
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.3, 2013

121 | P a g e
www.ijacsa.thesai.org

Joint Operation in Public Key Cryptography

Dragan Vidakovic
1
, Olivera Nikolic, Jelena Kaljevic

1

Faculty of Business Valjevo, Singidunum

University Belgrade, Serbia

Dusko Parezanovic
2

Club of young math. and computer scientists

Infomat Ivanjica, Serbi

Abstract—We believe that there is no real data protection

without our own tools. Therefore, our permanent aim is to have

more of our own codes. In order to achieve that, it is necessary

that a lot of young researchers become interested in

cryptography. We believe that the encoding of cryptographic

algorithms is an important step in that direction, and it is the

main reason why in this paper we present a software

implementation of finding the inverse element, the operation

which is essentially related to both ECC (Elliptic Curve
Cryptography) and the RSA schemes of digital signature.

Keywords—Public-key cryptography; RSA & ECC Digital

Signature; Inverse element; Code

I. INTRODUCTION

It has already been mentioned that we believe the best
protection is achieved by developing our own software.
However, this process requires a lot of knowledge, skills,
patience and great responsibilities [7], provided that the
undisputed cryptic of cryptography itself was previously
overcome and that there are courage and willingness to enter
more deeply into the matter.

In this paper we want to show that it is possible to
implement the inverse element without any software-hardware
facilities (in the arithmetic of large numbers), which is a very
important operation in the process of realization of both
leading schemes of a public key – ECC and RSA [1] [4] [6].

II. TASK AND AIM

In the arguments for and against in a trial of strength of
ECC and RSA, the simple fact that they are performed by the
same tools made for operations with large numbers, is usually
overlooked. Mathematical bases of RSA and ECC are
completely different [1] [5], but they need the same
operations: addition, subtraction, multiplication, division,
finding the remainder, calculating d from the equation e*d ≡ 1
(mod p) for fixed values of e and p, and more joint auxiliary
operations needed for the realization of a digital signature.

When it comes to joint operations, we have opted for
finding the inverse element. Therefore, we will present a brief
review of the RSA and ECC and point out those steps in
algorithms in which it is necessary to calculate the inverse
element.

A. Algorithm Key Generation for the RSA Signature Scheme

As we can see, for the given public key e and the number
ɸ, d should be calculated from the equation in order to get e
private key – the most important element of the RSA digital
signature scheme, or, in other words, we should find the
inverse element of the element e.

Sumary: each entity creates an RSA public key and a
corresponding private key. Each entity A should do the
following [1]:

1) Generate two large distinct random primes p and q,

each roughly the same size (see x11.3.2).

2) Compute n = pq and = (p − 1)(q − 1).

3) Select a random integer e, 1 < e < such that gcd(e,

) = 1.

4) Use the extended Euclidean algorithm ([2]) to

compute the unique integer

d, 1 < d < , such that ed 1 (mod)

5) A’s public key is (n; e); A’s private key is d

As we can see for a given public key e and modulo , we
have to find inverse element d- secret key- for RSA digital
signature. So, finding the inverse element is very important
stage the RSA signature scheme.

B. The shortest of the ECC

 Efficient and secure public-key cryptosystems are
essential in today’s age of rapidly growing Internet
communications. Elliptic curve scalar multiplication in
particular, which refers to the operation of multiplying a large
integer by a point on an elliptic curve, is crucial for both data
encryption technology as well as testing the security of
cryptographic systems.[5]

In reality it’s very hard to find k (large number) that
k*P=Q where P and Q are given points on an Eliptic curve.(P,
Q are public keys, and k is private or secret key)

Practicaly we have to solve P+P and P+Q to get thrid
point R=P+P or R=P+Q.

To put it simply, in the field, say Fp , where p is prime, for
two points P(xp,yp), Q(xq,yq) on an elliptic curve, using chord-
tangent-rule, to give the third elipting curve point R(xr,yr).

Coordinates of the third point are calculated by the
following formulas:

xr = ((yq – yp)/ (xq – xp))
 2 –xp - xq ,

yr =((yq – yp)/ (xq – xp))(xp- xr)-yp

It is obvious that it is very important to find (xq – xp)
-1

III. CODE FOR FINDING THE INVERSE ELEMENT

In the previous paragraph, we pointed out the place and
significance of finding the inverse element of a fixed element
in the field Fp, where p is a prime. Since our goals are to avoid
the general story and to develop the software that can operate
in real conditions (with large numbers), in this paragraph we
will present the code by which we can solve the equation ed ≡

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.3, 2013

122 | P a g e
www.ijacsa.thesai.org

1 (mod ɸ) for (arbitrarily) large fixed number ɸ and the fixed
e.

