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Abstract—In this paper, we introduce the Navier-Stokes
equations with a new boundary condition. In this context, we
show the existence and uniqueness of the solution of the weak
formulation associated with the proposed problem. To solve this
latter, we use the discretization by mixed finite element method.
In addition, two types of a posteriori error indicator are
introduced and are shown to give global error estimates that are
equivalent to the true error. In order to evaluate the performance
of the method, the numerical results are compared with some
previously published works and with others coming from
commercial code like ADINA system.
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. INTRODUCTION

This paper describes a numerical solutions of Navier-stoks
equations with a new boundary condition generalizes the will
known basis conditions, especially the Dirichlet and the
Neumann conditions. So, we prove that the weak formulation
of the proposed modelling has an unique solution. To calculate
this latter, we use the discretization by mixed finite element
method. Moreover, we propose two types of a posteriori error
indicator which are shown to give global error estimates that
are equivalent to the true error. To compare our solution with
the some previously ones, as ADINA system, some numerical
results are shown. This method is structured as a standalone
package for studying discretization algorithms for PDEs and
for exploring and developing algorithms in numerical linear
and nonlinear algebra for solving the associated discrete
systems. It can also be used as a pedagogical tool for studying
these issues, or more elementary ones such as the properties of
Krylov subspace iterative methods [15].

The latter two PDEs constitute the basis for computational
modeling of the flow of an incompressible Newtonian fluid.
For the equations, we offer a choice of two-dimensional
domains on which the problem can be posed, along with
boundary conditions and other aspects of the problem, and a
choice of finite element discretizations on a quadrilateral
element mesh.

Whereas the discrete Navier-Stokes equations require a
method such as the generalized minimum residual method
(GMRES), which is designed for non symmetric systems [15].
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The key for fast solution lies in the choice of effective
preconditioning strategies. The package offers a range of
options, including algebraic methods such as incomplete LU
factorizations, as well as more sophisticated and state-of-the-
art multigrid methods designed to take advantage of the
structure of the discrete linearized Navier-Stokes equations. In
addition, there is a choice of iterative strategies, Picard
iteration or Newton’s method, for solving the nonlinear
algebraic systems arising from the latter problem.

A posteriori error analysis in problems related to fluid
dynamics is a subject that has received a lot of attention during
the last decades. In the conforming case there are several ways
to define error estimators by using the residual equation. in
particular, for the Stokes problem, M. Ainsworth, J. Oden
[10], C.Carstensen, S.A. Funken [12], D.Kay, D.Silvester [13]
and R.Verfurth [14], introduced several error estimators and
provided that that they are equivalent to the energy norm of
the errors. Other works for the stationary Navier-Stokes
problem have been introduced in [5, 8, 15, 16].

The plan of the paper is as follows. Section Il presents the
model problem used in this paper. The weak formulation is
presented in section I11. In section IV, we show the existence
and uniqueness of the solution.

The discretization by mixed finite elements is described in
section V. Section VI introduced two types of a posteriori
error bounds of the computed solution. Numerical experiments
carried out within the framework of this publication and their
comparisons with other results are shown in Section VII.

Il. GOVERNING EQUATIONS
We will consider the model of viscous incompressible flow

in an idealized, bounded, connected domain in IR?.

—WAi+0Vi+Vp=f in Q, 1)
vi=0in Q, )
A (pl —wWi)=0"A—-g on I. (3)

We also assume that(2 has a polygonal boundary
[''=0Q, so N that is the usual outward-pointing normal.
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The vector field U is the velocity of the flow and the scalar
variable p represents the pressure.

Our mathematical model is the Navier-stoks system with a

new boundary condition (3) noted C,, .. where v =0 a
given constant is called the kinematic viscosity, V is the
gradient, V. is the divergence and Vz is the Laplacien

operator, f e L?(€2), §eL’(I")and A is a real matrix
defined as

_lalxy) c(xy)
A(X,y)—[c(x’y) b(x,y)} forall (x,y)el' ()

e There are two strictly positive constants «, and f,, such
that:
a, < XTAKX V)X < B, (5)
for all (x,y) e T"and
X eS = {x < |R2/HxH2 :1}_Wherea,b and c are
the function continuous defined onT".

