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Abstract—We present in this paper a new approach for 

polyphonic music transcription using evolution strategies (ES). 

Automatic music transcription is a complex process that still 

remains an open challenge. Using an audio signal to be 

transcribed as target for our ES, information needed to generate 

a MIDI file can be extracted from this latter one. Many 

techniques presented in the literature at present exist and a few 

of them have applied evolutionary algorithms to address this 

problem in the context of considering it as a search space 

problem. However, ES have never been applied until now. The 

experiments showed that by using these machines learning tools, 

some shortcomings presented by other evolutionary algorithms 

based approaches for transcription can be solved. They include 

the computation cost and the time for convergence. As evolution 

strategies use self-adapting parameters, we show in this paper 

that by correctly tuning the value of its strategy parameter that 

controls the standard deviation, a fast convergence can be 

triggered toward the optima, which from the results performs the 

transcription of the music with good accuracy and in a short 

time. In the same context, the computation task is tackled using 

parallelization techniques thus reducing the computation time 
and the transcription time in the overall. 
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I. INTRODUCTION  

Automatic music transcription is the process that involves a 
computer in order to write partitures of a piece of music or an 
audio signal. In automatic music transcription, a piece of music 
or an audio signal is analysed in order to figure out the 
correspondent human representations of the perceived sound 
for a proper interpretation. As humans, we sense sound by 
noticing minute differences in the pressure of the air outside of 
our ears, hence these intensities can be reproduced by speakers 
and moreover they can be recorded by microphones. 

The audio signal can be composed of a succession of 
monophonic sounds over the time which involves a set of notes 
played individually but not at the same time; or polyphonic 
sounds which are a succession of notes played at the same time 
from the same instrument or even from different instruments.  

 A music transcriber program should be able to analyse the 
audio signal in order to figure out the different elements 

composing the given signal. Transcribing music is a very 
difficult problem that still remains unsolved in a computational 
view, however even in a musical view this knowledge belongs 
only to experimented and skilled musicians who have not only 
learned to transcribe melodies but who have developed their 
internal skills over the time through their experiences or their 
predispositions. A formal way to transcribe music is to 
represent this information as universal sheets of music 
containing specific information on what notes are played at a 
given time without saying what the result will sound like. 
Using a computer, a way to represent music information is to 
use for instance MIDI files which abstract most of the 
information composing a piece of music in order to interpret it 
on a computer or in the real world. Music transcription mainly 
relies on the use of digital signal processing techniques, but 
current approaches are not able to capture the rich diversity 
found in audio signal [15], and some approaches propose the 
use of semi-automatic transcription to get better results [16]. 

 The transcription problem can be also seen as a search 
space problem which consists to find optimal or acceptable 
representations of the music signal which are likely to be used 
directly or even as a starting point to find the optimal 
information. Due to the huge size of the search space, the use 
of evolutionary algorithms (EAs) in this context is the correct 
approach to deal with it since these algorithms start running 
with a small set of information going through the search space 
toward the optimal values. 

We introduce in this paper a new approach for music 
transcription using evolution strategies (ES), which are 
considered as belonging to the class of EAs. Although in the 
literature, some reported works used genetic algorithms (GA) 
to tackle this problem, this process being complex due the size 
of search space some questions are raised on the time needed 
for a full convergence to the optimum when GA are used. GA 
use binary representations to encode the individuals of a 
population. Operations on the different individuals that include 
recombination and mutation are applied on the chromosomes 
by means of permuting the positions of bits randomly or 
modifying the value of bit when mutation is applied, and 
exchanging set of bits information or blocks between two 
individuals when it comes to recombination. 

The use of ES can be more adapted for such problem since, 
the optimization process is done by evaluating information 
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which is presented in a way (frequencies, magnitudes, pitch, 
etc.) more adapted to deal with ES which contrarily to GA,  use 
real-valued representations. Moreover, ES use self-adapting 
parameters which adapt themselves during the evolution 
process. The experiments showed that by tuning these 
parameters the time needed for convergence toward the optimal 
values can be significantly reduced while the obtained results 
still remain acceptable.   

