
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 3, 2013

165 | P a g e
www.ijacsa.thesai.org

A New Viewpoint for Mining Frequent Patterns

Thanh-Trung Nguyen

Department of Computer Science

University of Information Technology,

Vietnam National University HCM City

Ho Chi Minh City, Vietnam

Phi-Khu Nguyen

Department of Computer Science

University of Information Technology,

Vietnam National University HCM City

Ho Chi Minh City, Vietnam

Abstract—According to the traditional viewpoint of Data

mining, transactions are accumulated over a long period of time

(in years) in order to find out the frequent patterns associated

with a given threshold of support, and then they are applied to

practice of business as important experience for the next business

processes. From the point of view, many algorithms have been

proposed to exploit frequent patterns. However, the huge number

of transactions accumulated for a long time and having to handle

all the transactions at once are still challenges for the existing

algorithms. In addition, today, new characteristics of the business

market and the regular changes of business database with too

large frequency of added-deleted-altered operations are

demanding a new algorithm mining frequent patterns to meet the

above challenges. This article proposes a new perspective in the

field of mining frequent patterns: accumulating frequent patterns

along with a mathematical model and algorithms to solve existing
challenges.

Keywords—accumulating frequent patterns; data mining;

frequent pattern; horizontal parallelization; representative set;

vertical parallelization

I. INTRODUCTION

Frequent pattern mining is a basic problem in data mining
and knowledge discovery. Frequent patterns are set of items
which occur in dataset more than user specified number of
times. Identifying frequent patterns will play an essential role
in mining associations, correlations, and many other interesting
relationships among data (Prakash et. al. 2011). Recently,
frequent pattern has been studied and applied into many areas
such as: text categorization (Yuan et. al. 2013), text mining
(Kim et. al. 2012), social network (Nancy and Ramani 2012),
frequent subgraph (Wang and Ramon 2012) … Various
techniques have been proposed to improve the performance of
frequent pattern mining algorithms. In general, methods of
finding frequent patterns may fall into 3 main categories:
Candidate Generation Methods, Without Candidate Generation
Methods and Parallel Methods.

The common rule of Candidate Generation Methods is
probing dataset many times to generate good candidates which
can be used as frequent patterns of dataset. Apriori algorithm,
proposed by Agrawal and Srikant in 1995 (Prasad and
Ramakrishna 2011), is a typical technique in this approach.
Recently, many researches focus on Apriori and improve this
algorithm to reduce the complexity and increase the efficiency
of finding frequent patterns. Partitioning technique (Prasad and
Ramakrishna 2011), pattern based algorithms and incremental
Apriori based algorithms (Sharma and Garg 2011) can be

viewed as the Candidate Generation Methods. Many
improvements of Apriori were presented. An efficient
improved Apriori algorithm for mining association rules using
Logical Table based approach was proposed (Malpani and Pal
2012). Another group focuses on map/reduce design and
implementation of Apriori algorithm for structured data
analysis (Koundinya et. al. 2012) while some researchers
proposed an improved algorithm for mining frequent patterns
in large datasets using transposition of the database with minor
modification of the Apriori-like algorithm (Gunaseelan and
Uma 2012). The custom-built Apriori algorithm (Rawat and
Rajamani 2010), and the modified Apriori algorithm
(Raghunathan and Murugesan 2010) were introduced but the
time consuming has been still a big obstacle. Reduced
Candidate Set (RCS) is an algorithm which is more efficiency
than original Apriori algorithm (Bahel and Dule 2010). Record
Filter Approach is a method which takes less time than Apriori
(Goswami et. al. 2010). In addition, Sumathi et. al. 2012 also
proposed the algorithm taking vertical tidset representation of
the database and removes all the non-maximal frequent item-
sets to get exact set of Maximal Frequent Itemset directly.
Besides, a method was introduced by Utmal et. al. 2012. This
method firstly finds frequent 1_itemset and then uses the heap
tree to sort frequent patterns generated, and so repeatedly.
Although Apriori and its developments are proved the
effectiveness, many scientists still focus on the other heuristic
algorithms and try to find better algorithms. Genetic algorithms
(Prakash et. al. 2011), Dynamic Function (Joshi et. al. 2010)
and depth-first search were studied and applied successfully in
reality. Besides, a study presented a new technique using a
classifier which can predict the fastest ARM (Association Rule
Mining) algorithm with a high degree of accuracy (Sadat et. al.
2011). Another approach was also based on Apriori algorithm
but provides better reduction in time because of the prior
separation in the data (Khare and Gupta 2012).

Apriori and Apriori-like algorithms sometimes create large
number of candidate sets. It is hard to pass the database and
compare the candidates. Without Candidate Generation is
another approach which determines complete set of frequent
item sets without candidate generation, based on divide and
conquer technique. Interesting patterns, Constraint-based
mining are typical methods which were all introduced recently
(Prasad and Ramakrishna 2011). FP-Tree, FP-Growth and their
developments (Aggarwal et. al. 2009) – (Kiran and Reddy
2011) – (Deypir and Sadreddini 2011) – (Xiaoyun et. al. 2009)
– (Duraiswamy and Jayanthi 2011) introduced a prefix tree
structure which can be used to find out frequent patterns in

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 3, 2013

166 | P a g e
www.ijacsa.thesai.org

datasets. In other hand, researchers studied a transaction
reduction technique with FP-tree based bottom up approach for
mining cross-level pattern (Jayanthi and Duraiswamy 2012),
and construction of FP-tree using Huffman Coding (Patro et. al.
2012). H-mine is a pattern mining algorithm which is used to
discover features of products from reviews (Prasad and
Ramakrishna 2011) – (Ghorashi et. al. 2012). Besides that, a
novel tree structure called FPU-tree was proposed which is
efficient than available trees for storing data streams (Baskar et.
al. 2012). Another study tried to find improved association to
show that which item set is most acceptable association with
others (Saxena and Satsangi 2012). Q-FP tree was introduced
as a way to mine data streams for association rule mining
(Sharma and Jain 2012).

Applying parallel technique to solve high complexity
problems is an interesting field. In recent years, several
parallel, distributed extensions of serial algorithms for frequent
pattern discovery have been proposed. A study presented a
distributed, parallel algorithm, which makes feasible the
application of SPADA to large data sets (Appice et. al. 2011)
while another group introduced HPFP-Miner algorithm, based
on FP-Tree algorithm, to integrate parallelism into finding the
frequent patterns (Xiaoyun et. al. 2009).