I11. THE WEAK FORMULATION
We define the following spaces:

hl(Q):{u:QelR/u;Zz;gl;eLZ(Q)} (6)
H'@ =@] )
L@=lge @)/ [ a=0} (8)
H,(Q) = {Ve H Q) /V.i=0inT} ©)
Vi (@ ={VeH!, (Q)/Vi.=0ina (10)

The standard weak formulation of the Navier-Stokes flow
problem (1) - (2)-(3) is the following:

_ 1 2
Find UeH (Q) and pel (Q) such that

o [ vVd:vV+[ (VAN +[d AV [ pvY

. - (11)
= _[Q fv+ L9V,
° _,L qgVv.ids =0,
for all (v,q) e H; , () x L5 ().
Let the bilinear forms
AHE Q) xH(Q)—IR; B:H: () xL5(Q)— IR
d:L2(Q)x12(Q) — IR.
A, V) =v IQ ViU IV + jruT AV (12)
B(U,q) = —JQ gv.u (13)
d(p,a)= [ pdg (14)

And the tri-linear forms
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C:H;oxHyoxH} > IR, DiH;oxH: xH}, —IR

C(i,v,7) = jQ (GVV)Z (15)
D(u,V,7) = A(l,V) + C(l,V, 7) (16)

Given the functional L : LE(Q) — IR
L(V) = jr g.v+ jQ fv 17

The underlying weak formulation (11) may be restated as:
find (U, p) € H, ,(€2) x L (€2) such that
AT, V) +C(U,0,v)+B(V,q) = L(V)
{B(ﬁ ,0)=0
forall (V,q)e H; ,(Q)x La ().
In the sequel we can assume that g = 0.

(18)

IVV. THE EXISTENCE AND UNIQUENESS OF THE SOLUTION
In this section we will study the existence and uniqueness
of the solution of problem (18), for that we need the following
results.
Theorem 4.1. There are two strictly positive constants ¢, and
C, such that:
ClH\7H1,Q < HVHJ,Q < CZH\7H1,Q forallve Hrlm,o (Q) (19)

with
1
W, o = [ Vo Vi 77 A0)2 (20)
2 2 i
7,00 = (915 @
Proof. 1) The mapping y,:H"(Q) — L*(I") is
continuous

(See [6] theorem 1, 2), then there exists ¢ =0 such that:
¥l <], forall v e H' (). Using (5) gives,
a|V]o,. < [VT AV < B9 .. (22)

then v, , <c,|V||,,, forallv e H* (<),
1

withc, = (ﬁ’lc2 + v)E :
On the other hand. According to 5.55 in [1], there exists a
constant o > O 'such that||\7||(2)‘Q < ,o(||V\7||;Q + ||\7||§F)

Using (22), gives
Vil ., <[V, forall v e H (),

2
with ¢, :££+£J and C = max{a,;v}.
vy, Vv

Finally, ¢,v], , <[], , <c,[v],,, forall Ve H'(Q).
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This result allows us to prove that (H ;0 (Q),” ||J ,)isa

Hilbert space which is obliged condition for to obtain the
existence and uniqueness of the solution.

Theorem 4.2 (Hpo(Q).] |, ) isareal Hilbert space

GO
closed in Hl(Q)and ||||1Q

norms, then (H _, ().]| |, o

norms.
Theorem 4.3

1) AT, V) < dl, .1, ,, (3)
for all (U, V) e HE , (Q)x Hi (Q)
2) A is H; 1 () -elliptic for thenorm|. Hm and

Proof. )yis a real space and H (Q)Iis

and ||||JQ are equivalent

) is a real Hilbert space for two

AW, V) =V, (24)
for all VeH,,(Q).
Proof: it is easy.
Theorem 4.4
_ 2 =
1 8@, 0)= 2l alv], o @)

forall (v,q)eH,,(Q)xL;(Q)
2) The bilinear form b is satisfies the inf-sup: There exists a
constant 4z > O such that

sup B(_v,q) > B|dl,, forall qe L;(2) (26)
verto@ [V, '
Proof.
1) Let (V,q)eH;,(Q)xL5(<2), We have
B(V,q)S O,QHV'VHO,Q

=2l V9],

2 =
<2l ol o

2) Let g e L2 (Q2), we have
BYW.D > gal,., seelsD).

sup
Vi

VeHg(Q)

since
HE Q) ={VeH(Q)/V=0inT | < H(Q)

and V|, , = V], forall vV e Hy ()
sup B(V,.q) o sup B(V,q)
VeH} o (Q) ”\7”1,9 VeH3(Q) ”\7“1,9
_ sup BO.@
VeHi(Q) |V|1’Q
= ﬂ'”q“o,sz'
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Using (19) gives
B v3 1
sup v, > g, with g = s
VeHq o(Q) ” ”J Ko Cz