The rest of the paper is organized as follows: In section 2, 
an overview on ES is presented, in section 3 related work on 
the subject is discussed, in section 4 we discuss about the 
application of ES in music transcription, in section 5 we 
present and discuss about our experimental results while in 
section 6, we draw some conclusions talk about some future 
directions. 

II. EVOLUTION STRATEGIES 

ES are a sub-class of nature-inspired direct search methods 
belonging to the class of EAs which use mutation, 
recombination, and selection applied to a population of 
individuals containing candidate solutions in order to evolve 
iteratively better and better solutions [1]. They can be applied 
in all fields of optimization including continuous, discrete, 
combinatorial search spaces without and with constraints as 
well as mixed search spaces.  A first type of strategy includes 
directly the mutation strength for each attribute of an individual 
inside the individual. This mutation strength is subject to 
evolution similarly to the individual in a classic genetic 
algorithm. The encoded individual for this type of ES must 
include a strategy parameter as part of the individual. 
Rechenberg [9] and Schwefel [10], was the first to introduce 
them for optimizing real-vectors. They are considered as 
belonging to the class of EAs. Contrarily to GAs, ES do not use 
a binary representations to encode a chromosome. They use 
real-valued vectors to encode an individual. The emphasis is 
given to the mutation operator which applies to the 
chromosome a random noise from a normal distribution.  

ES abstract the evolution process by which genes are 
affecting the phenotype of individuals and are the external 
expression of those genes within an individual. The 
presumption for coding the variables in the ES is the realization 
of a sufficient strong causality (small changes of the cause must 
create small changes of the effect) [2]. Parameters in an ES 
self-adapt as the evolution process is happening.  They use a 
particular formalism to denote their different types. The 
simplest form of ES can be expressed as (1+1)-ES in which we 

have one parent       that will produce one offspring          by 
mean of mutation. Offspring need sufficient level of 
adaptability to survive to the next generation. A fitness value 
should be assigned to them in order to evaluate their 
adaptability level with respect to the problem we are dealing 
with. The individual with the best fitness value is selected for 
the next generation t+1 as the selection operation is 
deterministic. Equation 1 from [2], describes this process. 

      
                                  

                                                                          
     

Based on the way the selection operation is done, ES are 
differentiated as (1+ λ)-ES called “plus selection ES” in which 
the selection of best individuals is applied on both the parents 
and offspring, and (1, λ)-ES called “comma selection ES” in 
which the selection happens only on the offspring. The 
formalisms (µ/ρ, λ)-ES, (1+ λ)-ES, (1, λ)-ES are also used to 
describe ES. In the latter one, the symbol µ represents the total 
number of parents, ρ represents the number of parents that will 
be recombined and, and λ stands for the number of offspring. 

                                                                                
 

The mutation operation is performed on       using a 

random value            from a normal distribution with a 

mean of zero by applying the 1/5th-rule based on the rate of 
successful mutations. Successful mutations happen only when 
the fitness of the produced offspring is better than its parent 

while the global step-size            +) used during the 
mutation is itself adapted (Eq(2)).  

        

                                       

            
  

 
 
                                                          

     

 

The normal distribution with a mean of zero and standard 
deviation of 1 is represented by N (0,1) whereas     is the 
change rate of the global step-size. It is recommended to use 
values between 21/n and 2 for αES [2], where n is the dimension 
of the problem. Each element xi(t) should be initialized to a 
value xi(0) and α(t) to a constant value and  α(0) the value for 
this constant depends on the problem. αES represents the 
changing rate of the step-size [2]. 

III. RELATED WORK 

In the literature many works addressing music transcription 
have been presented. They all use different approaches to 
address this issue. In [3], using a degenerative process, pitches 
was estimated by the subtraction of note estimate from the 
frequency spectrum at a time. Although this model presented 
good results, it suffers from Imperfections in terms of results 
obtained when it comes to dealing with small perturbations in 
the audio signal, as they result in the imperfect subtractions that 
cause problems with the whole transcription.   

