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Abstract—According to the traditional viewpoint of Data 

mining, transactions are accumulated over a long period of time 

(in years) in order to find out the frequent patterns associated 

with a given threshold of support, and then they are applied to 

practice of business as important experience for the next business 

processes. From the point of view, many algorithms have been 

proposed to exploit frequent patterns. However, the huge number 

of transactions accumulated for a long time and having to handle 

all the transactions at once are still challenges for the existing 

algorithms. In addition, today, new characteristics of the business 

market and the regular changes of business database with too 

large frequency of added-deleted-altered operations are 

demanding a new algorithm mining frequent patterns to meet the 

above challenges. This article proposes a new perspective in the 

field of mining frequent patterns: accumulating frequent patterns 

along with a mathematical model and algorithms to solve existing 
challenges. 
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I. INTRODUCTION 

Frequent pattern mining is a basic problem in data mining 
and knowledge discovery. Frequent patterns are set of items 
which occur in dataset more than user specified number of 
times. Identifying frequent patterns will play an essential role 
in mining associations, correlations, and many other interesting 
relationships among data (Prakash et. al. 2011). Recently, 
frequent pattern has been studied and applied into many areas 
such as: text categorization (Yuan et. al. 2013), text mining 
(Kim et. al. 2012), social network (Nancy and Ramani 2012), 
frequent subgraph (Wang and Ramon 2012) … Various 
techniques have been proposed to improve the performance of 
frequent pattern mining algorithms. In general, methods of 
finding frequent patterns may fall into 3 main categories: 
Candidate Generation Methods, Without Candidate Generation 
Methods and Parallel Methods. 

The common rule of Candidate Generation Methods is 
probing dataset many times to generate good candidates which 
can be used as frequent patterns of dataset. Apriori algorithm, 
proposed by Agrawal and Srikant in 1995 (Prasad and 
Ramakrishna 2011), is a typical technique in this approach. 
Recently, many researches focus on Apriori and improve this 
algorithm to reduce the complexity and increase the efficiency 
of finding frequent patterns. Partitioning technique (Prasad and 
Ramakrishna 2011), pattern based algorithms and incremental 
Apriori based algorithms (Sharma and Garg 2011) can be 

viewed as the Candidate Generation Methods. Many 
improvements of Apriori were presented. An efficient 
improved Apriori algorithm for mining association rules using 
Logical Table based approach was proposed (Malpani and Pal 
2012). Another group focuses on map/reduce design and 
implementation of Apriori algorithm for structured data 
analysis (Koundinya et. al. 2012) while some researchers 
proposed an improved algorithm for mining frequent patterns 
in large datasets using transposition of the database with minor 
modification of the Apriori-like algorithm (Gunaseelan and 
Uma 2012). The custom-built Apriori algorithm (Rawat and 
Rajamani 2010), and the modified Apriori algorithm 
(Raghunathan and Murugesan 2010) were introduced but the 
time consuming has been still a big obstacle. Reduced 
Candidate Set (RCS) is an algorithm which is more efficiency 
than original Apriori algorithm (Bahel and Dule 2010). Record 
Filter Approach is a method which takes less time than Apriori 
(Goswami et. al. 2010). In addition, Sumathi et. al. 2012 also 
proposed the algorithm taking vertical tidset representation of 
the database and removes all the non-maximal frequent item-
sets to get exact set of Maximal Frequent Itemset directly. 
Besides, a method was introduced by Utmal et. al. 2012. This 
method firstly finds frequent 1_itemset and then uses the heap 
tree to sort frequent patterns generated, and so repeatedly. 
Although Apriori and its developments are proved the 
effectiveness, many scientists still focus on the other heuristic 
algorithms and try to find better algorithms. Genetic algorithms 
(Prakash et. al. 2011), Dynamic Function (Joshi et. al. 2010) 
and depth-first search were studied and applied successfully in 
reality. Besides, a study presented a new technique using a 
classifier which can predict the fastest ARM (Association Rule 
Mining) algorithm with a high degree of accuracy (Sadat et. al. 
2011). Another approach was also based on Apriori algorithm 
but provides better reduction in time because of the prior 
separation in the data (Khare and Gupta 2012). 

Apriori and Apriori-like algorithms sometimes create large 
number of candidate sets. It is hard to pass the database and 
compare the candidates. Without Candidate Generation is 
another approach which determines complete set of frequent 
item sets without candidate generation, based on divide and 
conquer technique. Interesting patterns, Constraint-based 
mining are typical methods which were all introduced recently 
(Prasad and Ramakrishna 2011). FP-Tree, FP-Growth and their 
developments (Aggarwal et. al. 2009) – (Kiran and Reddy 
2011) – (Deypir and Sadreddini 2011) – (Xiaoyun et. al. 2009) 
– (Duraiswamy and Jayanthi 2011) introduced a prefix tree 
structure which can be used to find out frequent patterns in 
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datasets. In other hand, researchers studied a transaction 
reduction technique with FP-tree based bottom up approach for 
mining cross-level pattern (Jayanthi and Duraiswamy 2012), 
and construction of FP-tree using Huffman Coding (Patro et. al. 
2012). H-mine is a pattern mining algorithm which is used to 
discover features of products from reviews (Prasad and 
Ramakrishna 2011) – (Ghorashi et. al. 2012). Besides that, a 
novel tree structure called FPU-tree was proposed which is 
efficient than available trees for storing data streams (Baskar et. 
al. 2012). Another study tried to find improved association to 
show that which item set is most acceptable association with 
others (Saxena and Satsangi 2012). Q-FP tree was introduced 
as a way to mine data streams for association rule mining 
(Sharma and Jain 2012). 