Theorem 4.5
1) There exists a constant m = 0 such that

C(a,v,z)<mld], ,[v], . 2] 27)

for all (ﬂ v )e ano x Hrl]’O x Hrl1,o_
2) C(4,v,Z)=-C(u,Z,v) (28)
for all (U,V,Z) eV}, xVi xV2i,.
3) C((v,G,0)=0 (29)
S

J.Q

4)  DW,v,V)=AW,v)=|v[;,
5, — U weaklyinV, ,(€2) (as m — o) imply
that D(d,,,d,,,vV) — D(d,d,v) (31)
Proof
1) LetZ,u,ve
c(@,v,z

(30)

H, o (), we have

)<m HuH (see in[6])

alV,alZlq

= a9

. ol

2) Let Z,U,V eV, ,(€2), we have

By Green formula, We have
C(z,a,v)+C(Z,v,q) I (z.ﬁ)(U.V)—IQdiv Z.(0.V)
Since ZeV,,(Q2) thenZ.i=0and divZ =0,
finally C(zZ,d,v)=-C(Z,v,0)
3) It’s easy, just takeV = U in (28).
4) It’ suffices to apply (29).
5) The same proof of V.Girault and P.A. Raviart in [6] page
115.

According the theorems 1.2 and 1.4, chapter IV in [6], the
results (18)-(30) ensure the existence at least one pair

(@, p)e H,(Q) x L2 (<) satisfies (18).

We define
N= sup — C(LE,V,ZZ (32)
avzerta [, oV, o120, 0

_. f
[7], - sop o @

R
Then a well-know (sufficient) condltlon for uniqueness is
il <L (it

= N

suffices to apply theorems 1.3 and 1.4 chapter 1V in [6]).
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Theorem 4.6. Assume that v and f ¢ |2 (©) satisfy the
following condition

=0 _
IREIE Sl forallv < L, (©) (34)
Forsome fixed number & <[0,1].
Then there exists an unique (4, p)e HZ,(Q)x L2(€2)
satisfies (18), and holds

4 )
o, <2 )

Proof. The some proof of theorem 2.4 chapter 1V in [6].

V. MiIXED FINITE ELEMENT APPROXIMATION

In this section we assume that f,a, bandc are the
polynomials.

LetT, ;h = 0, be a family of rectangulations of 2. For
any T eT,, e, Is Of rectangles sharing at least one edge
with element T, @, is the set of rectangles sharing at least one
vertex with T. Also, for an element edge E, ), denotes the
union of rectangles sharing E, while &, is the set of rectangles
sharing at least one vertex whit E.

Next, T is the set of the four edges of T we denote by
g(T)and N, the set of its edges and vertices, respectively.

We let &, =\ &(T) denotes the set of all edges
split into interior and boundary edges.

Eh =& Yéhr
Where Eha = {E eg,Ec Q}
g ={Eeg, :E coQ}
We denote by h, the diameter of a simplex, by h, the
diameter of a face E of T, and we set h = max . {h, }

A discrete weak formulation is defined using finite

dimensional spaces X} — Hl,(Q) and M < L3(Q)
The discrete version of (15) is:

find G, € X} and p, € M" such that:
AT, Y, )+C(G,,,.,v,)+B(,, p,)= L(¥,)
B(,, p,)=0

Foralll, € X; andg, e M".

We define the appropriate bases for the finite element
spaces, leading to non linear system of algebraic equations.
Linearization of this system using Newton iteration gives the
finite dimensional System:
find o, € X} and &, € M " such that :

(36)
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vaaﬁh LV, +jagahT AV, +C(ot, G, Y, )
+C(a,,&u,,9, ) +B(V,,d,)=R, (V,) (37)
B(thqh)zrk(qh)
Forallli, e X;and g, e M".

Here, R, (V,) and r,(q,) are the non linear residuals

associated with the discrete formulations (36). To define the
corresponding linear algebra problem, we use a set of vector-

valued basis functions {@, }izl,...n So that

U, =D U;@;; S, = > AUP,;. (38)
i=1 i=1
We introduce a set of pressure basis functions {l//k }k_l n
..,
and set
Pn = Z P¥i; By, = ZApka' (39)
k=1 k=1

Where N, and n,are the numbers of velocity and pressure

basis functions, respectively.
We find that the discrete formulation (37) can be expressed as
a system of linear equations

A +N+W By (AU (f (40)
B, 0 \ AP 0)
The system is referred to as the discrete Newton problem.