A method for finding the frequent occurrence patterns and
the frequent occurrence time-series change patterns from the
observational data of the weather-monitor satellite applied
successfully parallel method to solve the problem of calculation
cost (Niimi et. al. 2010). PFunc, a novel task parallel library
whose customizable task scheduling and task priorities
facilitated the implementation of clustered scheduling policy,
was presented and proved its efficiency (Kambadur et. al.
2012). Another method is partitioning for finding frequent
pattern from huge database. It is based on key based division
for finding the local frequent pattern (LFP). After finding the
partition frequent pattern from the subdivided local database, it
then find the global frequent pattern from the local database
and perform the pruning from the whole database (Gupta and
Satsangi 2012).

Fuzzy frequent pattern mining has been also a new
approach recently (Picado-Muiño et. al. 2012).

Although there are significant improvement in finding
frequent patterns recently, working with the varying database is
still a big challenge. Especially, it need not scan again the
whole database whenever having need of adding a new element
or deleting/modifying an element. Besides, a number of
algorithms are effective, but their basis of mathematics and
way of installation are complex. In addition, it is the limit of
computer memory. Hence, combining how to store the data
mining context most effectively with costing the memory least
and how to store frequent patterns is also not a small challenge.
Finally, ability of dividing data into several parts for parallel
processing is also concerned.

Furthermore, characteristics of the medium and small
market also produce challenges need to be solved:

 Most enterprises have medium and small scale, such as:
interior decoration, catering business, computer
training, foreign language traning, motor business, and

so on. The number of categories of goods which they
trade in is about 200 to 1000. Cases up to 1000 items, it
is usually the supermarkets with diverse categories such
as food, appliances, makeup, homemaker, …

 The purchasing invoices have the same general
principle is that the number of categories sold is about
20 (the invoice form is in accordance with the
government)

 The fact that the laws indicating a shopping tendency of
the market in the best way are drawn from the number
of invoices having accumulated time from 6 months to
1 year before. Because the current market needs and
design, utility, function of goods change rapidly and
continuously, so it can not use the laws of the previous
years to apply to the current time.

 Market trends in different areas are different.

 Businesses need to regularly change the minimum
support threshold in order to find acceptable laws based
on the number of buyers.

 Due to the specific management of enterprises, the
operations such as adding, deleting, editing frequently
impact on database.

 The need of accumulating the results immediately after
each operation on the invoice to be able to refer to the
laws at any time.

In this article, a mathematical space will be introduced with
some new related concepts and propositions to design new
algorithms which are expected to solve remain issues in finding
frequent patterns.

II. MATHEMATICAL MODEL

Definition 1: Given 2 bit chains with the same length: a =
a1a2…am, b = b1b2…bm. a is said to cover b or b is covered by a

– denoted a  b – if pos(b)  pos(a) where pos(s) = {i  si = 1}

Definition 2:

+ Let u be a bit chain, k is a non-negative integer, we say
[u; k] is a pattern.

+ Let S be the set of size-m bit chains (chains with the
length of m), u is a size-m bit chain. If there are k chains in S
cover u, we say: u is a form of S with frequency k; and [u; k] is

a pattern of S – denoted [u; k]S

For instance: S = {1110, 0111, 0110, 0010, 0101} and u =

0110. We say u is a form with frequency 2 in S, so [0110; 2]S

+ A pattern [u; k] of S is called maximal pattern – denoted

[u; k]maxS – if and only if it doesn’t exist k’ such that [u;

k’]maxS and k’ > k. With the above instance, [0110; 3]maxS

Definition 3: P is representative set of S when P = {[u;

p]maxS  ∄[v; q]maxS : (v  u and q > p)}. Each element in P is
called a representative pattern of S

Proposition 1: Let S be a set of size-m bit chains with
representative set P, then two arbitrary elements in P do not
coincide with each other.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 3, 2013

167 | P a g e
www.ijacsa.thesai.org

Maximal Rectangle: If we present the set S in the form of
matrix with each row being an element in S, intuitively, we can
see that each element [u; k] of the representative set P forms a
maximal rectangle with maximal height of k.

For instance, given S = {1110, 0111, 1110, 0111, 0011},
the representative set of S: P = {[1110; 2], [0110; 4], [0010; 5],
[0111; 2], [0011; 3]}.

A 5x4 matrix: and [0110; 4]:

1 1 1 0 1 1 1 0

0 1 1 1 0 1 1 1

1 1 1 0 1 1 1 0

0 1 1 1 0 1 1 1

0 0 1 1 0 0 1 1

Fig.1. A 5x4 matrix for [0110; 4].

Figure 1 shows a maximal rectangle with boldface 1s and a
maximal height of 4 corresponding to the pattern [0110; 4].
Other maximal rectangles formed by elements of P are:

[1110; 2]: [0010; 5]: [0111; 2]: [0011; 3]:

1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0

0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1

1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0

0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

Fig.2. Matrices for [1110; 2], [0010; 5], [1110; 2] and [0011; 3].

Definition 4 (Binary relations):

+ Two size-m bit chains a and b is said to be equal –

denoted a = b – if and only if ai = bi i  {1, … , m},

otherwise a  b

+ Given 2 patterns [u1; p1] and [u2; p2]. [u1; p1] is said to be

contained in [u2; p2] – denoted [u1; p1]  [u2; p2] – if and only if

u1 = u2 and p1  p2, otherwise [u1; p1]  [u2; p2]

+ Given 2 size-m bit chains a and b. A size-m bit chain z is

called minimum chain of a and b – denoted z = a  b – if and

only if zk = min(ak, bk) k  {1, … , m}

+ Minimum pattern of 2 patterns [u1; p1] and [u2; p2] is a

pattern [u’; p’] – denoted [u’; p’] = [u1; p1]  [u2; p2] – where u’

= u1  u2 and p’ = p1 + p2

III. PRACTICAL ISSUE

A. Presenting the Problem

We have a set of transactions and the goal is to produce the
frequent patterns according to a specific bias called min
support.

We can present the set of transactions as a set S of bit
chains. For a chain in S, the ith bit is set to 1 when the ith item is
chosen and otherwise. The representative set P of S is the set of
all patterns in S with maximal occurrence time.

We can calculate the frequent patterns easily according to
P.

So, the problem is transferred to rebuilding the
representative set P whenever S is modified (add, delete or alter
elements).

B. Adding a New Transaction

We just simply use the above algorithm to rebuild the
representative set P when a new transaction is added.

Algorithm for rebuilding the representative set when
adding a new element to S: Let S be a set of n size-m bit
chains with representative set P. In this section, we consider the
algorithm for rebuilding the representative set when a new
chain is added to S.

ALGORITHM NewRepresentative (P, z)

// Finding new representative set for S when one chain is

added to S.

// Input: P is the representative set of S,

 z is a chain added to S.