Masataka used an approach with every possible 
fundamental frequencies that could be guessed, and was able to 
transcribe a melody and the bass line among any numbers of 
instruments with good results [7]. In [8], Bayesian probability 
networks were used where bottom-up signal analysis could be 
integrated with temporal and musical predictions as polyphonic 
music can be addressed in a certain sense by considering the 
principles of human auditory organization. This probabilistic 
Bayesian networks was also used by Manuel Davy and Simon 
J. Godsill with variable-weight sound model as heuristic to 
transverse the large parameter space of music transcription [4]. 
This method however was only able to transcribe three 
simultaneous notes but could not do more.  

The apparition of the first work applying evolutionary 
algorithms for music transcription was in 2001, in which 
Garcia [12], showed that polyphonic pitch detection can be 
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seen as a search space problem in which the goal is to find the 
pitches that compose an acoustic signal. He used GAs for this 
purpose and instead of decomposing the frequency lattice 
which is almost impossible to do, his approach was to 
reconstruct it, thus considering it as a search space problem.  

Jorge dos Reis and Francisco Fernandez de Vega were able 
to successfully use GAs to transcribe polyphonic music with 
electronic synthesis [6]. However this approach suffers from its 
computationally intensive behaviour and the convergence time 
which is very long due to the application of GAs in the context 
of polyphonic music transcription. In [5], GAs was also used 
for polyphonic music transcription and moreover, they were 
applied to address multi-timbral music transcription.  

Gustavo Reis et al. also used GAs for automatic polyphonic 
music transcription by addressing the multiple fundamental 
frequencies problem and tracking [14]. Their approach was 
restricted to three cases which are: estimation of active 
fundamental frequencies on a frame-by-frame basis; tracking of 
note contours on a continuous time basis; tracking of timbre on 
a continuous time basis. 

IV. TECHNICAL APPROACH 

Musical transcription is still an open challenge for 
researchers. Although there exists a lot of works that address 
this problem, most of them are trying to conceptualize this 
process which in reality is still unknown. There is no standard 
approach to transcribe music. Experimented musicians use rare 
internal skills that they possess and acquired over the time to 
tackle it whereas a formal way to develop them cannot be 
guaranteed as a lot of factors that are not likely to be totally 
abstracted, are involved in this process of developing internal 
abilities within a particular human. Standard methods are trying 
to quantify a process which is computationally unknown and 
even skilled musicians cannot provide formal methods to be 
used in order to transcribe music. 

It is easy for a computer to go from a MIDI representation 
toward the synthesis of the specific audio signal; this 
representation can be understood by any program that can read 
a MIDI file. However going from an acoustic or an audio 
signal to a formal representation of that information raises 
concerns. This is a crucial issue that needs to be addressed in 
its context hence one has to discover who is playing what 
notes.  

To tackle it, we developed a synthesizer that uses a 
particular MIDI-like representation to produce an audio signal 
during the transcription process. This synthesized audio signal 
is then compared with the original audio signal from a WAV 
file that needs to be transcribed. The ES takes as input this 
MIDI-like information containing standard midi numbers 
representing pitches to encode individuals of the population. 

 The evolution process then evaluates the level of 
adaptation of the population by comparing the synthesized 
signal with the original one from a Wav file.  

In his work, Klapuri expressed the need for both a method 
for analysing the music and a mean of parameters for 
optimization [11]. A good optimization process applied to 
music transcription is likely to produce good results.   

The fitness function comparing the two audio signals 
returns the results of the evaluation whereas the ES algorithm 
returns the improved hypotheses. With regards to the 
polyphonic music transcription, complex frequency lattice 
computationally infeasible to deconstruct is created. The 
benefit of this approach is that, this lattice will not need to be 
deconstructed but rather will be reconstructed. This 
reconstruction process will start from less fit individuals 
evolving toward fittest ones by means of ES operators applied 
to the population to get closer to ideal transcription of the 
music. 