The matrix A, is the vector Laplacian matrix and B, is the
divergence matrix

A :[ai,j];ai,j :VJ-QV@ :V(Bj "‘J-r@iTA@
B, :[bk,j];bk,j :_J‘Ql/lkv-(ﬁj (42)

The vector-convection matrix N and the Newton derivative
matrix W are given by

N :[ni,j]; n ;= .[Q(ﬁh'véi)éj (43)
W =Iw 15 W, = [ (#-V,), (44)
Fori;j=1,..,n,andk =1,..,n_.
The right-hand side vectors in (40) are

(41)

f=[f]; f=[ .o+ da, (45)
fori=1,...,n

e My,

For Picard iteration, we give the discrete problem

T
AO+N BO AU _ f . (46)
B, 0 AP 0
VI. APOSTERIORI ERROR ESTIMATOR

In this section we propose two types of a posteriori error
indicator, a residual error estimator and local Poisson problem
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estimator, which are shown to give global error estimates that
are equivalent to the true error.
A. A Residual Error Estimator

The bubble functions on the
T =(0,0) < (0,1) are defined as follows:

reference element

b- =24x(1-X)y(l-Y)
bs = 2°x(L—x)(L—y)
bﬁz,f =22y(1-y)x
bs 7 = 22 y(L— X)X
bg@f =2’y(1-y)1-x)

Here b- is the reference element bubble function, and
bﬁi F ,i=1:4 are reference edge bubble functions. For any
T T,, the element bubble functions is b, =b- o F and
the element edge bubble function isb ; = bEi 5 o Fr, where

F, the affine map form T to T.

For an interior edge E € &, ,, D is defined piecewise, so
thatb, . =bg,i=1:2 where E=T,"T,.

For a boundary edge E € &, . , by = Db, where T is the
rectangle such that E € OT .

With these bubble functions, ceruse et al ([3], lemma 4.1]
established the following lemma.

Lemma6.1. LetT be an arbitrary rectangle in T, and
For any v, eR_(T)andV. €PR_(E), the following
inequalities hold.

1
cl¥illr = [Wb7| = Culvil, “n)
0, T
‘VTbT ‘1,T = Ckml“VT Ho,T (48)
- o ~ (49)
Vel = [vep2| =cul@el,.
0.E
[Vebell,, < CehelVel, . (50)
Vebel , < Ckhj||\7E||o’E (51)

Where C,
on the element aspect ratio and the polynomial degrees Kk,
andk; .

and c, are tow constants which only depend

Here, Kjand K, are fixed and C, and C, can be

associated with generic constants ¢ and C In addition, v_

which is only defined on the edge E also denotes its natural
extension to the element T.
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From the inequalities (50) and (51), we established the
following lemma:
Lemma 6.2. Let T be a rectangle and E € 0T n g, ..

Forany Vg € B_(E), the following inequalities hold.

[Vebel, - < Cie’ Ve, (2)

Proof. Since Vb, = Oin the other three edges of rectangle
T, it can be extended to the whole of Q by setting vV_b. = 0
in O—T, then
||\7EbE||1,T = ||\7EbE||1,Q and ”VEbE ”J,T = ”vaE "J,Q
Using the inequalities (19), (50) and (51) gives
||‘7EbE ”J,T = ||\7EbE ”J,Q
= C2||\7EbE ||1,Q

=G, ”VE bE ||1,T

1
=G ( Vebe ||§T +|Vebe |12T F

e
<c,C, (he +hc )|V, e

1 1
<c,C, (D2 +1)h. 2|V,
1
< Ch?|Vel,
1
With D is the diameter of Q and © = c.C.(D? +1).

We recall some quasi-interpolation estimates in the
following lemma.

Lemma 6.3. Clement interpolation estimate: Given
Ve H'(Q),let v, e X} be the quasi-interpolant of V defined
by averaging asin [4]. Forany T T, ,

”\7 _Vh”o,T = ChT |\7|1,(7>r ! (53)
and forallE e T,

1

”\7 —\7h||0£ = ChEE|\7|1,EzE (54)
We let (G, p) denote the solution of (18) and let denote
(G,,p,) the solution of (36) with an approximation on a

rectangular subdivision T, .
Our aim is to estimate the velocity and the pressure errors
E=0-0, eH;,(Q) and ¢=p-p, € L2(Q).
The element contribution 77, 1, of the residual error estimator
1Ny is given by
2 25 |I? 2 S |12
NMrr = hT ”RT ”0’-r + ”RT ||0,T + ZEeaT hE”RE ”0,5 (55)
and the components in (55) are given by
R, = {f +wW?2d, —1,Va, —Vp, J/T
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R, ={Via, /T
B %[IVVUh - phl|]; Eeeqo
c =
g _(GhTA"'(VVUh - phl)ﬁE,T); Eesr