// Output: The new representative set P of S  {z}.

1. M =  // M: set of new elements of P
2. flag1 = 0

3. flag2 = 0

4. for each x  P do

5. q = x  [z; 1]

6. if q ≠ 0 // q is not a chain with all bits 0

7. if x  q then P = P \ x

8. if [z; 1]  q then flag1 = 1

9. for each y  M do

10. if y  q then

11. M = M \ y

12. break for

13. endif

14. if q  y then
15. flag2 = 1

16. break for

17. endif

18. endfor

19. else

20. flag2 = 1

21. endif

22. if flag2 = 0 then M = M  q
23. flag2 = 0

24. endfor

25. if flag1 = 0 then P = P  [z; 1]

26. P = P  M
27. return P

The complexity of the algorithm:

The complexity of NewRepresentative algorithm is nm22m,
where n is the number of transactions and m is the number of
items. (Of course, if we are more careful, we may get a better
estimate, however the above estimate is linear in n, and this is
the most important thing).

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 3, 2013

168 | P a g e
www.ijacsa.thesai.org

Proof: Let P be the representative set before adding z, and
let Q the new representative set after adding z. Let |P| be the
cardinal of P (i.e. the number of elements of P).

The key observation is that |P| ≤ 2m. This is because we can
not have two elements [z; p] and [z'; p'] in P such that z = z' and
p ≠ p'. Therefore, the number of elements of P will always less
than or equal to the number of chains of m bits, the latter is 2m.

Fixed an x in P.

In line 5, the complexity will be m.

In line 7, the complexity will be m again.

In line 8, the complexity is m again.

In lines 9-13, the cardinal |M| is at most |P|, since from the
definition of M on line 22 the worst case is when we add every

thing of the form q = x  [z; 1] into M, here x runs all over P,
and in this case |M| = |P|. Hence the complexity of these lines
9-13 is less than or equal to |P|.

Lines 18-24 the complexity is at most m.

Hence when we let x vary in P (but fix a transaction z), we
see that the total complexity for lines 5-24 is about m|P|2 ≤
m22m.

If we vary the transactions z (whose number is n), we see
that the complexity for the whole algorithm is nm22m.

Theorem 1:

Let S be a set of size-m bit chains and P be representative

set of S. For [u; p], [v; q] P and z  S, let [u; p]  [z; 1] = [t;

p+1], [v; q]  [z; 1] = [d; q+1]. Only one of the following cases
must be satisfied:

 i. [u; p]  [t; p+1] and [u; p]  [d; q+1], t = d

 ii. [u; p]  [t; p+1] and [u; p]  [d; q+1], t ≠ d

iii. [u; p]  [t; p+1] and [u; p]  [d; q+1].

Proof: From Proposition 1, obviously u ≠ v. The theorem is
proved if the following claim is true: Let

(a): u = t , u = d , and t = d;

(b): u = t , u ≠ d , and t ≠ d;

(c): u ≠ t and u ≠ d,

only one of the above statements is correct.

By the method of induction on the number m of entries of
chain, in the first step, we show that the claim is correct if u
and v differ at only one kth entry.

Without loss of generality, we assume that uk = 0 and vk =
1. The following cases must be true:

- Case 1: zk = 0; Then min(uk, zk) = min(vk, zk) = 0, hence

t = u  z = (u1, u2, ... , 0, ... , um)  (z1, z2, ... , 0, ... , zm) = (x1,
x2, ... , 0, ... , xm), xi = min(ui, zi), for i = 1, … , m, i ≠ k;

d = v  z = (v1, v2, … , 1, … , vm)  (z1, z2, … , 0, … , zm) =
(y1, y2, … , 0, … , ym), yi = min(vi, zi), for i = 1, ... , m, i ≠ k.

From the assumption ui = vi when i ≠ k thus xi = yi, so t = d.
Hence, if u = t then u = d and (a) is correct. On the other hand,
if u ≠ t then u ≠ d, therefore (c) is correct.

- Case 2: zk = 1; We have min(uk, zk) = 0, min(vk, zk) = 1 and

t = u  z = (u1, u2, … , 0, … , um)  (z1, z2, … , 1, … , zm) = (x1,
x2, … , 0, … , xm), xi = min(ui, zi), for i = 1, … , m, i ≠ k;

d = v  z = (v1, v2, ... , 1, … , vm)  (z1, z2, … , 1, … , zm) =
(y1, y2, … , 1, … , ym), yi = min(vi, zi), for i = 1, … , m, i ≠ k.

So, t ≠ d. If u = t then u ≠ d, thus the statement (b) is
correct.

In summary, the above claim is true for any u and v of S
that differ only at one entry.

By induction in the second step, it is assumed that the claim
is true if u and v differ at r entries, and only one of the three
statements (a), (b) or (c) is true.

Without loss of generality, we assume that the first r entries
of u and v are different, and they differ at (r + 1)-th entries.
Applying the same method in the first step where r = 1 to this
instance, it is obtained

True statements
when u ≠ v, and

their first r entries

are different:

True statements
when u ≠ v, and

their first r + 1

entries are

different:

True statements
when combining

the two

possibilities:

(a) (a) (a)

(a) (b) (b)

(a) (c) (c)

(b) (a) (b)

(b) (b) (b)

(b) (c) (c)

(c) (a) (c)

(c) (b) (c)

(c) (c) (c)

Fig.3. Cases in comparison.

Therefore, if u and v are different at r + 1 entries, only one
of the (a), (b), (c) statements is correct. The above claim is true,
and Theorem 1 is proved.

Theorem 2:

Let S be a set of n size-m bit chains. The representative set
of S is determined by applying NewRepresentative algorithm to
each of n elements of S in turn.

Proof: We prove the theorem by induction on the number n
of elements of S.

Firstly, when applying the above algorithm to the set S of
only one element, this element is added into P and then P with
that only element is the representative set of S. Thus, theorem 2
is proved in the case of n = 1.

Next, assume that whenever S has n elements, the above
algorithm can be applied to S to obtain a representative set P0.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 3, 2013

169 | P a g e
www.ijacsa.thesai.org

Now we prove that when S has n + 1 elements then the
above algorithm can be applied to yield a representative P for
S. We assume that S is the union of a set S0 of n elements and
an element z, and that we already had a representative set P0 for
S0. Each element of P0 allows forming a maximal rectangle
from S0, and we call p the number of elements of P0.

The fifth statement in the NewRepresentative algorithm

shows that the operator  can be applied to z and p elements of
P0 to produce p new elements belonging to P. This means z
“scans” all elements in the set P0 to find out new rectangle
forms when adding z into S0. Consequently, three groups of 2p
+ 1 elements in total are created from the sets P0, P, and z.