Applying parallel technique to solve high complexity 
problems is an interesting field. In recent years, several 
parallel, distributed extensions of serial algorithms for frequent 
pattern discovery have been proposed. A study presented a 
distributed, parallel algorithm, which makes feasible the 
application of SPADA to large data sets (Appice et. al. 2011) 
while another group introduced HPFP-Miner algorithm, based 
on FP-Tree algorithm, to integrate parallelism into finding the 
frequent patterns (Xiaoyun et. al. 2009).  

A method for finding the frequent occurrence patterns and 
the frequent occurrence time-series change patterns from the 
observational data of the weather-monitor satellite applied 
successfully parallel method to solve the problem of calculation 
cost (Niimi et. al. 2010). PFunc, a novel task parallel library 
whose customizable task scheduling and task priorities 
facilitated the implementation of clustered scheduling policy, 
was presented and proved its efficiency (Kambadur et. al. 
2012). Another method is partitioning for finding frequent 
pattern from huge database. It is based on key based division 
for finding the local frequent pattern (LFP). After finding the 
partition frequent pattern from the subdivided local database, it 
then find the global frequent pattern from the local database 
and perform the pruning from the whole database (Gupta and 
Satsangi 2012). 

Fuzzy frequent pattern mining has been also a new 
approach recently (Picado-Muiño et. al. 2012). 

Although there are significant improvement in finding 
frequent patterns recently, working with the varying database is 
still a big challenge. Especially, it need not scan again the 
whole database whenever having need of adding a new element 
or deleting/modifying an element. Besides, a number of 
algorithms are effective, but their basis of mathematics and 
way of installation are complex. In addition, it is the limit of 
computer memory. Hence, combining how to store the data 
mining context most effectively with costing the memory least 
and how to store frequent patterns is also not a small challenge. 
Finally, ability of dividing data into several parts for parallel 
processing is also concerned. 

Furthermore, characteristics of the medium and small 
market also produce challenges need to be solved: 

 Most enterprises have medium and small scale, such as: 
interior decoration, catering business, computer 
training, foreign language traning, motor business, and 

so on. The number of categories of goods which they 
trade in is about 200 to 1000. Cases up to 1000 items, it 
is usually the supermarkets with diverse categories such 
as food, appliances, makeup, homemaker, … 

 The purchasing invoices have the same general 
principle is that the number of categories sold is about 
20 (the invoice form is in accordance with the 
government) 

 The fact that the laws indicating a shopping tendency of 
the market in the best way are drawn from the number 
of invoices having accumulated time from 6 months to 
1 year before. Because the current market needs and 
design, utility, function of goods change rapidly and 
continuously, so it can not use the laws of the previous 
years to apply to the current time. 

 Market trends in different areas are different. 

 Businesses need to regularly change the minimum 
support threshold in order to find acceptable laws based 
on the number of buyers. 

 Due to the specific management of enterprises, the 
operations such as adding, deleting, editing frequently 
impact on database. 

 The need of accumulating the results immediately after 
each operation on the invoice to be able to refer to the 
laws at any time. 

In this article, a mathematical space will be introduced with 
some new related concepts and propositions to design new 
algorithms which are expected to solve remain issues in finding 
frequent patterns. 

II. MATHEMATICAL MODEL 

Definition 1: Given 2 bit chains with the same length: a = 
a1a2…am, b = b1b2…bm. a is said to cover b or b is covered by a 

– denoted a  b – if pos(b)  pos(a) where pos(s) = {i  si = 1} 

Definition 2: 

+ Let u be a bit chain, k is a non-negative integer, we say 
[u; k] is a pattern. 

+ Let S be the set of size-m bit chains (chains with the 
length of m), u is a size-m bit chain. If there are k chains in S 
cover u, we say: u is a form of S with frequency k; and [u; k] is 

a pattern of S – denoted [u; k]S 

For instance: S = {1110, 0111, 0110, 0010, 0101} and u = 

0110. We say u is a form with frequency 2 in S, so [0110; 2]S 

+ A pattern [u; k] of S is called maximal pattern – denoted 

[u; k]maxS – if and only if it doesn’t exist k’ such that [u; 

k’]maxS and k’ > k. With the above instance, [0110; 3]maxS 

Definition 3: P is representative set of S when P = {[u; 

p]maxS  ∄[v; q]maxS : (v  u and q > p)}. Each element in P is 
called a representative pattern of S 

Proposition 1: Let S be a set of size-m bit chains with 
representative set P, then two arbitrary elements in P do not 
coincide with each other. 
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Maximal Rectangle: If we present the set S in the form of 
matrix with each row being an element in S, intuitively, we can 
see that each element [u; k] of the representative set P forms a 
maximal rectangle with maximal height of k. 

For instance, given S = {1110, 0111, 1110, 0111, 0011}, 
the representative set of S: P = {[1110; 2], [0110; 4], [0010; 5], 
[0111; 2], [0011; 3]}. 

A 5x4 matrix: and [0110; 4]: 

1 1 1 0  1 1 1 0 

0 1 1 1  0 1 1 1 

1 1 1 0  1 1 1 0 

0 1 1 1  0 1 1 1 

0 0 1 1  0 0 1 1 

Fig.1. A 5x4 matrix for [0110; 4]. 

Figure 1 shows a maximal rectangle with boldface 1s and a 
maximal height of 4 corresponding to the pattern [0110; 4]. 
Other maximal rectangles formed by elements of P are: 

[1110; 2]:  [0010; 5]:  [0111; 2]:  [0011; 3]: 

1 1 1 0  1 1 1 0  1 1 1 0  1 1 1 0 

0 1 1 1  0 1 1 1  0 1 1 1  0 1 1 1 

1 1 1 0  1 1 1 0  1 1 1 0  1 1 1 0 

0 1 1 1  0 1 1 1  0 1 1 1  0 1 1 1 
0 0 1 1  0 0 1 1  0 0 1 1  0 0 1 1 

Fig.2.  Matrices for [1110; 2], [0010; 5], [1110; 2] and [0011; 3]. 