With the key contribution coming from the stress jump

associated with an edge E adjoining elements T and S:
H‘/Vljh - phl‘]z(VVUh = Pu1)/T —(Wa, — p,1)/S

The global residual error estimator is given by:

e = \ ZTeTh 77§,T

Our aim is bound HU —a, HX and H p—p, H with respect to

the norm ||||J for velocity ||\7||X = ||‘7||m and the quotient
norm for the pressure H pHM = H pHm_
Forany T T, ,and E € JT, we define the following two
functions:
\rvI =R.b, ; W, = R.be,
ew, =0 on OT,
oif EcOT Ne,, thenW, =0 on daw,.
oif E €T Neg,, thenw, =0in the other
edges of rectangle T.
e W, and W, can be extended towhole of
Q by setting:
W, =0 inQ-T
W, =0in Q- if EcdT Ne,,.

W, =0inQ-T if E€aT ne,,.

With these two functions we have the following lemmas:
Lemma 6.4. Forany T €T, we have:

|, fw = [ (Wa—pl): v, + [ (a.va)w, — (56)
Proof
Using (1) gives
[ f = [ —(WV2a+ava+vp)a

By applying the Green formulaand w, = OondT, we
obtain

|, fw =—[ (wa— pl)iw,
+ [ (wWa—pl): v, + [ (@Va)w,
= [ wva—pl): v, + [ (G.vo)w,.

Lemma 6.5
)if E€dTl ng,, wehave:

[ fawe =] (vVU—pI):VvT/EJrJ.wE(U.VG).VT/E (57)

e @g
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ii)if E<dT e, ., We have:
|, fwe = [ (Wa—pl): v
* J.aT (UT A Sj)‘K’E + IT (U.VU).WT
Proof.

i) The same proof of (56).
i) If E€dT neg, ., We have:

|, f = [ —(W2d +a.va + Vp)i,
= [ Wu—pl): v, — [ (Wa - pl )i,

+ [ (a.va)w,

(58)

We have
A'(pl —wWii)=G"A-—g on EcTand W, =0
in the other tree edges of rectangle T, then
[ Fawe = [ (Wa—pl): Vi
+LT(UTA—§)WE + [ (@va)w, .
We define the bilinear form
G((@, p);(v,9)) = A(U,V) +B(t,q) + B(Y, p)

We define also the following functional

0(K,%,5,9)= [ (xVx)V - [ (7.VyW
forall KcQ and X, Y,V € H; ,(Q).

Lemma 6.6. There exists C -0 and h, >0 such that

H(K,U,Uh,\_/)§ C”é”J,K”V”J,K' (59)
forallh<h,, VeH, ,(Q)and K Q.
Proof. Using (27), (32) and (35), we have that for

VeH!,(Q)
0(K,d,a,,v)= [ ([@vaW - | (@,va,)v
= [ @veW +[ (eva, W
< N, i ] 91, + €15 el AV 0

< N, 18], 91« + 115 191 )

<@s+Nel, Jlel, IV, . (60)

We have
limd, =0 in H},(Q), then there exists h, > 0 such that
h—0 s

lel, . =g —a,], . <1 forallh<h,.

Using this result and (60), we obtain
o(K,4,a,, V)= Clel, IV,

forallh<h,andv e H} ,(€2), withC =26v + N.

n
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We have
G((6,e);(7,q))= A - T,,V) + B(d - G,,q) + B, p- p,)
=G((d, p);(v,9))-G((d,, p,): (7.9))
= L(V)-C(a,0,9) - G((d,, p,): (7.9))
= L(V)-C(d,d,V)- A, V) - B, p,)
- B(dj,9).
Then

G((8,¢);(V,q))+6(Q,0,0,,v)= —C(d,,0,,V) + L(V) (61)
— A, V) - B(V, p,) — B(U,,q)
for all (V,q) € H; ,(Q) x Lj ().
We find that theerrors € e H} ,(€2) and ¢ € L3(€2)

Satisfy the non-linear equation
G((e, &); (V,q))+6(Q, 4,4, V)

S GRS RO MU S

TeT, EcoT
for all (V,q) € H; o (€2) x L5 ().
We define a pair (p,) € HE , (€Q) < L3 (€2)
to be the Ritz projection of the modified residuals
A(p,V)+d(w,q) = A(E,V) +B(E,q) + B(V,&) + B(Q,U,Gh,v)
=G((8,2):(7,0))+0(2,0.4, V) (63)
for all (V,q) e H,(Q)xL5(Q).

