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Abstract—Luby Transform (LT) codes are more important in 

communication applications due to the characteristics of fast 

encoding/decoding process, and low complexity. However, LT 

codes are optimal only when the number of input symbols is close 

to infinity. Some researches modified the degree distribution of 

LT codes to make LT codes suitable for short symbol length. In 

this article, we propose an optimal coding algorithm to recover 

all of the encoded symbols for LT codes quickly. The proposed 

algorithm observes the coding status of each client and increases 

the coding performance by changing the transmission sequence 

of low-degree and high-degree encoding packets. Simulation 

results show that the resulting decoding overhead of our 

algorithm are lower than the traditional LT codes, and our 

algorithm is very appropriate to server various clients in the 
broadcasting channel environment.  
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I. INTRODUCTION   

Due to the rapid development of embedded system and 
wireless communication, smart phones and tablet computer are 
widely used by people. Many multimedia applications, online 
video and TV, are delivered in the broadcasting channel. 
Nevertheless, the network traffic loads are change frequently 
and unpredictably, the channel errors and loss are very serious.  
Some data acknowledgement and retransmission methods such 
as Automatic Repeat Request (ARQ) scheme and Forward 
Error Correction (FEC) codes are proposed to alleviate the 
problem of data packet loss.  However, these methods will 
incur additional overhead that includes data retransmission and 
add redundancy into the original data. They cannot correctly 
decode the source data when the packet loss rate is large. 

Another method, rateless codes, is proposed to solve the 
problem of data packet loss. Rateless codes can infinitely 
generate unique packets from a given set of source data. As 
long as the encoding packets with the size just slightly larger 
than the number of source blocks can be received, the original 
source data can be fully recovered. Rateless codes include 
Luby Transform (LT) codes [1], Raptor codes [2], and Online 
codes [3]. LT codes are the most popular full realization of 
rateless codes. The encoding process of LT codes is to perform 
XOR operations on randomly chosen d of k source data 
according to Robust Soliton Distribution (RSD). On the 
decoding side, If the original data consists of k input symbols, 
any encoding packet can be generated on average by O(ln(k/δ)) 
symbol operations. LT codes can recover k input symbols from 

any k+O(√k ln2(k/δ)) of the encoding packets with probability 
(1 – δ) by on average O(k · ln(k/δ)) symbol operations. 
Therefore, the encoding and decoding processes are very 
simple and fast. Due to the advantages of easy implementation, 
low complexity, and rateless encoding, LT codes have been 
widely adopted, such as the Third Generation Partnership 
Project (3GPP) [4] and Digital Video Broadcasting (DVB) [5]. 

The objective of our work is to keep the features of LT 
codes, reduce overhead of LT codes in short block length, and 
serve majority of clients first to fully decode source data as 
soon as possible. Compare to LT codes, the proposed method 
has better intermediate performance and low decoding 
complexity than traditional LT codes. Consequently, the 
proposed method is more appropriate to implement on the real-
time decoders, such as mobile phone with strictly delay time 
constrained. 

The rest of the article is organized as follows. We discuss 
some related works in Section II. We describe our proposed 
method. In Section III, we describe our proposed method. 
Simulation results and the discussions are given in Section IV. 
Finally, the conclusion and future work will be given in Section 
V. 

II. RELATED WORK 

In 2006, Kamra et sl. [6] proposed growth codes that 
increase the data persistence of sensor network. In growth 
codes, the encoder gradually increases the degree of encoded 
packets according to z, the ratio of number of decoded symbols 
at the receiver to number of input symbols, such that each 
delivered packet has the highest probability of decoding the 
source symbol at the receiver. That is to say, the degree 
distribution is adjusted depending on the number of symbols 
received by the receiver. The drawback of growth codes is that 
the assumption requires several feedbacks from the receiver.  

In 2007, Sanghavi [7] presented the first paper to solve the 
problem of intermediate performance of rateless codes. The 
author divides the percentage of received coded symbols into 
three regions. The first region is z   [0, 1/2] and the optimum 
degree distribution has degree-one packets only. The second 
region is z   [1/2, 2/3] and the optimum degree distribution 
has degree-two packets only. The optimal degree distribution 
for the third region z   [2/3, 1] is unknown, but the author 
presented an upper bound. However, the optimum degree 
distribution are asymptotic, they could not perform well in the 
practical applications with message of finite length. In 2009, 
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Talari et al. [8] defined the packet recovery rates at three values 
of z as the conflicting objective functions and employ NSGA-II 
multi-objective genetic algorithms optimization method to find 
several degree distributions with optimum packet recovery 
rates. They also propose degree distributions for both cases of 
message with finite and infinite (asymptotic) length. 

In 2009, Kim et al. [9] proposed rateless codes that have 
both good intermediate performance and capacity-achievability 
property. Their proposed codes are generated in a similar 
manner as growth codes [6]; however, from a capacity-
achieving degree distribution in order to be able to recover all 
message symbols from a minimal number of received encoding 
symbols. In 2011, Bioglio et al. [10] proposed Optimal Partial 
Decoder (OPD) that is the first optimal partial decoding 
algorithm for rateless codes, and furthermore analyzed its 
decoding complexity. OPD is an incremental decoding 
algorithm that spreads the decoding process during all the 
symbols reception and starts to decode as soon as the first 
coded symbol is received. 

In 2010, Yang et al, [11] proposed approximate LT codes 
that still follow the Soliton Distribution of LT codes. The 
proposed codes are driven by a receiver-aware control policy, 
which monitors the receiving status and improves the coding 
performance of short data block length by rearranging low-
degree and high-degree encoding packets sent to receivers. 
With the proposed approximate LT codes can introduce lower 
decoding overhead, graceful quality degradation over a wide 
range of channel loss rates, and unequal error protection 
property. 