Definition 4 (Binary relations): 

+ Two size-m bit chains a and b is said to be equal – 

denoted a = b – if and only if ai = bi i  {1, … , m}, 

otherwise a  b 

+ Given 2 patterns [u1; p1] and [u2; p2]. [u1; p1] is said to be 

contained in [u2; p2] – denoted [u1; p1]  [u2; p2] – if and only if 

u1 = u2 and p1  p2, otherwise [u1; p1]  [u2; p2] 

+ Given 2 size-m bit chains a and b. A size-m bit chain z is 

called minimum chain of a and b – denoted z = a  b – if and 

only if zk = min(ak, bk) k  {1, … , m} 

+ Minimum pattern of 2 patterns [u1; p1] and [u2; p2] is a 

pattern [u’; p’] – denoted [u’; p’] = [u1; p1]  [u2; p2] – where u’ 

= u1  u2 and p’ = p1 + p2 

III. PRACTICAL ISSUE 

A. Presenting the Problem 

We have a set of transactions and the goal is to produce the 
frequent patterns according to a specific bias called min 
support. 

We can present the set of transactions as a set S of bit 
chains. For a chain in S, the ith bit is set to 1 when the ith item is 
chosen and otherwise. The representative set P of S is the set of 
all patterns in S with maximal occurrence time. 

We can calculate the frequent patterns easily according to 
P. 

So, the problem is transferred to rebuilding the 
representative set P whenever S is modified (add, delete or alter 
elements). 

B. Adding a New Transaction 

We just simply use the above algorithm to rebuild the 
representative set P when a new transaction is added. 

Algorithm for rebuilding the representative set when 
adding a new element to S: Let S be a set of n size-m bit 
chains with representative set P. In this section, we consider the 
algorithm for rebuilding the representative set when a new 
chain is added to S. 

ALGORITHM NewRepresentative (P, z) 

// Finding new representative set for S when one chain is 

added to S. 

// Input: P is the representative set of S, 

              z is a chain added to S. 

// Output: The new representative set P of S  {z}. 

1.  M =  // M: set of new elements of P 
2.  flag1 = 0 

3.  flag2 = 0 

4.  for each x  P do 

5.    q = x  [z; 1] 

6.    if q ≠ 0 // q is not a chain with all bits 0 

7.      if x  q then P = P \ x 

8.      if [z; 1]  q then flag1 = 1 

9.      for each y  M do 

10.       if y  q then 

11.         M = M \ y 

12.         break for 

13.       endif 

14.       if q  y then 
15.         flag2 = 1 

16.         break for 

17.       endif 

18.     endfor 

19.   else 

20.     flag2 = 1 

21.   endif 

22.   if flag2 = 0 then M = M  q 
23.   flag2 = 0 

24. endfor 

25. if flag1 = 0 then P = P  [z; 1] 

26. P = P  M 
27. return P 

The complexity of the algorithm: 

The complexity of NewRepresentative algorithm is nm22m, 
where n is the number of transactions and m is the number of 
items. (Of course, if we are more careful, we may get a better 
estimate, however the above estimate is linear in n, and this is 
the most important thing). 
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Proof: Let P be the representative set before adding z, and 
let Q the new representative set after adding z. Let |P| be the 
cardinal of P (i.e. the number of elements of P). 

The key observation is that |P| ≤ 2m. This is because we can 
not have two elements [z; p] and [z'; p'] in P such that z = z' and 
p ≠ p'. Therefore, the number of elements of P will always less 
than or equal to the number of chains of m bits, the latter is 2m. 

Fixed an x in P. 

In line 5, the complexity will be m. 

In line 7, the complexity will be m again. 

In line 8, the complexity is m again. 

In lines 9-13, the cardinal |M| is at most |P|, since from the 
definition of M on line 22 the worst case is when we add every 

thing of the form q = x  [z; 1] into M, here x runs all over P, 
and in this case |M| = |P|. Hence the complexity of these lines 
9-13 is less than or equal to |P|. 

Lines 18-24 the complexity is at most m. 

Hence when we let x vary in P (but fix a transaction z), we 
see that the total complexity for lines 5-24 is about m|P|2 ≤ 
m22m. 

If we vary the transactions z (whose number is n), we see 
that the complexity for the whole algorithm is nm22m. 

Theorem 1: 

Let S be a set of size-m bit chains and P be representative 

set of S. For [u; p], [v; q] P and z  S, let [u; p]  [z; 1] = [t; 

p+1], [v; q]  [z; 1] = [d; q+1]. Only one of the following cases 
must be satisfied: 

  i. [u; p]  [t; p+1] and [u; p]  [d; q+1], t = d 

 ii. [u; p]  [t; p+1] and [u; p]  [d; q+1], t ≠ d 

iii. [u; p]  [t; p+1] and [u; p]  [d; q+1]. 

Proof: From Proposition 1, obviously u ≠ v. The theorem is 
proved if the following claim is true: Let 

(a): u = t , u = d , and t = d; 

(b): u = t , u ≠ d , and t ≠ d; 

(c): u ≠ t and u ≠ d, 

only one of the above statements is correct. 

By the method of induction on the number m of entries of 
chain, in the first step, we show that the claim is correct if u 
and v differ at only one kth entry. 

Without loss of generality, we assume that uk = 0 and vk = 
1. The following cases must be true: 

- Case 1: zk = 0; Then min(uk, zk) = min(vk, zk) = 0, hence 

t = u  z = (u1, u2, ... , 0, ... , um)  (z1, z2, ... , 0, ... , zm) = (x1, 
x2, ... , 0, ... , xm), xi = min(ui, zi), for i = 1, … , m, i ≠ k; 

d = v  z = (v1, v2, … , 1, … , vm)  (z1, z2, … , 0, … , zm) = 
(y1, y2, … , 0, … , ym), yi = min(vi, zi), for i = 1, ... , m, i ≠ k. 