To remove redundant rectangles, we have to check whether
each element of P0 is contained by elements of P or not,
whether elements of P contain other one another, and whether z
is contained by an element in P.

Let x be an element of P0 and consider the form x  [z; 1].
There are two cases: if the form of z covers the one of x then x
is a new form; or if the form of x covers the one of z then z is a
new form. In either case, the frequency of the new form is
always one unit greater than frequency of the original.

According to Theorem 1, with x  P0, if some pattern w
contains x then w must be a new element which belongs to P,

and that new element is q = x  [z; 1]. To check whether x is
contained by elements belonging to P, we need only to check
that whether x is contained by q or not. If x is contained by q, it
must be removed from the representative set (line 7).

In summary, first, the algorithm checks whether elements
belonging to P0 is contained by elements belonging to P. Then,
the algorithm checks whether elements of P contain one
another (from line 9 to line 18), and whether [z; 1] is contained
by elements belonging to P or not (line 8).

Finally, the above NewRepresentative algorithm can be
used to find new representative set when adding new elements
to S.

C. Deleting a Transaction

Definition 5: Let S be a set of bit chains and P received by
applying the algorithm NewRepresentative to S be the

representative set of S. Given [p; k]  P, and s1, s2, … , sr  S

are r (r  k) chains participating in taking shape p, i.e., these
chains participate in creating a rectangle with the form p in S,
denoted p_crd: s1, s2, … , sr, otherwise, p_crd: !s1, !s2, … , !sr

For example, with Figure 1, the chains 1110 and 0111 are 2
in 4 chains participating in creating [0110; 4]. Let s1 = 1110, s2
= 0111 and p = 0110, we have p_crd = s1, s2. Besides, the chain
s3 = 0011 does not participate in creating [0110; 4], so p_crd =
!s3

Theorem 3:

Let S be a set of bit chains and P received by applying the
algorithm NewRepresentative to S be the representative set of

S. With an arbitrary s  S, we have:

[p; k]  P  p_crd: s, s  p and [p’; k’]  P  p’_crd: !s, s
! p’

Proof: Suppose to the contradiction that Theorem 3 is
wrong. It has 2 cases:

(1) [p; k]  P  p_crd: s, s ! p or

(2) [p’; k’]  P  p’_crd: !s, s  p’

With (1), we have s ! p. According to the algorithm
NewRepresentative, s can not participate in creating p, p_crd:
!s, hence (1) is wrong.

With (2), we have s  p’. According to the algorithm
NewRepresentative, s have to participate in creating p’, p’_crd:
s, hence (2) is wrong.

To sum up, Theorem 3 is right.

When having Theorem 3, modifying the representative set
after a transaction was deleted is rather simple. We just use the
chain/transaction deleted to scan all elements of the
representative set and reduce their frequency by 1 unit if they
are covered by this chain. The example for this situation will be
showed in the section III.E Now the algorithm
NewRepresentative_Delete are generated:

ALGORITHM NewRepresentative_Delete (P,

z)

// Finding new representative for S when one chain is

removed from S.
// Input: P is the representative set of S,

 z is a chain removed from S.

// Output: The new representative set P of S \ {z}

1. For each x  P do

2. if z  x.Form then

3. x.Frequency  x.Frequency – 1

4. if x.Frequency = 0 then P  P \

{x}

5. endif

6. endfor

D. Altering a Transaction

The operation of altering a transaction is equivalent to
deleting that transaction and adding new transaction with the
changed content.

E. Example

Give the set S of transactions {o1, o2, o3, o4, o5} and the set I
of items {i1, i2, i3, i4}. Figure 4 describes elements in S.

 i1 i2 i3 i4

o1 1 1 1 0

o2 0 1 1 1
o3 0 1 1 1

o4 1 1 1 0

o5 0 0 1 1

Fig.4. Bit chains of S.

- Step 1: Consider line 1: [1110; 1] (l1)

Since P now is empty means should we put (l1) in P, we
have:

P = { [1110; 1] } (1)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 3, 2013

170 | P a g e
www.ijacsa.thesai.org

- Step 2: Consider line 2: [0111; 1] (l2)

Let (l2) perform the  operation with the elements existing
in P in order to get the new elements

(l2)  (1): [0111; 1]  [1110; 1] = [0110; 2] (n1)

Considering excluded:

- Considering whether or not the old elements in P is
contained in the new elements: We remain: (1)

- Considering whether or not the new elements contain
each other (note: (l2) is also a new element): We remain:
(l2) and (n1)

After considering excluded, we put the elements into P:

P = { [1110; 1] (1);

[0110; 2] (2);

[0111; 1] (3) }

- Step 3: Consider line 3: [0111; 1] (l3)

Let (l3) perform the  operation with the elements existing
in P in order to get the new elements

(l3)  (1): [0111; 1]  [1110; 1] = [0110; 2] (n1)

(l3)  (2): [0111; 1]  [0110; 2] = [0110; 3] (n2)

(l3)  (3): [0111; 1]  [0111; 1] = [0111; 2] (n3)

Considering excluded:

- Considering whether or not the old elements in P is
contained in the new elements: We remove: (2) because
of being contained in (n1), and (3) because of being
contained in (n3); we remain: (1)

- Considering whether or not the new elements contain
each other (note: (l3) is also a new element): We remove:
(n1) because of being contained in (n2), and (l3) because
of being contained in (n3); we remain: (n2) and (n3)

After considering excluded, we put the elements into P:

P = { [1110; 1] (1);

[0110; 3] (2);

[0111; 2] (3) }

- Step 4: Consider line 4: [1110; 1] (l4)

Let (l4) perform the  operation with the elements existing
in P in order to get the new elements

(l4)  (1): [1110; 1]  [1110; 1] = [1110; 2] (n1)

(l4)  (2): [1110; 1]  [0110; 3] = [0110; 4] (n2)

(l4)  (3): [1110; 1]  [0111; 2] = [0110; 3] (n3)

Considering excluded:

- Considering whether or not the old elements in P is
contained in the new elements: We remove: (1) because of
being contained in (n1), and (2) because of being contained in
(n2); we remain: (3)

- Considering whether or not the new elements contain each
other (note: (l4) is also a new element): We remove: (n3)
because of being contained in (n2), and (l4) because of being
contained in (n1); we remain: (n1) and (n2)

After considering excluded, we put the elements into P:

P = { [0111; 2] (1);

[1110; 2] (2);

[0110; 4] (3) }

- Step 5: Consider line 5: [0011; 1] (l5)

Let (l5) perform the  operation with the elements existing
in P in order to get the new elements