Lemma 6.7
A(p,V,,)=0forall v, e X} (64)
Proof: we set 4 =0and V =V, in (62), we obtain
A3,V,)= AEV,)+B(,,&) +0(Q0,0,,7,)
= A(U’Vh) - A(Uh ’Vh) + B(Vh' p) - B(Vh’ ph)
+C(u,u,v,)-C(U,,u,,v,)
= L(Vh) - L(Vh) =0.
Next, we establish the equivalence between the norms of
(E,e) e HL ()= L3(€2) and the norms of the solution

(@) e HL () < L3(2) of (63).

Theorem 6.8. Let the conditions of theorem 4.6 hold.
There exist two positive constantsk; and k,,  independent of

h, such that
A 7R R N =P

Proof. The same proof of theorem 3 in [9].
Theorem 6.9.

Forall (W,s) e H} (€2) x LZ(£2), we have
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AW, V)+d(s,q) _ 1,
sup — 2_( +s ) (65)
o g ol 2k oo

Proof. Let (W,s)eH 10 (€2) < LZ (€2), we have

AW, V)+d(s,q) - A(W,w) + d(s,0)

sup = = —=
(V.9)eHp oxL ”V"J,Q +||q||0,§z ”V”J,Q +||O||O,Q
A(W, W .
= ||ETV|| ) = ”\N"JQ (66)
1.0
We also have
A(W,V)+d(s,q) - A(W,0)+d(s,s)
sup — >
vaeriots [V, o +ldloe 1O, 6 +lsloq
d(s,s)
= ||S|| :”S”o,g' 67)
0.0

We gather (66) and (67) to get

AW, V) +d(s,q) _ 1,
sup — 2_( +ls )
oot g ol 20 0l

Theorem 6.10. For any mixed finite element
approximation (not necessarily inf-sup stable) defined on

rectangular grids T, , the residual estimator 77, satisfies:
[81l;  +llelo. < Gz
1
ot 1y | 3l 1o, )|
RT — = T 0T .

Note that the constant C in the local lower bound is
independent of the domain, and

el =v[ ve:ve+[&" Ae.

bound we let
be the clement

Proof. To establish the upper
V,q) e Hl (@) x L3 () and vV, € X}

interpolation of V. Using (63), (61) and (62), give
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Alg.V)+d(y,q) = A(p, V-V,)+d (v,0q)

= Z{ RT7V Vi)t — Z(RE’
TeT, EcdTl

<Y {[R], F-ul,, + YR
TETh TedT

+HqHU,T HRTHO,E}

1 1
— 2 E 1 =2 E
L3 m]

0T

| ZEnR

TeT, EeoT

Using (52) and (53), then gives

A(@,V) +d(y,q) < C[Z{IIVIE,T +|all; + }]2

TeTy

NI

| ZlwelR L, Rl + SRl ]

Finally, using (65) gives:
s s <C T (IR

2
T

2
0T + HRT Hi; +ZE56T hE

Ello,e

According to theorem 6.8, we have
. — 2 -
e+l <Ca T W[RL, #IRE, + Zeoelf

This establishes the upper bound.
Turning to the local lower bound. First, for the element
residual part, we have:

[ Reo = [ (F+W70, —0, VG, - Vp, )%

T E

= [ fw —[ VT, —p,1): Vil
+ [ VG, — p i, —[ (G, V)

See that W, = 0in oT |, using (56) and (57) gives:
[ Reir = [ (W& —o): Vi +6(T, 0,0, )

ool ¢
= ‘/;‘WT‘

<C'([ &,y + el I, +C[e

Since W, =0in T, then ], | o

Using (48), gives

-
J, Rt < (R} +[els )70 Re
In addition, from the inverse inequality (47)
1 2
- — 12
.L Ry Wy = Cy HRT HO,T’

2
T bT

0T

2 }
0,E

—V)e +(RT’q)T}

1 1
2 2
j [ V VhHo E]
TeTy EELT E

|
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2= 112 ) 2
Thus,  hZ[R, HO,T <C(Je’, +[el:,) (68)
Next comes the divergence part,
= ”V'Uhno,T
= ||V.(U — Uy, )”o,T

