B. ECC example 

Let p=23. Consider an elliptic curve y2 = x3 +x+4 defined 
over F23 (E(F23)) [4].  Using code in III. A we can find 
coordinates of the point R=P+Q. 

 If P(4,7) and Q(13,11), based on the relation of II. B. we 
can calculate the x coordinate of the point R. 

xr =((11-7)/(13-4))2 -4-13 (mod 23) 

Using code (III. A.) we can calculate (13-4)-1 =9-1 . 

Output on the screen: 

calculating the inverse element 

10010 

found a secret key for RSA-The inverse element for ECC. 
 

We can see that 10010 (base 2) is 18 (base 10). Indeed: 
9*18=162, 162 mod 23=1, so 9-1 =18 is the inverse element. 
For further computation, the other necessary operations are 
located in Unit22 (subtraction and addition-In Serbian 
language saberi, oduzmi) and in [2], mnozi, ostatatk ( 
multiplication, and the remainder in English) and many 
auxiliary functions, which we will show in the forthcoming 

paper. 

V. CONCLUSION 

We believe that each country must stimulate young 
people’s interest in cryptography, because we doubt that our 
secret data can be protected using someone else’s software [3]. 

Of course, it is very difficult to develop our own protection 
mechanisms, but we think it is far better to protect data using 
our own mechanisms first, and then, thus modified, leave them 
to someone else’s software, than to  allow the original data be 
protected by somebody else’s mechanisms, which is a logical 
nonsense. 

That is the reason why we always insist on more our own 
softwares and a greater interest in cryptography, which seems 
itself (in case it wasn’t brought closer to a reader) pretty 
cryptic and bouncing. So, this work is primarily addressed to 
young researches as an incentive to try to develop their own 
tools for data protection. Those tools do not have to be 
flawless, they may be far below the level of the tools found on 
the market. However, they should be good enough for the 
beginning of a hard work that would lead researches to some 
great commercial solutions.  
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