A. The Code for Calculating the Inverse Element – Delphi 7

Console Application

In order to calculate the inverse element, it is necessary to
encode Binary extended gcd algorithm. For the fixed inputs e
and ɸ, wwe will get the output d, and this will be the solution
of the modular equation above.

Program for_inverse;

{$APPTYPE CONSOLE}

uses SysUtils, Unit22;

label 1,2;

var a,b,c,g,u,v,a1,b1,d:array[0..nn1] of integer;

gcd,w:array[0..nn] of integer;

i,s1,s2,i1,p1,c1:integer;

ff:file of integer;

 x,y,k:array[0..nn] of integer;

k1:longint;

begin
s1:=0; s2:=0;

writeln('calculating the inverse element');

 assign(ff,'brojfi.dat'); rewrite(ff);

 {Example module (10111)-binary, (23)-decimal}

 x[0]:=1;x[1]:=1;x[2]:=1;x[3]:=0;x[4]:=1;

write(ff,x[0]);write(ff,x[1]);write(ff,x[2]);write(ff,x[3]);write(f

f,x[4]);

reset(ff); i:=0;

while not eof(ff) do

begin

read(ff,x[i]); i:=i+1;

end;
assign(ff,'javni.dat'); rewrite(ff);

{Example elements (100)-binary, 4 decimal}

y[0]:=0;y[1]:=0;y[2]:=1;y[3]:=0;

write(ff,y[0]);write(ff,y[1]);write(ff,y[2]);write(ff,y[3]);

reset(ff); i:=0;

while not eof(ff) do

begin

read(ff,y[i]); i:=i+1;

end;

s1:=0; s1:=0;s2:=0;

 for i:=0 to nn do
 begin

 g[i]:=0;u[i]:=0;v[i]:=0;a[i]:=0;b[i]:=0;c[i]:=0;d[i]:=0;w[i]:=0;

 end;

 g[0]:=1;p1:=0;

 while ((x[0]=0) and (y[0]=0)) do

 begin

 for i:=1 to nn do begin

 x[i-1]:=x[i]; y[i-1]:=y[i];end;

 for i:=nn-1 downto 0 do g[i+1]:=g[i];

 g[p1]:=0;p1:=p1+1; end;

 for i:=0 to nn do begin
 u[i]:=x[i]; v[i]:=y[i];end;

 a[0]:=1;b[0]:=0;c[0]:=0;d[0]:=1;

 1: while u[0]=0 do

 begin

 for i:=1 to nn do u[i-1]:=u[i];

 if ((a[0]=0) and (b[0]=0)) then begin

 for i:=1 to nn do a[i-1]:=a[i];

 for i:=1 to nn do b[i-1]:=b[i]; end

 else begin
 saberi(a,y,w);

 for i:=1 to nn do w[i-1]:=w[i];

 for i:=0 to nn do a[i]:=w[i];

 oduzmi(b,x,w);

 for i:=1 to nn do w[i-1]:=w[i];

 for i:=0 to nn do b[i]:=w[i]; end;end;

 while v[0]=0 do begin

 for i:=1 to nn do v[i-1]:=v[i];

 if ((c[0]=0) and (d[0]=0)) then begin

 for i:=1 to nn do c[i-1]:=c[i];

 for i:=1 to nn do d[i-1]:=d[i]; end

 else begin
 saberi(c,y,w);

 for i:=1 to nn do w[i-1]:=w[i];

 for i:=0 to nn do c[i]:=w[i];

 oduzmi(d,x,w);

 for i:=1 to nn do w[i-1]:=w[i];

 for i:=0 to nn do d[i]:=w[i]; end; veci1(v,s1);

end;

 i:=nn;veci1(u,s1);

 while u[i]=v[i] do i:=i-1;

 if i<0 then i:=i+1;

 if u[i]>=v[i] then begin
 oduzmi(u,v,w);

 for i1:=0 to nn do u[i1]:=w[i1];

 oduzmi(a,c,w);

 for i1:=0 to nn do a[i1]:=w[i1];

 oduzmi(b,d,w);

 for i1:=0 to nn do b[i1]:=w[i1]; end

 else begin

 oduzmi(v,u,w);

 for i1:=0 to nn do v[i1]:=w[i1];

 oduzmi(c,a,w);

 for i1:=0 to nn do c[i1]:=w[i1];

 oduzmi(d,b,w);
 for i1:=0 to nn do d[i1]:=w[i1]; end;

 s1:=0;veci1(u,s1);

 if s1<>0 then goto 1;

 for i1:=0 to nn do a1[i1]:=c[i1];

 for i1:=0 to nn do k[i1]:=d[i1];

 s1:=0; veci1(g,s1); s2:=0; veci1(v,s2);

if ((s1=1) and (g[0]=1) and (s2=1) and (v[0]=1)) then

begin

 s1:=0;

 veci1(k,s1);

 if s1<0 then begin
 for i:=0 to nn do

 k[i]:=abs(k[i]);

 oduzmi(x,k,k);

 end;

 dokle(y,s2);