< \/E|LT - Gh |1,T

2, 2,
< 2la-al,, = 2fel,

Finally, we need to estimate the jump term. For an edge
if E<dT mg,,, We have

2 Rewe = Zj (Wi, — p,1)A.We

—f (W, — p,1): VI +Z_[r(vv t, —Vp,)-We.

i=12

Using (57) and W, =0 in dwy, gives :
ZIEﬁE.WE :-j (WE —gl): VW,

+ZIRW — 0w ,U, T, , W, )

i=12

= (V|é|1,mE + ||€||0,(uE )|\7\7E |l,a)E + |:ZI:ZHRTI HO,Ti ||V_\7E ||O,Ti

+ C||§||J g ||WE ||J No
Since W =0in dwy, then ||,
Using (50) and (51), to get

”RT ||O,T

(69)

= ﬁ|wT

1,0

EO
ZJ. R WE <C' (|e +||8“ ) hEZHREHo,E

1,0

3R], e e
; Tillor, Bl Ello,e

0,0¢

Using (68), gives
2| Re e

Using the inverse inequality (49) and thus using (70) gives

I
<c(el’  +|? 2hE2||RE||QE (70)

J,wg 0,

< C(els..,, +lels (71

— 2
e [Re i

0E OwE

Also need to show that (70) holds for boundary edges.
Foran E € 0T n g, -, We have

J. Re e = [ [ay A+ v, — p,h)i — g]w,

= [ @ A-g)We +[_(oVa, - p, 1)),

= [ (@ A= g + [ (WG, - p,1): Vi

+L((VVZUh — V) e
Using (58), (59) and (4), gives
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|, Rewe =—[ (Ve —al)): v — [ &7 A
+ [ Ry.we —o(T, 4,0, We)
< (Vlel,; + el IVel,+ + BulElly o Welly o
+C e, - e ll, ¢ +[Re |, el -

= C(||é||J,T + ”g”o,'r )”WE ”J T + ”ﬁT ”0,1— ”WE ||0,T

Using (50) and (52) gives

r 1
J.Re-wte =, (el , +lells 07 e Re),

L
+[Rell,; nE[Re |,
Using (69) gives

o1
J.Rewe =c (e}, el )2 he|Re], . @2

Using (49), then
1|? B
J. Rewe =||Reb2| = c”RE”;E,

0.E

and using (71), gives
|2 .
he [Rell . < (el +lelZ,) 73)
Finally, combining (68), (69), (71) and (73) establishes the

local lower bound.

B. The Local Poisson Problem Estimator.
The local Poisson problem estimator defined as:

M = /277;;
TeTy

2 _ 2 2
Mer = HeP'T HJ,T +H8PvT HO,T (74)
Let
e V, ={VeHT):V.Ai=0 ondT naQ}
o A (s V) =v| Ve, :VV+][ & AV
€, €V, Satisfies the uncoupled Poisson problems

AF(éP,T7\7) :(§T1\7)T - Z(F_éE’v)E (79)

Eece(T)
forany v eV;.
And &p =V, /T, (76)
Theorem 6.11. 77, is equivalentto 77, estimator:

Ctpr <1ry <C1jpz.
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Proof. For the upper bound, we first let W, = IinT (b, is

an element interior bubble).
From (75),

(Rr W, ), =v(V&,sr, Vil ),
= V‘ép'T ‘l,T |WT |1,T

Using (48) we get

2

1
Re ), <o, (e, +ees ) 0D

In addition, from the inverse inequalities (47),
HﬁT HZ < C.(R, ,w, ), Andusing (77), to get
oT
21l = 2 . 2 2
IR, =clleerli, +lendli, ) 08

Next, we let W, = ﬁEbE (bg is an edge bubble function).
If EcoT N Enr using (75), (78), (50) and (51) give
(ﬁE’WE)E = AT (ép,T’WE)T + (ﬁT ’WE)T

= ”épT ||J T ”WE ”J T + ”ﬁT ”0'T ”wE ||0,T

1
<cn!Rel,, (feesll, + e, )
if E€dl Mg g,
See that the matrix A defined justin I', then we can posed