A. Indivuduals Encoding 

To encode individuals as primitives for our ES, a real-
valued vector is used. This latter one contains a set of randomly 
generated real numbers that are part of the chromosome. The 
transcription uses a set of three notes to compose a sound at a 
given time, thus forming a chord. In this approach we are not 
taking into account the timbre of the instruments that needs to 
be transcribed although this can be easily done by improving 
our algorithm in order to analyse the timbre information of the 
signal and generate the correct envelopes with a synthesizer. 
However, we investigate on what notes can reconstruct the 
played signal as well as their durations. Table 1 shows a 
generated individual encoded as a chromosome. 

TABLE I.  ENCODED CHROMOSOME FOR AN INDIVIDUAL 

59.98234 67.00242 64.03123 67.02345 71.36770 74.42356 

 

The above example can be considered as a vector of 6 
elements containing real values as they appear in the table. To 
encode a sound, we need three notes that should be played at 
the same time. Therefore, the example depicts a sequence of 2 
sounds (each composed of three notes) played at different 
times. MIDI numbers are integers that represent pitches, the 
frequency of each pitches can be obtained using the formula 
given in equation 4. However a question is raised on the way 
ES would be applied in the context of evolving those 
chromosomes containing MIDI numbers which are integers.  

The experiments have shown that by rounding the real 
number towards its closer midi integer gives very good and 
expected results.  As per the example presented in Table 1, 
“59.9834” will be rounded to “60” and “67.00242” to “67”. 
This rounding process is done only after the ES completed the 
optimization process and sends back the results. However 
depending on the context, one may need the algorithm to return 
real values as results for purposes of analysis or for a manual 
rounding which in some cases may improve the precision, and 
in some cases it is important to use directly these real numbers 
without any rounding process for transcription of music from 
acoustic instruments.  

The first 3 numbers are respectively representing notes “C 
(60)”, “G (67)”, “E (64)”. Played at the same time, they form a 
C major chord. The next three numbers respectively represent 
“G (67)”, “B (71)”, and “D (74)” and form a G Major when 
played at the same time. 
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Therefore, the optimization process will consist in finding 
the correct matching of notes to construct a signal that is closer 
to the target one from the WAV file. 

B. Time Division 

To deal correctly with our problem, we chose not to encode 
the timing information in the chromosome although it is 
possible to implement such approach. 

To get the duration of individuals, the target audio signal is 
analyzed and split using notes onset detection algorithms. The 
resulting information is a set of time segments. The length of 
these particular segments represents the duration of each sound 
that will be synthesized at each corresponding time from the 
audio signal. 

C. Fast Fourier Transform-FFT 

Applying a straight comparison between two acoustic 
signals by measuring the difference between the samples is 
likely to result in similar sounds being rejected because of 
minute differences in small factors like phase [6]. It would be 
more convenient to work in the frequency domain.  Therefore, 
phase will be thrown away by the power spectrum, thus 
enabling differences in the phase of the sine wave making up 
the signal to be not considered. During the submission of a 
particular segment of the sound to the ES process, the segment 
is split in smaller time slots and for each of these slots; a Fast 
Fourier Transform is applied to compare the magnitudes of all 
the frequencies with the corresponding slots in the original 
signal. This comparison happens during the evaluation process, 
to measure the level of adaptability of an individual.  

D. Fitness Function 

Our fitness function implements the process of comparing 
each individual with the original signal that needs to be 
transcribed. In order to do it, at the top level the original signal 
is first split according to the duration of each composing sound. 