(l5)  (1): [0011; 1]  [0111; 2] = [0011; 3] (n1)

(l5)  (2): [0011; 1]  [1110; 2] = [0010; 3] (n2)

(l5)  (3): [0011; 1]  [0110; 4] = [0010; 5] (n3)

Considering excluded:

- Considering whether or not the old elements in P are
contained in the new elements: We remain: (1), (2), and
(3)

- Considering whether or not the new elements contain
each other (note: (l5) is also a new element): We remove:
(l5) because of being contained in (n1), and (n2) because
of being contained in (n3); we remain: (n1) and (n3)

After considering excluded, we put the elements into P:

P = { [0111; 2] (1);

[1110; 2] (2);

[0110; 4] (3);

[0011; 3] (4);

[0010; 5] (5) }

So, the frequent patterns satisfying min support = 40% (2/5)
is listed:

 i2, i3, i4 (2/5); i1, i2, i3 (2/5); i2, i3 (4/5); i3, i4

(3/5); i5 (5/5) 

In addition, we also can list immediately the frequent
patterns satisfying min support = 60% (3/5):

 i2, i3 (4/5); i3, i4 (3/5); i3 (5/5) 

When the invoice o1 = 1110 is deleted, we need only scan
through each element of P and examine whether their forms are
covered by o1. If they are covered then we reduce their
frequency by 1 unit. Specifically, we have:

P = { [0111; 2] (1);

[1110; 1] (2);

[0110; 3] (3);

[0011; 3] (4);

[0010; 4] (5) }

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 3, 2013

171 | P a g e
www.ijacsa.thesai.org

To increase the speed of computation, we can realize
intuitively that grouping the chains/transactions in the period of
preprocessing data, before running the algorithms is a good
idea.

Form Frequency

1110 2
0111 2

0011 1

Fig.5. The result after grouping the bit chains of S.

IV. EXPERIMENTATION 1

The experiments of NewRepresentative algorithm are
conducted on a machine with Intel(R) Core(TM) i3-2100 CPU
@ 3.10GHz (4 CPUs), ~3.1GHz and 4096MB main memory
installed. The operating system is Windows 7 Ultimate 64-bit
(6.1, Build 7601) Service Pack 1. Programming language is
C#.NET.

The proposed algorithm is tested on two datasets: the Retail
data taken from a small and medium enterprise in reality and
the T10I4D100K data taken from http://fimi.ua.ac.be/data/
website. First 10,000 transactions of T10I4D100K is run and
compared with 12,189 transactions of Retail data.

Datasets
No. of

transactions

The

maximum

number of

items

which

customer

can

purchase

The

maximum

number

of items

in the

dataset

Running

time

(second)

No. of

frequent

patterns

Retail 12,189 8 38
0.900051

5
44

T10I4D1

00K
10,000 26 1,000

702.1381

6
139,491

Fig.6. The experimental results when running proposed algorithm on 2

datasets.

Figure 6 shows the experimental results. The running time
and the number of frequent patterns of T10I4D100K are
absolutely larger than Retail. The result shows that the number
of frequent patterns in reality of a store or an enterprise is often
small. T10I4D100K is generated using the generator from the
IBM Almaden Quest research group so that the transactions
fluctuate much and the number of frequent patterns increases
sharply when adding a new transaction.

The fast increase of number of frequent patterns leads to a
big issue in computation: overflow. Although the large and the
fast growth of frequent patterns, it is easy to prove that the
maximum number of frequent pattern cannot be larger than a
specified value. For example, if M is the maximum number of
items in a store and N is the maximum number of items which
a customer can purchase. The number of frequent patterns in

the store is always not larger than
N

MMM CCC  ...21
. It

means the number of frequent patterns may increase fast but it
is not big enough to make the system to be crashed.

To reduce the running time of the algorithm, parallelization
is one of good ways. Parallelization was applied to find
frequent patterns from huge database in the past (Gupta and
Satsangi 2012). The large amount of frequent patterns is a
reason makes us apply parallelization method to the
NewRepresentative algorithm.

One of the big issues when developing an algorithm in
parallel systems is the complexity of algorithms. Some
algorithms can not divide into small part to run simultaneously
in separate sites or machines. Fortunately, the
NewRepresentative algorithm can be expanded for parallel
systems easily. The following section introduces two ways to
parallelize the algorithm: Horizontal Parallelization and
Vertical Parallelization. The parallelization methods share the
resource of machines and reduce the running time. It’s one of
the efficient ways to increase the speed of algorithms having
high executing complexity.

V. THE PRINCIPLES OF PARALLEL COMPUTING

Parallel computing is a form of computation in which many
calculations are carried out simultaneously operating on the
principle that large problems can often be divided into smaller
ones, which are then solved concurrently.

The parallel system of the NewRepresentative algorithm has
the following structure:

At first, the fragmentation will be implemented. The whole
data will be divided into small and equal fragments. In
Horizontal Parallelization, the transactions in data will be
divided while the items are the information which will be
divided in Vertical Parallelization. After the data is fragmented
properly, all fragments must be allocated in various sites of
network. A master site has responsibility for fragmenting data,
allocating fragments to sites and merging the results from site
into the final result. Sites will run the NewRepresentative
algorithm with the fragments which are assigned to them
simultaneously and finally, send the results into the master site
for merging.

VI. HORIZONTAL PARALLELIZATION

Consider a set of n transactions S. If there are k machine
located in k separate sites. Horizontal Parallelization (HP) will
divide the set S into k equal fragments and allocate those
fragments to k sites. The NewRepresentative algorithm is
applied on n/k transactions in each site. After running
algorithm, every site has its own representative set. All
representative sets are sent back to master site for merging.

Merging representative sets from sites in mater site is
similar to find representative set when adding new transactions
into dataset.

ALGORITHM HorizontalMerge(PM, PS)

//Input: PM: representative set of master site.

 PS: the set of representative sets from other sites.
//Output: The new representative set of horizontal

parallelization.

1. for each P  PS do

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 3, 2013

172 | P a g e
www.ijacsa.thesai.org

2. for each z  P do
3. PM = NewRepresentative(PM, z);

4. end for;

5. end for;

6. return PM;

Theorem 4:

Horizontal Parallelization method returns the representative
set.

Proof: We prove by induction on k.

If k = 1, then the HP method is the NewRepresentative
method, hence returns the representative set.