From the assumption ui = vi when i ≠ k thus xi = yi, so t = d. 
Hence, if u = t then u = d and (a) is correct. On the other hand, 
if u ≠ t then u ≠ d, therefore (c) is correct. 

- Case 2: zk = 1; We have min(uk, zk) = 0, min(vk, zk) = 1 and 

t = u  z = (u1, u2, … , 0, … , um)  (z1, z2, … , 1, … , zm) = (x1, 
x2, … , 0, … , xm), xi = min(ui, zi), for i = 1, … , m, i ≠ k; 

d = v  z = (v1, v2, ... , 1, … , vm)  (z1, z2, … , 1, … , zm) = 
(y1, y2, … , 1, … , ym), yi = min(vi, zi), for i = 1, … , m, i ≠ k. 

So, t ≠ d. If u = t then u ≠ d, thus the statement (b) is 
correct. 

In summary, the above claim is true for any u and v of S 
that differ only at one entry. 

By induction in the second step, it is assumed that the claim 
is true if u and v differ at r entries, and only one of the three 
statements (a), (b) or (c) is true. 

Without loss of generality, we assume that the first r entries 
of u and v are different, and they differ at (r + 1)-th entries. 
Applying the same method in the first step where r = 1 to this 
instance, it is obtained 

True statements 
when u ≠ v, and 

their first r entries 

are different: 

True statements 
when u ≠ v, and 

their first r + 1 

entries are 

different:  

True statements 
when combining 

the two 

possibilities: 

(a) (a) (a) 

(a) (b) (b) 

(a) (c) (c) 

(b) (a) (b) 

(b) (b) (b) 

(b) (c) (c) 

(c) (a) (c) 

(c) (b) (c) 

(c) (c) (c) 

Fig.3. Cases in comparison. 

Therefore, if u and v are different at r + 1 entries, only one 
of the (a), (b), (c) statements is correct. The above claim is true, 
and Theorem 1 is proved. 

Theorem 2: 

Let S be a set of n size-m bit chains. The representative set 
of S is determined by applying NewRepresentative algorithm to 
each of n elements of S in turn. 

Proof: We prove the theorem by induction on the number n 
of elements of S. 

Firstly, when applying the above algorithm to the set S of 
only one element, this element is added into P and then P with 
that only element is the representative set of S. Thus, theorem 2 
is proved in the case of n = 1. 

Next, assume that whenever S has n elements, the above 
algorithm can be applied to S to obtain a representative set P0. 
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Now we prove that when S has n + 1 elements then the 
above algorithm can be applied to yield a representative P for 
S. We assume that S is the union of a set S0 of n elements and 
an element z, and that we already had a representative set P0 for 
S0. Each element of P0 allows forming a maximal rectangle 
from S0, and we call p the number of elements of P0. 

The fifth statement in the NewRepresentative algorithm 

shows that the operator  can be applied to z and p elements of 
P0 to produce p new elements belonging to P. This means z 
“scans” all elements in the set P0 to find out new rectangle 
forms when adding z into S0. Consequently, three groups of 2p 
+ 1 elements in total are created from the sets P0, P, and z. 

To remove redundant rectangles, we have to check whether 
each element of P0 is contained by elements of P or not, 
whether elements of P contain other one another, and whether z 
is contained by an element in P. 

Let x be an element of P0 and consider the form x  [z; 1]. 
There are two cases: if the form of z covers the one of x then x 
is a new form; or if the form of x covers the one of z then z is a 
new form. In either case, the frequency of the new form is 
always one unit greater than frequency of the original. 

According to Theorem 1, with x  P0, if some pattern w 
contains x then w must be a new element which belongs to P, 

and that new element is q = x  [z; 1]. To check whether x is 
contained by elements belonging to P, we need only to check 
that whether x is contained by q or not. If x is contained by q, it 
must be removed from the representative set (line 7). 

In summary, first, the algorithm checks whether elements 
belonging to P0 is contained by elements belonging to P. Then, 
the algorithm checks whether elements of P contain one 
another (from line 9 to line 18), and whether [z; 1] is contained 
by elements belonging to P or not (line 8). 

Finally, the above NewRepresentative algorithm can be 
used to find new representative set when adding new elements 
to S. 

C. Deleting a Transaction 

Definition 5: Let S be a set of bit chains and P received by 
applying the algorithm NewRepresentative to S be the 

representative set of S. Given [p; k]  P, and s1, s2, … , sr  S 

are r (r  k) chains participating in taking shape p, i.e., these 
chains participate in creating a rectangle with the form p in S, 
denoted p_crd: s1, s2, … , sr, otherwise, p_crd: !s1, !s2, … , !sr 

For example, with Figure 1, the chains 1110 and 0111 are 2 
in 4 chains participating in creating [0110; 4]. Let s1 = 1110, s2 
= 0111 and p = 0110, we have p_crd = s1, s2. Besides, the chain 
s3 = 0011 does not participate in creating [0110; 4], so p_crd = 
!s3 

Theorem 3: 

Let S be a set of bit chains and P received by applying the 
algorithm NewRepresentative to S be the representative set of 

S. With an arbitrary s  S, we have: 

[p; k]  P  p_crd: s, s  p and [p’; k’]  P  p’_crd: !s, s 
! p’ 

Proof: Suppose to the contradiction that Theorem 3 is 
wrong. It has 2 cases: 

(1) [p; k]  P  p_crd: s, s ! p or  

(2) [p’; k’]  P  p’_crd: !s, s  p’ 

With (1), we have s ! p. According to the algorithm 
NewRepresentative, s can not participate in creating p, p_crd: 
!s, hence (1) is wrong. 

With (2), we have s  p’. According to the algorithm 
NewRepresentative, s have to participate in creating p’, p’_crd: 
s, hence (2) is wrong. 