 We address in this work equal length polyphonic sounds.  
Those segments are then submitted individually to ES 
algorithms instances.  At the initialisation step, since the audio 
signal has been split in small segments representing a sound 
played in a certain interval of time, with our approach the ES 
will not need to use large size chromosomes, but rather will be 
constituted of a real-valued vector of only 3 elements or more 
depending of the number of notes composing a particular 
sound. These latter ones will enable the ES strategy to optimize 
only the related segment of the audio signal representing a 
sound played at a certain interval of time. Therefore, improving 
the accuracy of the results compared to others methods, which 
need to encode the full audio signal in a chromosome [5], [6]. 
At the end of the execution, the results from all ES which took 
as input each audio segment are returned in the correct order 
along with their durations. 

Before calling the fitness function, the audio segment is 
again split in smaller time slots of approximately 93 ms by 
using a window size of 4096 with a samples rate of 44100, 
resulting in a set of smaller time slices (size 4096).  Now, a 
FFT is applied to each of these time slices along with a Han 

windowing function to ensure that there are no artefacts of 
unwanted frequencies as per equation 5. 

               
   

   
                                                         

 

The same process is applied to the original audio signal that 
we want to transcribe. The fitness function will then compute 
its value by summing the distance between each frequency in 
each time slice of the sound as per equation (6). Since we are 
minimizing the difference from the frequency magnitude of the 
original signal with the synthesized one, the closer it will get, 
the higher will be the level of adaptability.  

        

 
  
 

  
 
  

      

      

    

      

    

   

              

   
      

      

    

      

    

   

              

                   

 

The O(t, f) is the magnitude of frequency f at time slot t in 
the acoustic audio signal, and X(t, f) is the magnitude of the 
frequency f at time slot t for each of the synthesized individual. 
The fitness is computed from time slot t=0 to tmax, going 
through all times from the beginning to the end, and from 
fmin=27.5 to fmax=22050 which correspond respectively to 
the lowest frequency and the nyquist frequency of a 44100 HZ 
sample rate. The ES will adapt its parameters toward optimal 
values that will result in the correct transcription of the 
polyphonic sound.  

V. EXPERIMENTS & RESULTS 

The experiments were run using Matlab. We wrote the 
needed codes for this purpose using this latter one. 

The identified constraints of our ES was that the results 
should be in the interval going from 21 to 108 corresponding to 
the lowest piano note (MIDI numbers) to 108 which is the 
highest note of the piano. In order to run our experiments, we 
synthesized a set of WAV files that we used as our target audio 
signals needing to be transcribed. We made some assumptions 
to ease our experiments as follow: 

 The smallest duration of a note is 0.5 sec.  

 The duration of a sound may be either 0.5 sec., 1 
sec., 1.5 sec., 2 sec. 

 Notes played at the same time should have the 
same length. 

TABLE II.  ES PARAMETERS VALUES 

Parameters  Values 

Population size 100 

Offspring  80 

Initialization strategy [0.005, 0.05] 

Max number of generations 300 

Search space  [21, 108] 
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Fig. 1. Graphical Results of transcription of C major chord 

Using ES with our approach, the first experiment run was to 
transcribe a C Major Chord synthesized with the notes C (60)”, 
“G (67)”, “E (64)”. The transcription was perfectly done as Fig. 
1 shows; we got the best results after 9 generations in about 1.5 
minute. Figure 1 and Table III presents the best results returned 
by the ES although it was run for 300 generations without any 
further improvements of the results 

As EA do not guarantee to return the same results even 
when run different times with the same parameters, it is 
important to run them many times in order to compare the 
results as they can produce better ones.  Table IV shows the 
best results obtained after running a second set of tests for the 
transcription of the same chord (C Major). The results were 
obtained after 8 generations in approximately 1.5 min. 

TABLE III.  TRANSCRIPTION OF C MAJOR : SECOND RESULTS   

 Note 1 Note 2 Note 3 

Rounded 

numbers 

64 60 60 

Real values 

results 

63.9985 60.1580 60.2356 

 

We ran some other tests to transcribe a progression of 5 
chords as shown in Table V. The ES took only 14 minutes to 
successfully transcribe them with good accuracy. Compared to 
others methods using evolutionary algorithms, these results are 

very interesting. In term of applying machine learning 
techniques to music transcription, our work clearly shows that 
ES are also good tools to deal with such problems.  