If k = 2, then let the two sites be S1 and S2, and let (u1, p1),
… , (um, pm) be the representative set for S1, and let (v1, q1), … ,
(vn, qn) be the representative set for S2. We need to show that
the HP algorithm will give us the representative for the union

of S1 and S2 (S1  S2). Let (w, r) be a representative element for

S1  S2. We denote by (w1, r1) the restriction of (w, r) to S1, that
is w1 = w and r1 = the number of when w appears in S1.
Similarly we define (w2, r2). Then by definition we must have
r1 + r2 = r. Also, there must be one of the representative
elements in S1, called (u1, p1), so that u1  w and p1 = r1. In
fact, by definition of representative elements, there must be

such a (u1, p1) for which u1  w and p1  r1. We also have a (v1,

q1) in S2 with v1  w and q1  r2. Now we must have p1 = r1
and q1 = r2 because otherwise w will appear p1 + q1 > r1 + r2 = r

times in S1  S2. Now when we apply the HP algorithm then

we will see at least one element (w’, r) where w’ = u1  v1, and
in particular w’ must cover w. Then w’ must be in fact w,
otherwise, we have an element (w’, r) with w’  w but the
frequency of w’ is strictly larger than of w, and hence (w, r)
cannot be a representative element. Then we see that (w, r) is
produced when using the HP algorithm as wanted.

Assume that we proved the correctness of the HP algorithm
for k sites. We now prove the correctness of the HP algorithm
for k + 1 sites. We denote these sites by S1, S2, … , Sk, Sk+1. By
the induction assumption, we can find the representative set for
k sites S1, S2, … , Sk using the HP algorithm. Denote by


k

i

iSS
1

 . Now apply the case of two sites which we proved

above to the two sites S and Sk+1, we have that the HP

algorithm produces the representative set for S  Sk+1, that is
we have the representative set for the union of the k + 1 sites
S1, … , Sk, Sk+1. Therefore we completed the proof of Theorem
4.

VII. VERTICAL PARALLELIZATION

Vertical Parallelization is more complex than Horizontal
Parallelization. While Horizontal Parallelization focuses on
transactions, Vertical Parallelization focuses on items. Vertical
Parallelization (VP) divides the dataset into fragments based on
items. Each fragment contains a subset of items. Fragments are
allocated into separate sites. In each sites, they run
NewRepresentative algorithm to find out representative sets.
The representative sets will be sent back to the master site and
will be merged to find the final representative set.

Vertical merging is based on merged-bit operation and
vertical merging operation.

Definition 6 (merged-bit operation ⊍): merged-bit
operation is a dyadic operation in bit-chain space (a1a2 … an)

⊍ (b1b2 … bm) = (a1a2 … anb1b2 … bm).

Definition 7 (vertical merging operation ⇼): Vertical
merging operation is a dyadic operation between two
representative patterns from two different vertical fragments:

[(a1a2 … an), p, {o1, o2, … , op}] ⇼ [(b1b2 … bm), q, {o1, o2, …,
oq}] = [vmChain, vmFreq, vmObject];

vmChain = (a1a2 … an) ⊍ (b1b2 … bm) = (a1a2 … anb1b2 … bm)

vmObject = {o1, o2 , … , op}  {o1, o2 , … , oq} = {o1, o2, … ,
ok}

vmFreq = k

At the master site, representative sets of other sites will be
merged into representative set of master site. The below
algorithm is run to find out the final representative set.

ALGORITHM VerticalMerge(PM, PS)

//Input: PM: representative set of master site.

 PS: the set of representative sets from other sites.
//Output: The new representative set of vertical

parallelization.

1. for each P  PS do

2. for each m  PM do
3. flag = 0;

4. M =  // M: set of used elements in P

5. for each z  P do

6. q = m ⇼ z;

7. if frequency of q ≠ 0 then

8. flag = 1; // mark m as used element

9. M = M  q; // mark q as used

 element

10. PM = PM  q;

11. end if;

12. end for;

13. if flag = 1 then

14. PM = PM  {m}

15. end if;

16. PM = PM  (P \ M);
17. end for;

18. end for;

19. return PM;

Theorem 5:

Vertical Parallelization method returns the representative
set.

Proof: We prove by induction on k.

If k = 1, this is the NewRepresentative algorithm, hence
gives the representative set.

If k = 2, we let S1 and S2 be the two sites, and let S be the
union. Let R = ({i1, … , in}, k, {o1, … , ok}) = (I, k, O) be a

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 3, 2013

173 | P a g e
www.ijacsa.thesai.org

representative element for S. Let R1 be the restriction of R to S1,
that is R1 = (I1, p1, O1), where I1 is the intersection of {i1, … ,
in} with the set of items in S1, O1 is the set of transactions in R1
containing all items in I1. We define similarly R2 = (I2, p2, O2)

the restriction of R to S2. Note that if I1 =  then p1 = 0,

otherwise p1 must be positive (p1 > 0). Similarly, if I2 =  then
p2 = 0, otherwise p2 must be positive (p1 > 0). We use the

convention that if I1 =  then O1 = O, and if I2 =  then O2 =
O. Remark that at least one of I1 or I2 is non-empty. Now by
definition, there must be a representative element Q1 = (I1’, p1’,

O1’) in S1 with I1  I1’, O1  O1’, and p1’ >= p1. Similarly, we

have a representative element Q2 = (I2’, p2’, O2’) in S2 with I2 

I2’, O2  O2’, and p2’ >= p2. When we do the vertical merging
operation of Q1 and Q2, then we must obtain I. Otherwise, we

obtain an element R’ = (I’, k’, O’) where I  I’, O  O’, and k’
>= k, and at least one of these is strict. This is a contradiction to
the assumption that R is a representative element of S. Now that
we proved the correctness of the algorithm for k = 1 and k = 2.
Then, assume that we proved the correctness of the VP
algorithm for k sites. We now prove the correctness of the VP
algorithm for k + 1 sites. We denote these sites by S1, S2, … ,
Sk, Sk+1. By the induction assumption, we can find the
representative set for k sites S1, S2, … , Sk using the VP

algorithm. Denote by 
k

i

iSS
1

 . Now apply the case of two

sites which we proved above to the two sites S and Sk+1, we
have that the VP algorithm produces the representative set for S

 Sk+1, that is we have the representative set for the union of
the k + 1 sites S1, … , Sk, Sk+1. Therefore we completed the
proof of Theorem 5.

Example: Give the set S of transactions {o1, o2, o3, o4, o5, o6,
o7} and the set I of items {i1, i2, i3}.

 i1 i2 i3

o1 0 0 1

o2 0 1 0

o3 0 1 1

o4 1 0 0

o5 1 0 1

o6 1 1 0

o7 1 1 1

Fig.7. Bit-chains of S.

Divide the items into two segments: {i1} and {i2, i3}.

 i1

o1 0

o2 0

o3 0

o4 1

o5 1

o6 1

o7 1
Fig.8. The first segment.

 i2 i3

o1 0 1

o2 1 0

o3 1 1

o4 0 0

o5 0 1

o6 1 0

o7 1 1

Fig.9. The second segment.