To sum up, Theorem 3 is right. 

When having Theorem 3, modifying the representative set 
after a transaction was deleted is rather simple. We just use the 
chain/transaction deleted to scan all elements of the 
representative set and reduce their frequency by 1 unit if they 
are covered by this chain. The example for this situation will be 
showed in the section III.E Now the algorithm 
NewRepresentative_Delete are generated: 

ALGORITHM NewRepresentative_Delete (P, 

z) 

// Finding new representative for S when one chain is 

removed from S. 
// Input: P is the representative set of S, 

              z is a chain removed from S.  

// Output: The new representative set P of S \ {z} 

1. For each x  P do 

2.   if z  x.Form then  

3.     x.Frequency  x.Frequency – 1 

4.     if x.Frequency = 0 then P  P \ 

{x} 

5.   endif 

6. endfor 

D. Altering a Transaction 

The operation of altering a transaction is equivalent to 
deleting that transaction and adding new transaction with the 
changed content. 

E. Example 

Give the set S of transactions {o1, o2, o3, o4, o5} and the set I 
of items {i1, i2, i3, i4}. Figure 4 describes elements in S. 

 i1 i2 i3 i4 

o1 1 1 1 0 

o2 0 1 1 1 
o3 0 1 1 1 

o4 1 1 1 0 

o5 0 0 1 1 

Fig.4.  Bit chains of S. 

- Step 1: Consider line 1: [1110; 1] (l1) 

Since P now is empty means should we put (l1) in P, we 
have: 

P = { [1110; 1] } (1) 
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- Step 2: Consider line 2: [0111; 1] (l2) 

Let (l2) perform the  operation with the elements existing 
in P in order to get the new elements 

(l2)  (1): [0111; 1]  [1110; 1] = [0110; 2] (n1) 

Considering excluded: 

- Considering whether or not the old elements in P is 
contained in the new elements: We remain: (1) 

- Considering whether or not the new elements contain 
each other (note: (l2) is also a new element): We remain: 
(l2) and (n1) 

After considering excluded, we put the elements into P: 

P = { [1110; 1] (1); 

[0110; 2] (2); 

[0111; 1] (3) } 

- Step 3: Consider line 3: [0111; 1] (l3) 

Let (l3) perform the  operation with the elements existing 
in P in order to get the new elements 

(l3)  (1): [0111; 1]  [1110; 1] = [0110; 2] (n1) 

(l3)  (2): [0111; 1]  [0110; 2] = [0110; 3] (n2) 

(l3)  (3): [0111; 1]  [0111; 1] = [0111; 2] (n3) 

Considering excluded: 

- Considering whether or not the old elements in P is 
contained in the new elements: We remove: (2) because 
of being contained in (n1), and (3) because of being 
contained in (n3); we remain: (1) 

- Considering whether or not the new elements contain 
each other (note: (l3) is also a new element): We remove: 
(n1) because of being contained in (n2), and (l3) because 
of being contained in (n3); we remain: (n2) and (n3) 

After considering excluded, we put the elements into P: 

P = { [1110; 1] (1); 

[0110; 3] (2); 

[0111; 2] (3) } 

- Step 4: Consider line 4: [1110; 1] (l4) 

Let (l4) perform the  operation with the elements existing 
in P in order to get the new elements 

(l4)  (1): [1110; 1]  [1110; 1] = [1110; 2] (n1) 

(l4)  (2): [1110; 1]  [0110; 3] = [0110; 4] (n2) 

(l4)  (3): [1110; 1]  [0111; 2] = [0110; 3] (n3) 

Considering excluded: 

- Considering whether or not the old elements in P is 
contained in the new elements: We remove: (1) because of 
being contained in (n1), and (2) because of being contained in 
(n2); we remain: (3) 

- Considering whether or not the new elements contain each 
other (note: (l4) is also a new element): We remove: (n3) 
because of being contained in (n2), and (l4) because of being 
contained in (n1); we remain: (n1) and (n2) 

After considering excluded, we put the elements into P: 

P = { [0111; 2] (1); 

[1110; 2] (2); 

[0110; 4] (3) } 

- Step 5: Consider line 5: [0011; 1] (l5) 

Let (l5) perform the  operation with the elements existing 
in P in order to get the new elements 

(l5)  (1): [0011; 1]  [0111; 2] = [0011; 3] (n1) 

(l5)  (2): [0011; 1]  [1110; 2] = [0010; 3] (n2) 

(l5)  (3): [0011; 1]  [0110; 4] = [0010; 5] (n3) 

Considering excluded: 

- Considering whether or not the old elements in P are 
contained in the new elements: We remain: (1), (2), and 
(3) 

- Considering whether or not the new elements contain 
each other (note: (l5) is also a new element): We remove: 
(l5) because of being contained in (n1), and (n2) because 
of being contained in (n3); we remain: (n1) and (n3) 

After considering excluded, we put the elements into P: 

P = { [0111; 2] (1); 

[1110; 2] (2); 

[0110; 4] (3); 

[0011; 3] (4); 

[0010; 5] (5) } 

So, the frequent patterns satisfying min support = 40% (2/5) 
is listed: 

 i2, i3, i4 (2/5); i1, i2, i3 (2/5); i2, i3 (4/5); i3, i4 

(3/5); i5 (5/5)  

In addition, we also can list immediately the frequent 
patterns satisfying min support = 60% (3/5): 

 i2, i3 (4/5); i3, i4 (3/5); i3 (5/5)  

When the invoice o1 = 1110 is deleted, we need only scan 
through each element of P and examine whether their forms are 
covered by o1. If they are covered then we reduce their 
frequency by 1 unit. Specifically, we have: 

P = { [0111; 2] (1); 

[1110; 1] (2); 

[0110; 3] (3); 

[0011; 3] (4); 

[0010; 4] (5) } 
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To increase the speed of computation, we can realize 
intuitively that grouping the chains/transactions in the period of 
preprocessing data, before running the algorithms is a good 
idea. 