In their work [6], Gustavo Miguel et al reported that the 
transcription of a progression of 5 chords took about 64 
minutes to complete using GAs whereas using ES this 
shortcoming in term of computation time may be significantly 
reduced as our results shows.  

By increasing the value of the initialization strategy 
parameter with our approach, a fast convergence with good 
accuracy can be triggered. Moreover, in our approach we do 
not submit the full audio signal to the ES which renders the 
computation very expensive, however we first identify using 
note onsets detection techniques the duration of each sound and 
then split the audio signal accordingly. Individual pieces of the 
audio signal are then submitted independently to ES instances 
which bring parallelization features to our approach, thus 
reducing the time for computation.  

TABLE IV.  CHORDS PROGRESSION OF A POLYPHONIC SOUND 

Chord 1 

(1 sec.) 

Chord 2 

(0.5 sec.) 

Chord 3 

(0.5 sec.) 

Chord 4 

(1.5 sec.) 

Chord 5 

(1 sec.) 

60  55 69 64 60 

 64 59 76 67  64 

 67  62 72 71  67 
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Table VI presents the best results we obtained for the 
transcription of a 5 chords progression as returned by the ES 
without applying rounding process. The results are presented as 
real numbers. And as we can observe, the transcription process 
returns the results with a good accuracy. The experiments we 
have done on the application of ES in polyphonic music 
transcription show that these machine learning tools are good 
tools that can be applied in polyphonic music transcription. A 
tradeoff therefore on the value of the strategy parameters exists 
as in certain conditions, this latter one should be increased to 
obtained good results while on the other side some problems 
will need to decrease this value to obtain good results in term 
of optimization. Different values of this parameter should be 
tested and tuned to an acceptable one. 

TABLE V.  RESULTS OF TRANSCRIPTION PROGRESSION 

Chord 1 (1 

sec.) 

Chord 2 

(0.5 sec.) 

Chord 3 

(0.5 sec.) 

Chord 4 

(1.5 sec.) 

Chord 5 

(1 sec.) 

60.0437 55.2045 68.8471 64.0000 60.3624 

63.9456 59.1467 76.0000 66.9162 64.0132 

66.8463 62.1978 72.4153 70.1457 66.2682 

VI. CONCLUSION 

We presented in this paper a novel approach for automatic 
polyphonic music transcription using evolution strategies. In 
this context, we showed through our experiments that the 
frequencies lattice of a perceived sound in an audio signal can 
be reconstructed by optimization procedures as the 
transcription of polyphonic sound can also be addressed as a 
search space problem. The application of ES  as learning tools 
in automatic polyphonic music transcription has proven itself to 
be adapted for such problem in comparison to other state-of-
the-art techniques. Moreover, using these machine learning 
tools, some shortcomings presented by other evolutionary 
algorithms approaches that include the long computation time 
and the high computation cost can be solved. As evolution 
strategies use self-adapting parameters for optimization, we 
showed that tuning the strategy parameter that controls the 
standard deviation, may trigger a fast convergence toward the 
optima while reducing the computation time. At the other side, 
the computation cost and time is addressed by mean of 
parallelization approach to ensure that the workload is 
distributed among the available resources, thus reducing the 
computation time. 

An interesting and potential direction will be to investigate 
on the behavior of those machine learning tools when it comes 
to acoustic sounds. A question can be raised at this level as 
MIDI numbers are integer values that represent the pitches. 
However, knowing that it is hard for an acoustic instrument 

which is manually tuned by a human to sound exactly as the 
correspondent target frequency, but only, it can get near the 
ideal frequency.  Investigating further on how ES can be 
improved to transcribe sounds from acoustic instruments 
constitute a potential challenge as its solution can only be seen 
in a search space that should include frequencies 
representations with their real values.  
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