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.3, 2013

123 | P a g e
www.ijacsa.thesai.org

 dokle(k,s2);

 assign(ff,'tajni.dat');

 rewrite(ff);

 for i:=0 to s2 do

 write(ff,k[i]);

 reset(ff); i:=0;
 while not eof(ff) do

 begin

 read(ff,k[i]); i:=i+1;

 end;

 dokle(k,s2);

 for i:=s2 downto 0 do

 write(k[i]); writeln;

 writeln('found a secret key for RSA-The inverse element for

ECC');

 readln;

 end

 else
 writeln('no inverse element, gcd(module,elements)<>1');

 readln;

 end.

B. The unit that serves the program above (III.A)

The program above, together with the unit Unit22, can be
run as a Delphi 7 console application in order to do the testing
and present the result of the two examples on both schemes of
a public key.

Besides the basic operations in arithmetic of large
numbers, the unit also contains some auxiliary functions.

unit Unit22;

 interface

{ for larger numbers set larger nn, nn1 }
const nn=100;

const nn1=100;

procedure saberi(x,y:array of integer;var w:array of integer);

procedure oduzmi(x,y:array of integer;var w:array of integer);

procedure veci1(var x:array of integer;var s:integer);

procedure dokle(var a:array of integer;var s1:integer);

implementation

procedure saberi(x,y:array of integer;var w:array of integer);

var c1,i1,s1,s2:integer;

begin

s1:=0;s2:=0;veci1(x,s1);veci1(y,s2);
if ((s1>=0) and (s2>=0)) then begin

c1:=0;

for i1:=0 to nn1 do begin

 w[i1]:=(x[i1]+y[i1]+c1) mod 2;

 if (x[i1]+y[i1]+c1)<2 then c1:=0

 else c1:=1;end;

 w[nn1]:=c1; end

 else

 if ((s1>=0) and (s2<0)) then begin

 for i1:=0 to nn1 do y[i1]:=abs(y[i1]);

 oduzmi(x,y,w);end
 else

 if ((s1<0) and (s2>=0)) then begin

 for i1:=0 to nn1 do x[i1]:=abs(x[i1]);

 oduzmi(y,x,w);end

 else if ((s1<0) and (s2<0)) then begin

 for i1:=0 to nn1 do x[i1]:=abs(x[i1]);

 for i1:=0 to nn1 do y[i1]:=abs(y[i1]);

 saberi(x,y,w);

 for i1:=0 to nn1 do w[i1]:=-w[i1]; end; end;
 procedure oduzmi(x,y:array of integer;var w:array of

integer);

 label 1;

 var i1,c1,k,s1,s2:integer;

 begin

 s1:=0;s2:=0;veci1(x,s1);veci1(y,s2);

 if ((s1>=0) and (s2>=0)) then begin

 k:=0;

1: c1:=0;

 for i1:=0 to nn1 do begin

 w[i1]:=abs(x[i1]-y[i1]+c1) mod 2;

 if (x[i1]-y[i1]+c1)>=0 then c1:=0
 else c1:=-1; end;

 if k=1 then

 c1:=0;

 if c1=-1 then begin

 for i1:=0 to nn do x[i1]:=0;

 for i1:=0 to nn do y[i1]:=w[i1];

 c1:=0;k:=1;goto 1;end;

 if k=1 then

 for i1:=0 to nn do w[i1]:=-w[i1];end

 else if ((s1>=0) and (s2<0)) then begin

 for i1:=0 to nn do y[i1]:=abs(y[i1]); saberi(x,y,w);
 end

 else if ((s1<0) and (s2>=0)) then begin

 for i1:=0 to nn1 do x[i1]:=abs(x[i1]);saberi(x,y,w);

 for i1:=0 to nn1 do w[i1]:=-w[i1];end

 else if ((s1<0) and (s2<0)) then begin

 for i1:=0 to nn1 do x[i1]:=abs(x[i1]);

 for i1:=0 to nn1 do y[i1]:=abs(y[i1]);

 oduzmi(y,x,w); end; end;

 procedure veci1(var x:array of integer;var s:integer);

 var i1:integer;

 begin

 s:=0;
 for i1:=0 to nn do s:=s+x[i1]; end;

procedure dokle(var a:array of integer;var s1:integer);

begin

s1:=nn;

while a[s1]=0 do s1:=s1-1;

end;

 procedure koji(var u,v:array of integer;var l:integer);

 var i:integer;

 begin

 l:=0; i:=nn;

 while u[i]=v[i] do i:=i-1;
 if i<0 then l:=0

 else

 if u[i]>v[i] then l:=1

 else l:=-1;

 end;

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.3, 2013

124 | P a g e
www.ijacsa.thesai.org

end.