Allocate two segments in two separate sites and run
NewRepresentative algorithm on those fragments
simultaneously.

It is easy to get the representative sets from two sites:

The site has {i1} fragment:
}{ 1i

P ={[(1); 4; {o4, o5, o6, o7}]}

The site has {i2, i3} fragment:
},{ 32 iiP ={[(01); 4; {o1, o3, o5,

o7}], [(10); 4; {o2, o3, o6, o7}], [(11); 2; {o3, o7}]}

Merge both of them:

[(1); 4; {o4, o5, o6, o7}] ⇼ [(01); 4; {o1, o3, o5, o7}] =
[(101); 2; {o5, o7}]

[(1); 4; {o4, o5, o6, o7}] ⇼ [(10); 4; {o2, o3, o6, o7}] =
[(110); 2; {o6, o7}]

[(1); 4; {o4, o5, o6, o7}] ⇼ [(11); 2; {o3, o7}] = [(111); 1;
{o7}]

The full representative set P is:

P = {[(100); 4; {o4, o5, o6, o7}],

[(001); 4; {o1, o3, o5, o7}],

[(010); 4; {o2, o3, o6, o7}],

[(011); 2; {o3, o7}],

[(101); 2; {o5, o7}],

[(110); 2; {o6, o7}],

[(111); 1; {o7}]}

VIII. EXPERIMENTATION 2

The experiments of Vertical Parallelization Method are
conducted on machines which has similar configuration:
Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz (4 CPUs),
~3.1GHz and 4096MB main memory installed. The operating
system is Windows 7 Ultimate 64-bit (6.1, Build 7601) Service
Pack 1. Programming language is C#.NET.

The proposed methods are tested on T10I4D100K dataset
taken from http://fimi.ua.ac.be/data/ website. First 10,000
transactions of T10I4D100K are run and compared with the
result when running without parallelization.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 3, 2013

174 | P a g e
www.ijacsa.thesai.org

Dataset
No. of

transactions

The

maximum

No. of

items

which

customer

can

purchase

The

maximum

No. of

items in

the

dataset

Running

time

(second)

No. of

frequent

patterns

T10I4D100K 10,000 26 1,000 702.13816 139,491

Fig.10. The result when running the algorithm in single machine.

Vertical Parallelization model is applied in 17 machines
with the same configuration. Each machine is located in a
separate site. 1,000 items is digitized into 1,000-tuple bit-chain.
The master site will divide the bit-chain into 17 fragments (16
60-tuple bit-chains and a 40-tuple bit-chain).

Fragments
Length of
bit-chain

Running
Time

Number of
frequent patterns

1 60 18.0870345s 899

2 60 10.5576038s 535

3 60 14.9048526s 684

4 60 12.2947032s 548

5 60 8.0554607s 432

6 60 10.3075896s 560

7 60 17.7480151s 656

8 60 10.8686217s 526

9 60 21.3392205s 856

10 60 13.3007607s 682

11 60 9.6135499s 617

12 60 16.1179219s 736

13 60 15.4338827s 587

14 60 21.4922293s 928

15 60 18.2790455s 834

16 60 17.011973s 701

17 40 4.4142525s 223

Fig.11. The result of running the algorithm in sites.

After running the algorithm in sites, the representative sets
are sent back to master site for merging. The merging time is
27.5275745s and the number of final frequent patterns is
139,491. So, the total time of Parallelization is:

max(Running Times) + Merging Time = 21.4922293s +
27.5275745s = 49.0198038s

It is easy to see the efficiency and accuracy of Vertical
Parallelization method.

IX. CONCLUSION

Proposed algorithms (NewRepresentative and
NewRepresentative_Delete) solved cases of adding, deleting,
and altering in the context of mining data without scanning the
database.

Users can regularly change the minimum support threshold
in order to find acceptable laws based on the number of buyers
without rerunning the algorithms.

With accumulating frequent patterns, users can refer to the
laws at any time.

The algorithm is easy for implement with low complexity
(nm2m, where n is number of transactions and m is number of
items).

Practically, it is easy to prove that the maximum number of
frequent patterns cannot be larger than a specified value.
Because the invoice form is in accordance with the government
(the number of categories sold is a constant called r), the
number of frequent patterns in the store is always not larger

than r

m

r

mmm CCCC  121 ...

The set P obtained represents the context of the problem. In
addition, the algorithm allows segmenting the context to solve
partially.

This approach is simple for expanding for parallel systems.
By applying parallel strategy to this algorithm to reduce time
consuming, the article presented two methods: Vertical
Parallelization and Horizontal Parallelization methods.

REFERENCES

[1] C. C. Aggarwal, Y. Li, Jianyong Wang, and Jing Wang, “Frequent
pattern mining with uncertain data,” Proceeding KDD '09 Proceedings of

the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, June 28 – July 1, 2009, Paris, France.

[2] A. Appice, M. Ceci, and A. T. D. Malerba, “A parallel, distributed

algorithm for relational frequent pattern discovery from very large
datasets,” Intelligent Data Analysis 15 (2011) pp. 69–88.

[3] M. Bahel and C. Dule, “Analysis of frequent itemset generation process

in apriori and rcs (reduced candidate set) algorithm,” International
Journal of Advanced Networking and Applications, Volume: 02, Issue:

02, Pages: 539–543 (2010).

[4] M. S. S. X. Baskar, F. R. Dhanaseelan, and C. S. Christopher, “FPU-
Tree: frequent pattern updating tree,” International Journal of Advanced

and Innovative Research, Vol.1, Issue 1, June 2012.

[5] M. Deypir and M. H. Sadreddini, “An efficient algorithm for mining

frequent itemsets within large windows over data streams,” International
Journal of Data Engineering (IJDE), Vol.2, Issue 3, 2011.

[6] K. Duraiswamy and B. Jayanthi, “A new approach to discover periodic

frequent patterns,” International Journal of Computer and Information
Science, Vol. 4, No. 2, March 2011.

[7] S. H. Ghorashi, R. Ibrahim, S. Noekhah, and N. S. Dastjerdi, “A

frequent pattern mining algorithm for feature extraction of customer
reviews,” IJCSI International Journal of Computer Science Issues, Vol.

9, Issue 4, No.1, July 2012.

[8] D. N. Goswami, A. Chaturvedi, and C. S. Raghuvanshi, “Frequent
pattern mining using record filter approach,” IJCSI International Journal

of Computer Science Issues, Vol.7, Issue 4, No.7, July 2010.