 

Form Frequency 

1110 2 
0111 2 

0011 1 

Fig.5. The result after grouping the bit chains of S. 

IV. EXPERIMENTATION 1 

The experiments of NewRepresentative algorithm are 
conducted on a machine with Intel(R) Core(TM) i3-2100 CPU 
@ 3.10GHz (4 CPUs), ~3.1GHz and 4096MB main memory 
installed. The operating system is Windows 7 Ultimate 64-bit 
(6.1, Build 7601) Service Pack 1. Programming language is 
C#.NET. 

The proposed algorithm is tested on two datasets: the Retail 
data taken from a small and medium enterprise in reality and 
the T10I4D100K data taken from http://fimi.ua.ac.be/data/ 
website. First 10,000 transactions of T10I4D100K is run and 
compared with 12,189 transactions of Retail data. 

Datasets 
No. of 

transactions 

The 

maximum 

number of 

items 

which 

customer 

can 

purchase 

The 

maximum 

number 

of items 

in the 

dataset 

Running 

time 

(second) 

No. of 

frequent 

patterns 

Retail 12,189 8 38 
0.900051

5 
44 

T10I4D1

00K 
10,000 26 1,000 

702.1381

6 
139,491 

Fig.6. The experimental results when running proposed algorithm on 2 

datasets. 

Figure 6 shows the experimental results. The running time 
and the number of frequent patterns of T10I4D100K are 
absolutely larger than Retail. The result shows that the number 
of frequent patterns in reality of a store or an enterprise is often 
small. T10I4D100K is generated using the generator from the 
IBM Almaden Quest research group so that the transactions 
fluctuate much and the number of frequent patterns increases 
sharply when adding a new transaction. 

The fast increase of number of frequent patterns leads to a 
big issue in computation: overflow. Although the large and the 
fast growth of frequent patterns, it is easy to prove that the 
maximum number of frequent pattern cannot be larger than a 
specified value. For example, if M is the maximum number of 
items in a store and N is the maximum number of items which 
a customer can purchase. The number of frequent patterns in 

the store is always not larger than 
N

MMM CCC  ...21
. It 

means the number of frequent patterns may increase fast but it 
is not big enough to make the system to be crashed. 

To reduce the running time of the algorithm, parallelization 
is one of good ways. Parallelization was applied to find 
frequent patterns from huge database in the past (Gupta and 
Satsangi 2012). The large amount of frequent patterns is a 
reason makes us apply parallelization method to the 
NewRepresentative algorithm. 

One of the big issues when developing an algorithm in 
parallel systems is the complexity of algorithms. Some 
algorithms can not divide into small part to run simultaneously 
in separate sites or machines. Fortunately, the 
NewRepresentative algorithm can be expanded for parallel 
systems easily. The following section introduces two ways to 
parallelize the algorithm: Horizontal Parallelization and 
Vertical Parallelization. The parallelization methods share the 
resource of machines and reduce the running time. It’s one of 
the efficient ways to increase the speed of algorithms having 
high executing complexity. 

V. THE PRINCIPLES OF PARALLEL COMPUTING 

Parallel computing is a form of computation in which many 
calculations are carried out simultaneously operating on the 
principle that large problems can often be divided into smaller 
ones, which are then solved concurrently. 

The parallel system of the NewRepresentative algorithm has 
the following structure: 

At first, the fragmentation will be implemented. The whole 
data will be divided into small and equal fragments. In 
Horizontal Parallelization, the transactions in data will be 
divided while the items are the information which will be 
divided in Vertical Parallelization. After the data is fragmented 
properly, all fragments must be allocated in various sites of 
network. A master site has responsibility for fragmenting data, 
allocating fragments to sites and merging the results from site 
into the final result. Sites will run the NewRepresentative 
algorithm with the fragments which are assigned to them 
simultaneously and finally, send the results into the master site 
for merging. 

VI. HORIZONTAL PARALLELIZATION 

Consider a set of n transactions S. If there are k machine 
located in k separate sites. Horizontal Parallelization (HP) will 
divide the set S into k equal fragments and allocate those 
fragments to k sites. The NewRepresentative algorithm is 
applied on n/k transactions in each site. After running 
algorithm, every site has its own representative set. All 
representative sets are sent back to master site for merging. 

Merging representative sets from sites in mater site is 
similar to find representative set when adding new transactions 
into dataset. 

ALGORITHM HorizontalMerge(PM, PS) 

//Input: PM: representative set of master site. 

             PS: the set of representative sets from other sites. 
//Output: The new representative set of horizontal 

parallelization. 

1.  for each P  PS do 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 4, No. 3, 2013 

172 | P a g e  
www.ijacsa.thesai.org 

2.    for each z  P do 
3.      PM = NewRepresentative(PM, z); 

4.    end for; 

5.  end for; 

6.  return PM; 

Theorem 4: 

Horizontal Parallelization method returns the representative 
set. 

Proof: We prove by induction on k. 

If k = 1, then the HP method is the NewRepresentative 
method, hence returns the representative set. 