IV. EXAMPLES

Here, we will give two examples to illustrate the use of
inverse element in RSA and ECC.

A. RSA example

In [2] we can find solutions of the equation ed 1 (mod)

for fixed values e, and . More precisely, for the public key e,

and a module we can calculate the secret key d, element
required for RSA scheme.

If -module:

100

000

000

000

00000001000

000

000000000100000000000000000000000000100000000000000000000000000

000000000000000000000000100000000000000000000000000000000000000

110100011110100

000

000000000000010000000000000000000000000010000000000000000000000

000000000000000000000000000010000000000000000000000000000000000

000011010001111010000000000000000000000000100000000000000000000

000000010000000000000000000000100000000000000000000000000100000

000000110100011110000000000000000110100011110000000000000000000

000000000000000000000111100000100000000000000000000000000000101

0100001110100111000.

e-public key: 111

Then d-RSA secret key:

10010010010010010010010010010010010010010010010010010010010

010

010

010

010010100100100100100100100100100100100100100100100100100100100

100

100100101001001001001001001001001001101101101101101101101101101

101101101101101101101110010010010010010010010010010010010010011

001110010000100100100100100100100100100100100100100100100100100

100

100100100100110110110110110110110110111001001001001001001001001

001001001001001001001001001011011011011011011011011011011011011

011111001011010100100100100100100100100101001001001001001001001

001001011011011011011011011100000000000000000000000000000100100

100101100000100010010010010010011001110010000000000000000000000

000000000000000000001000100101001001001001001001001001001001111

0010100010111111.

B. ECC example

Let p=23. Consider an elliptic curve y2 = x3 +x+4 defined
over F23 (E(F23)) [4]. Using code in III. A we can find
coordinates of the point R=P+Q.

 If P(4,7) and Q(13,11), based on the relation of II. B. we
can calculate the x coordinate of the point R.

xr =((11-7)/(13-4))2 -4-13 (mod 23)

Using code (III. A.) we can calculate (13-4)-1 =9-1 .

Output on the screen:

calculating the inverse element

10010

found a secret key for RSA-The inverse element for ECC.

We can see that 10010 (base 2) is 18 (base 10). Indeed:
9*18=162, 162 mod 23=1, so 9-1 =18 is the inverse element.
For further computation, the other necessary operations are
located in Unit22 (subtraction and addition-In Serbian
language saberi, oduzmi) and in [2], mnozi, ostatatk (
multiplication, and the remainder in English) and many
auxiliary functions, which we will show in the forthcoming

paper.

V. CONCLUSION

We believe that each country must stimulate young
people’s interest in cryptography, because we doubt that our
secret data can be protected using someone else’s software [3].

Of course, it is very difficult to develop our own protection
mechanisms, but we think it is far better to protect data using
our own mechanisms first, and then, thus modified, leave them
to someone else’s software, than to allow the original data be
protected by somebody else’s mechanisms, which is a logical
nonsense.

That is the reason why we always insist on more our own
softwares and a greater interest in cryptography, which seems
itself (in case it wasn’t brought closer to a reader) pretty
cryptic and bouncing. So, this work is primarily addressed to
young researches as an incentive to try to develop their own
tools for data protection. Those tools do not have to be
flawless, they may be far below the level of the tools found on
the market. However, they should be good enough for the
beginning of a hard work that would lead researches to some
great commercial solutions.

REFERENCES

[1] A. Menezes, P.C. van Oorschot, S. Vanstone, “Handbook of Applied
Cryptography", CRC Press, New York, 1997.

[2] D. Vidaković, “Analysis and implementation of asymmetric algorithms

for data secrecy and integrity protection”, Master Thesis (mentor Jovan
Golic), Faculty of Electrical Engineering, Belgrade,Serbia, 1999.

[3] D. Vidakovic, D. Simic, “A Novel Approach To Building Secure

Systems“, ARES 2007, Vienna, Austria, pp 1074-1084.

[4] Don Johnson, Alfred Menezes and Scott Vanstone, “The Elliptic Curve

Digital Signature Algorithm (ECDSA)”, Certicom Research, Canada,
Dept. of Combinatorics & Optimization, University of Waterloo, Canada

[5] N. Koblitz, “Elliptic Curve Cryptosystems”, Mathematics of
Computations, 48, pp. 203-209, 1987.

[6] A. Menezes, “Elliptic curve public key cryptosystems”, Kluwer
Academic Publishers, 1993.

[7] D.Vidakovic, O. Nikolic, D. Parezanovic, “Acceleration Detection of
Large (Probably) Prime Numbers”, International Journal of UbiComp

(IJU), Vol.4, No.1, January 2013