A=0inQ-T.
Using (75), (50), (51) and (78) give

(ﬁE We)eg =—v(VEp, VW) + (ﬁT yWe )+

< V|éPvT |1,T |WE |1,T + HﬁT HO,T ||WE ||O,T

1
7% — _ 2 2 2
< ChE RE Ho E ”eP’T ||J,T + ”gP’T ||0,T

Finally,forany T €T, and any E € 0T, we have

1
— 2 2 >
Rell,. (s, +leerls, )
Ello.e PTIyT PTlloT

(ﬁE’WE)E = Chl;E

From this result and the inverse inequalities (49), give

nelRe |, <cllenr ], +leer, ) (79)
We have also ”RT ”o,T = ”V'Uhno,T - ||8P:T ”o,T ’
then
_ 2 2
Relly <([Eerll, +leorlf, ) o0

Combining (78), (79) and (80), establishes the upper bound in
the equivalence relation.
For the lower, we need to use (65):
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1
2 2 \5
= 2
e r (”eva ||J T Epr oT

<(Jeos,, +leerls, )
2 A (Ep1,V)+d(gp1,Q)

sup o
191 +lallox

(V.,0)eVr xL3(T)
Using (75) and (76) give
(RT’V)T - Z(RElv)E +(R vq)T

Npr <2 SUP Ecdl
T v HVHJ,T+HqHO,T ’

then

R A,

VHO,E +HRT HO,THqHO,T

O‘EH (82)

o + 2,
T OTH 0T
! EcaT

[, + ol

Now, sinceV is zero at the four vertices of T, a scaling
argument and the usual trace theorem, see e.g. [15, Lemma

1.5], shows thatV satisfies

Mpr 2 SUP

(V.9)eVy xL(T)

1

[¥llo,c =ChENI,, (3)

[, <Ch @

Combining these two inequalities with (82) immediately
gives the lower bound in the equivalence relation.

Consequence 6.12. For any mixed finite element
approximation (not necessarily inf-sup stable) defined on

rectangular grids T, , the residual estimator n7, Satisfies:

HéHJ,Q + HEHO.Q =Cre

Note that the constant C in the local lower bound independent
of the domain.

VII. NUMERICAL SIMULATION

In this section some numerical results of calculations with
mixed finite element Method and ADINA system will be
presented. Using our solver, we run the flow over an obstacle
[15] with a number of different model parameters.

Example: Flow over an obstacle. This is another classical

problem. The domain is €2 and is associated with modelling
flow in a rectangular channel with a square cylindrical
obstruction. A Poiseuille profile is imposed on the Inflow

boundary (X =0; —1<y <1),and noflow (zero velocity)

condition is imposed on the obstruction and the top and
bottom walls. A Neumann condition is applied at the outflow
boundary which automatically sets the mean outflow pressure

to zero. {2 a disconnected rectangular region (0,8)x (-1,1)
generated by deleting the square (7/4, 9/4) x (-1/4,1/4).

Vol. 4, No.3, 2013

Streamiines: uniform

Fig.1. Equally distributed streamline plot associated with a 32x80 square

grid Q —P, approximationand ,, _ }/

500°

Fig.2. uniform streamline plot computed with ADINA System, associated

with a 32 x 80 square grid and }/
V= /5000

Fig.4. The solution computed with ADINA system. The plots show the
velocity vectors solution with a 32 x 80 square gridand |, _ %00'

The two solutions are therefore essentially identical. This
is very good indication that my solver is implemented
correctly.

Pressure field

Fig.5. Pressure plot for the flow with a 32 x 80 square grid.
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Fig.6. Estimated error et associated with 32 x 80 square grid and
Q -PR approximation
TABLEL. The local Poisson problem error estimator Flow over
TABLE I. an obstacle with Reynolds number Re = 1000.
HV.Gh H estimated velocity divergence error.
Q

Grid [Vl e

8 x 20 5.892389e-001 3.210243e+001

16 x 40 1.101191e-001 6.039434e+000

32 x 80 3.707139e-002 2.802914e+000

64 x160 1.160002e-002 1.484983e+000

TABLE Il. Aresidual error estimator for Flow over an obstacle with
Reynolds number Re = 1000.

Grid TR

8 x20 9,309704e+00

16 x 40 1,727278e+000
32 x 80 8,156479%e-001
64 x 160 4.261901e-001

VIIl. CONCLUSION

We were interested in this work in the numeric solution for
two dimensional partial differential equations modelling (or
arising from) model steady incompressible fluid flow. It
includes algorithms for discretization by mixed finite element
methods and a posteriori error estimation of the computed
solutions. Our results agree with Adina system.

Vol. 4, No.3, 2013

Numerical results are presented to see the performance of
the method, and seem to be interesting by comparing them
with other recent results.
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