If k = 2, then let the two sites be S1 and S2, and let (u1, p1), 
… , (um, pm) be the representative set for S1, and let (v1, q1), … , 
(vn, qn) be the representative set for S2. We need to show that 
the HP algorithm will give us the representative for the union 

of S1 and S2 (S1  S2). Let (w, r) be a representative element for 

S1  S2. We denote by (w1, r1) the restriction of (w, r) to S1, that 
is w1 = w and r1 = the number of when w appears in S1. 
Similarly we define (w2, r2). Then by definition we must have 
r1 + r2 = r. Also, there must be one of the representative 
elements in S1, called (u1, p1), so that u1  w and p1 = r1. In 
fact, by definition of representative elements, there must be 

such a (u1, p1) for which u1  w and p1  r1. We also have a (v1, 

q1) in S2 with v1  w and q1  r2. Now we must have p1 = r1 
and q1 = r2 because otherwise w will appear p1 + q1 > r1 + r2 = r 

times in S1  S2. Now when we apply the HP algorithm then 

we will see at least one element (w’, r) where w’ = u1  v1, and 
in particular w’ must cover w. Then w’ must be in fact w, 
otherwise, we have an element (w’, r) with w’  w but the 
frequency of w’ is strictly larger than of w, and hence (w, r) 
cannot be a representative element. Then we see that (w, r) is 
produced when using the HP algorithm as wanted. 

Assume that we proved the correctness of the HP algorithm 
for k sites. We now prove the correctness of the HP algorithm 
for k + 1 sites. We denote these sites by S1, S2, … , Sk, Sk+1. By 
the induction assumption, we can find the representative set for 
k sites S1, S2, … , Sk using the HP algorithm. Denote by 


k

i

iSS
1

 . Now apply the case of two sites which we proved 

above to the two sites S and Sk+1, we have that the HP 

algorithm produces the representative set for S  Sk+1, that is 
we have the representative set for the union of the k + 1 sites 
S1, … , Sk, Sk+1. Therefore we completed the proof of Theorem 
4. 

VII. VERTICAL PARALLELIZATION 

Vertical Parallelization is more complex than Horizontal 
Parallelization. While Horizontal Parallelization focuses on 
transactions, Vertical Parallelization focuses on items. Vertical 
Parallelization (VP) divides the dataset into fragments based on 
items. Each fragment contains a subset of items. Fragments are 
allocated into separate sites. In each sites, they run 
NewRepresentative algorithm to find out representative sets. 
The representative sets will be sent back to the master site and 
will be merged to find the final representative set. 

Vertical merging is based on merged-bit operation and 
vertical merging operation. 

Definition 6 (merged-bit operation ⊍): merged-bit 
operation is a dyadic operation in bit-chain space (a1a2 … an) 

⊍ (b1b2 … bm) = (a1a2 … anb1b2 … bm). 

Definition 7 (vertical merging operation ⇼): Vertical 
merging operation is a dyadic operation between two 
representative patterns from two different vertical fragments: 

[(a1a2 … an), p, {o1, o2, … , op}] ⇼ [(b1b2 … bm), q, {o1, o2, …, 
oq}] = [vmChain, vmFreq, vmObject]; 

vmChain = (a1a2 … an) ⊍ (b1b2 … bm) = (a1a2 … anb1b2 … bm) 

vmObject = {o1, o2 , … , op}  {o1, o2 , … , oq} = {o1, o2, … , 
ok} 

vmFreq = k 

At the master site, representative sets of other sites will be 
merged into representative set of master site. The below 
algorithm is run to find out the final representative set. 

ALGORITHM VerticalMerge(PM, PS) 

//Input: PM: representative set of master site. 

             PS: the set of representative sets from other sites. 
//Output: The new representative set of vertical 

parallelization. 

1.  for each P  PS do 

2.    for each m  PM do 
3.      flag = 0; 

4.      M =  // M: set of used elements in P 

5.      for each z  P do 

6.        q = m ⇼ z; 

7.        if frequency of q ≠ 0 then 

8.          flag = 1; // mark m as used element 

9.          M = M  q; // mark q as used  

                                                                           element 

10.         PM = PM  q; 

11.       end if; 

12.     end for; 

13.     if flag = 1 then 

14.       PM = PM  {m} 

15.     end if; 

16.     PM = PM  (P \ M); 
17.   end for; 

18. end for; 

19. return PM; 

Theorem 5: 

Vertical Parallelization method returns the representative 
set. 

Proof: We prove by induction on k. 

If k = 1, this is the NewRepresentative algorithm, hence 
gives the representative set. 

If k = 2, we let S1 and S2 be the two sites, and let S be the 
union. Let R = ({i1, … , in}, k, {o1, … , ok}) = (I, k, O) be a 
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representative element for S. Let R1 be the restriction of R to S1, 
that is R1 = (I1, p1, O1), where I1 is the intersection of {i1, … , 
in} with the set of items in S1, O1 is the set of transactions in R1 
containing all items in I1. We define similarly R2 = (I2, p2, O2) 

the restriction of R to S2. Note that if I1 =  then p1 = 0, 

otherwise p1 must be positive (p1 > 0). Similarly, if I2 =  then 
p2 = 0, otherwise p2 must be positive (p1 > 0). We use the 

convention that if I1 =  then O1 = O, and if I2 =  then O2 = 
O. Remark that at least one of I1 or I2 is non-empty. Now by 
definition, there must be a representative element Q1 = (I1’, p1’, 

O1’) in S1 with I1  I1’, O1  O1’, and p1’ >= p1. Similarly, we 

have a representative element Q2 = (I2’, p2’, O2’) in S2 with I2  

I2’, O2  O2’, and p2’ >= p2. When we do the vertical merging 
operation of Q1 and Q2, then we must obtain I. Otherwise, we 

obtain an element R’ = (I’, k’, O’) where I  I’, O  O’, and k’ 
>= k, and at least one of these is strict. This is a contradiction to 
the assumption that R is a representative element of S. Now that 
we proved the correctness of the algorithm for k = 1 and k = 2. 
Then, assume that we proved the correctness of the VP 
algorithm for k sites. We now prove the correctness of the VP 
algorithm for k + 1 sites. We denote these sites by S1, S2, … , 
Sk, Sk+1. By the induction assumption, we can find the 
representative set for k sites S1, S2, … , Sk using the VP 

algorithm. Denote by 
k

i

iSS
1

 . Now apply the case of two 

sites which we proved above to the two sites S and Sk+1, we 
have that the VP algorithm produces the representative set for S 

 Sk+1, that is we have the representative set for the union of 
the k + 1 sites S1, … , Sk, Sk+1. Therefore we completed the 
proof of Theorem 5. 