[9] D. Gunaseelan and P. Uma, “An improved frequent pattern algorithm for
mining association rules,” International Journal of Information and

Communication Technology Research, Vol.2, No.5, May 2012.

[10] R. Gupta and C. S. Satsangi, “An efficient range partitioning method for
finding frequent patterns from huge database,” International Journal of

Advanced Computer Research (ISSN (print): 2249–7277 ISSN (online):
2277–7970) Vol.2, No.2, June 2012.

[11] B. Jayanthi and K. Duraiswamy, “A novel algorithm for cross level
frequent pattern mining in multidatasets,” International Journal of

Computer Applications (0975 – 8887) Vol.37, No.6, January 2012.

[12] S. Joshi, R. S. Jadon, and R. C. Jain, “An implementation of frequent
pattern mining algorithm using dynamic function,” International Journal

of Computer Applications (0975 – 8887), Vol.9, No.9, November 2010.

[13] P. Kambadur, A. Ghoting, A. Gupta, and A. Lumsdaine, “Extending task
parallelism for frequent pattern mining,” CoRR abs/1211.1658 (2012).

[14] P. Khare and H. Gupta, “Finding frequent pattern with transaction and

occurrences based on density minimum support distribution,”
International Journal of Advanced Computer Research (ISSN (print):

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 3, 2013

175 | P a g e
www.ijacsa.thesai.org

2249–7277 ISSN (online): 2277–7970) Vol.2, No.3, Issue 5, September

2012.

[15] H. D. Kim, D. H. Park, and Y. L. C. X. Zhai, “Enriching text

representation with frequent pattern mining for probabilistic topic
modeling,” ASIST 2012, October 26–31, 2012, Baltimore, MD, USA.

[16] R. U. Kiran and P. K. Reddy, “Novel techniques to reduce search space

in multiple minimum supports-based frequent pattern mining
algorithms,” Proceeding EDBT/ICDT '11 Proceedings of the 14th

International Conference on Extending Database Technology, March
22–24, 2011, Uppsala, Sweden.

[17] A. K. Koundinya, N. K. Srinath, K. A. K. Sharma, K. Kumar, M. N.

Madhu, and K. U. Shanbag, “Map/Reduce design and implementation of
apriori algorithm for handling voluminous data-sets,” Advanced

Computing: An International Journal (ACIJ), Vol.3, No.6, November
2012.

[18] K. Malpani and P. R. Pal, “An efficient algorithms for generating

frequent pattern using logical table with AND, OR operation,”
International Journal of Engineering Research & Technology (IJERT)

Vol.1, Issue 5, July – 2012.

[19] P. Nancy and R. G. Ramani, “Frequent pattern mining in social network
data (facebook application data),” European Journal of Scientific

Research, ISSN 1450–216X Vol.79 No.4 (2012), pp.531–540, ©
EuroJournals Publishing, Inc. 2012.

[20] A. Niimi, T. Yamaguchi, and O. Konishi, “Parallel computing method of

extraction of frequent occurrence pattern of sea surface temperature from
satellite data,” The Fifteenth International Symposium on Artificial Life

Robotics 2010 (AROB 15th '10). B-Con Plaza, Beppu, Oita, Japan,
February 4–6, 2010.

[21] S. N. Patro, S. Mishra, P. Khuntia, and C. Bhagabati, “Construction of
FP tree using huffman coding,” IJCSI International Journal of Computer

Science Issues, Vol.9, Issue 3, No.2, May 2012.

[22] D. Picado-Muiño, I. C. León, and C. Borgelt, “Fuzzy frequent pattern
mining in spike trains,” IDA 2012: 289–300.

[23] R. V. Prakash, Govardhan, and S. S. V. N. Sarma, “Mining frequent

itemsets from large data sets using genetic algorithms,” IJCA Special
Issue on “Artificial Intelligence Techniques – Novel Approaches &

Practical Applications” AIT, 2011.

[24] K. S. N. Prasad and S. Ramakrishna, “Frequent pattern mining and
current state of the art,” International Journal of Computer Applications

(0975 – 8887), Vol. 26, No.7, July 2011.

[25] A. Raghunathan and K. Murugesan, “Optimized frequent pattern mining

for classified data sets,” ©2010 International Journal of Computer
Applications (0975 – 8887), Vol.1, No.27.

[26] S. S. Rawat and L. Rajamani, “Discovering potential user browsing
behaviors using custom-built apriori algorithm,” International Journal of

Computer Science & Information Technology (IJCSIT) Vol.2, No.4,
August 2010.

[27] M. H. Sadat, H. W. Samuel, S. Patel, and O. R. Zaïane, “Fastest

association rule mining algorithm predictor (FARM-AP),” Proceeding
C3S2E '11 Proceedings of the Fourth International Conference on

Computer Science and Software Engineering, 2011.

[28] K. Saxena and C. S. Satsangi, “A non candidate subset-superset dynamic
minimum support approach for sequential pattern mining,” International

Journal of Advanced Computer Research (ISSN (print): 2249–7277
ISSN (online): 2277–7970) Vol.2, No.4, Issue 6, December 2012.

[29] H. Sharma and D. Garg, “Comparative analysis of various approaches

used in frequent pattern mining,” International Journal of Advanced
Computer Science and Applications, Special Issue on Artificial

Intelligence IJACSA pp. 141–147 August 2011.

[30] Y. Sharma and R. C. Jain, “Analysis and implementation of FP & Q-FP
tree with minimum CPU utilization in association rule mining,”

International Journal of Computing, Communications and Networking,
Vol.1, No.1, July – August 2012.

[31] K. Sumathi, S. Kannan, and K. Nagarajan, “A new MFI mining

algorithm with effective pruning mechanisms,” International Journal of
Computer Applications (0975 – 8887) Vol.41, No.6, March 2012.

[32] M. Utmal, S. Chourasia, and R. Vishwakarma, “A novel approach for
finding frequent item sets done by comparison based technique,”

International Journal of Computer Applications (0975 – 8887) Vol.44,
No.9, April 2012.

[33] C. Xiaoyun, H. Yanshan, C. Pengfei, M. Shengfa, S. Weiguo, and Y.

Min, “HPFP-Miner: a novel parallel frequent itemset mining algorithm,”
Natural Computation, 2009. ICNC '09. Fifth International Conference on

14–16 Aug. 2009.

[34] M. Yuan, Y. X. Ouyang, and Z. Xiong, “A text categorization method
using extended vector space model by frequent term sets,” Journal of

Information Science and Engineering 29, 99–114 (2013).

[35] Y. Wang and J. Ramon, “An efficiently computable support measure for
frequent subgraph pattern mining,” – ECML/PKDD (1) 2012: 362–377.