Example: Give the set S of transactions {o1, o2, o3, o4, o5, o6, 
o7} and the set I of items {i1, i2, i3}. 

 i1 i2 i3 

o1 0 0 1 

o2 0 1 0 

o3 0 1 1 

o4 1 0 0 

o5 1 0 1 

o6 1 1 0 

o7 1 1 1 

Fig.7. Bit-chains of S. 

Divide the items into two segments: {i1} and {i2, i3}. 

 i1 

o1 0 

o2 0 

o3 0 

o4 1 

o5 1 

o6 1 

o7 1 
Fig.8. The first segment. 

 

 i2 i3 

o1 0 1 

o2 1 0 

o3 1 1 

o4 0 0 

o5 0 1 

o6 1 0 

o7 1 1 

Fig.9. The second segment. 

Allocate two segments in two separate sites and run 
NewRepresentative algorithm on those fragments 
simultaneously.  

It is easy to get the representative sets from two sites: 

The site has {i1} fragment: 
}{ 1i

P ={[(1); 4; {o4, o5, o6, o7}]} 

The site has {i2, i3} fragment: 
},{ 32 iiP ={[(01); 4; {o1, o3, o5, 

o7}], [(10); 4; {o2, o3, o6, o7}], [(11); 2; {o3, o7}]} 

Merge both of them: 

[(1); 4; {o4, o5, o6, o7}] ⇼ [(01); 4; {o1, o3, o5, o7}] = 
[(101); 2; {o5, o7}] 

[(1); 4; {o4, o5, o6, o7}] ⇼ [(10); 4; {o2, o3, o6, o7}] = 
[(110); 2; {o6, o7}] 

[(1); 4; {o4, o5, o6, o7}] ⇼ [(11); 2; {o3, o7}] = [(111); 1; 
{o7}] 

The full representative set P is: 

P = {[(100); 4; {o4, o5, o6, o7}], 

[(001); 4; {o1, o3, o5, o7}], 

[(010); 4; {o2, o3, o6, o7}], 

[(011); 2; {o3, o7}], 

[(101); 2; {o5, o7}], 

[(110); 2; {o6, o7}], 

[(111); 1; {o7}]} 

VIII. EXPERIMENTATION 2 

The experiments of Vertical Parallelization Method are 
conducted on machines which has similar configuration: 
Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz (4 CPUs), 
~3.1GHz and 4096MB main memory installed. The operating 
system is Windows 7 Ultimate 64-bit (6.1, Build 7601) Service 
Pack 1. Programming language is C#.NET. 

The proposed methods are tested on T10I4D100K dataset 
taken from http://fimi.ua.ac.be/data/ website. First 10,000 
transactions of T10I4D100K are run and compared with the 
result when running without parallelization. 
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Dataset 
No. of 

transactions 

The 

maximum 

No. of 

items 

which 

customer 

can 

purchase 

The 

maximum 

No. of 

items in 

the 

dataset 

Running 

time 

(second) 

No. of 

frequent 

patterns 

T10I4D100K 10,000 26 1,000 702.13816 139,491 

Fig.10.  The result when running the algorithm in single machine. 

Vertical Parallelization model is applied in 17 machines 
with the same configuration. Each machine is located in a 
separate site. 1,000 items is digitized into 1,000-tuple bit-chain. 
The master site will divide the bit-chain into 17 fragments (16 
60-tuple bit-chains and a 40-tuple bit-chain). 

Fragments 
Length of 
bit-chain 

Running 
Time 

Number of 
frequent patterns 

1 60 18.0870345s 899 

2 60 10.5576038s 535 

3 60 14.9048526s 684 

4 60 12.2947032s 548 

5 60 8.0554607s 432 

6 60 10.3075896s 560 

7 60 17.7480151s 656 

8 60 10.8686217s 526 

9 60 21.3392205s 856 

10 60 13.3007607s 682 

11 60 9.6135499s 617 

12 60 16.1179219s 736 

13 60 15.4338827s 587 

14 60 21.4922293s 928 

15 60 18.2790455s 834 

16 60 17.011973s 701 

17 40 4.4142525s 223 

Fig.11. The result of running the algorithm in sites. 

After running the algorithm in sites, the representative sets 
are sent back to master site for merging. The merging time is 
27.5275745s and the number of final frequent patterns is 
139,491. So, the total time of Parallelization is: 

max(Running Times) + Merging Time = 21.4922293s + 
27.5275745s = 49.0198038s 

It is easy to see the efficiency and accuracy of Vertical 
Parallelization method. 

IX. CONCLUSION 

Proposed algorithms (NewRepresentative and 
NewRepresentative_Delete) solved cases of adding, deleting, 
and altering in the context of mining data without scanning the 
database. 

Users can regularly change the minimum support threshold 
in order to find acceptable laws based on the number of buyers 
without rerunning the algorithms. 

With accumulating frequent patterns, users can refer to the 
laws at any time. 

The algorithm is easy for implement with low complexity 
(nm2m, where n is number of transactions and m is number of 
items).  

Practically, it is easy to prove that the maximum number of 
frequent patterns cannot be larger than a specified value. 
Because the invoice form is in accordance with the government 
(the number of categories sold is a constant called r), the 
number of frequent patterns in the store is always not larger 

than r

m

r

mmm CCCC  121 ...  

The set P obtained represents the context of the problem. In 
addition, the algorithm allows segmenting the context to solve 
partially. 

This approach is simple for expanding for parallel systems. 
By applying parallel strategy to this algorithm to reduce time 
consuming, the article presented two methods: Vertical 
Parallelization and Horizontal Parallelization methods. 
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