III. PROPOSED METHOD 

A. LT Codes 

The encoding process of LT codes contains two phases. 
First, a bipartite coding graph is decided. Second, encoding 
packets are generated by performing XOR operations. In the 
bipartite coding graph, one side is input symbols, and the other 
side is encoding packets. The edges between input symbols and 
encoding packets are randomly generated according to the 
Robust Soliton Distribution.  

The Robust Soliton Distribution is based on two 
distributions proposed in [1]: the Ideal Soliton Distribution 
ρ(1), . . . , ρ(k)  

ρ(1) = 1/k 
 For all i = 2, . . . , k, ρ(i) = 1/i(i − 1). 

and the distribution τ(i), …, τ(k) 

  τ(i) = R/ik   for i = 1, . . . , k/R− 1 

τ(i) = Rln(R/δ)/k   for i = k/R 
  τ(i) = 0   for i = k/R + 1, . . . , k 

where R =c・ ln(k/δ)√k for some suitable constant c > 0, 

and δ is the maximum decoding failure probability.  

Add the Ideal Soliton Distribution ρ(i) to τ(i) and normalize 
it, the Robust Soliton Distribution μ(i) can be obtained, and its 
spike is at i = k/R. 

When generate the ith encoding block, we first decide its 
degree di according to the Robust Soliton Distribution μ(i). 
Next, di input symbols are randomly selected. An XOR 
operation is performed on these di input symbols to generate a 
new encoding packet. This encoding process can be infinitely 
repeated to form the rateless codes. 

In the decoder side, the input symbols can be recovered by 
using the Belief Propagation (BP) decoder. The decoder has to 
reconstruct the coding graph. The degree-one encoding blocks 
are first decoded by duplication.  

Then, all edges connecting to the recovered input blocks are 
removed. By iteratively decoding degree-one encoding blocks 
and removing the edges connecting to recovered input symbols. 
The decoder receives n = (1 + ε)k from potentially unlimited 
number of encoding packets can fully decode source symbols, 
and the constant ε is the code overhead. The number of 
encoding packets generated can be determined on the fly. k 
input symbols are used to generate n − k redundant symbols for 
a total of n encoding symbols, and the rate of the code is k/n. 

TABLE I.  ENCODING ALGORITHM 

Encoding algorithm (at Server): 

1. FOR i = 1 TO N 

2. 

3. 

Compute the numbers of received ACK1, ACK2 and 

Fully_Decoded respectively.  

4. IF (((NUM_ACK2 - NUM_Fully_Decoded) / (NUM_Total_Client - 

5. NUM_Fully_Decoded)) >= 0.5) OR ((Previous Mode ==    

6.     Highest_Mode) AND (NUM_ACK2 - NUM_Fully_Decoded) != 0) 

7.         Use Robust Soliton Distribution to generate a packet with degree  

8. d bigger than Spike-1 

9. NUM_Highest_Mode++ 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

ELSE IF ((NUM_ACK1 - NUM_Fully_Decoded) / 

(NUM_Total_Client - NUM_Fully_Decoded) >= 0.5) 

Use Robust Soliton Distribution to generate a packet with 

degree d in the range [5,Spike-1] 

NUM_High_Mode++ 

ELSE  

Use  Robust Soliton Distribution to generate packet 

with degree d packet in the range [1,4] 

                        NUM_Low_Mode++ 

    Perform XOR operation on the packet with degree d 

    Send the packet to all Clients 

END FOR 

  

 
TABLE II.  DECODING ALGORITHM 

 

Decoding algorithm (at Client): 

1. WHILE receiving a new encoding packet    

2. DO the pure LT decoding process 

3. 
4. 
5. 

IF (number of decoded input symbols / number of input 

symbols) >= Low_Threshold 

Send ACK1 to Server 

6. 
7. 

        IF ( number of decoded input symbols / number of input 

symbols)) >= High_Threshold 

8. 
9. 

10. 

              Send ACK2 to Server 

        IF ( number of decoded input symbols == number of input 

symbols) 

11.              Send Fully_Decoded to Server 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 4, No.3, 2013 

28 | P a g e  
www.ijacsa.thesai.org 

 
Fig. 1. The broadcasting simulation environment. 

B. Rateless Control Policy 

In Ideal Soliton Distribution, over 75% of encoding packets 
have degrees less than four. We call these packets with degree-
one, degree-two, degree-three, and degree-four as “low-degree.” 
High-degree packet includes the degree number from five to 
spike-1. Highest-degree packet includes the degree number 
more than spike, k/R. 

Owing to the LT decoding sequence, degree-one encoding 
packets will be decoded earliest. Therefore, at the beginning of 
decoding process, low-degree encoding packets are more 
useful than high-degree ones, clients can easily recover most of 
source data. However, after most source data blocks are 
recovered, remaining source data blocks are more likely to be 
recovered from high-degree packets because high-degree 
packets contain more information of source data blocks. Thus 
low-degree packets are more important at the beginning of 
decoding process, but they are less important after most source 
data blocks have been recovered. Similarly, high-degree 
packets are more important than low-degree ones at the latter of 
decoding process. 

The server tries to satisfy the need of the clients and help 
them to fully decode the entire source data as soon as possible. 
We propose a three-mode control policy that generates and 
transmits low-degree, high-degree and highest-degree packets 
depending on the client decoding conditions. In the low-degree 
mode, the server generates low-degree encoding packets. In 
high-degree mode, the server generates high-degree encoding 
packets.  

In highest-degree mode, the server generates highest-degree 
encoding packets. When the client receives packets from the 
server, each client will send two ACKs to acknowledge the 
sever its current decoding status. If the client decodes over 
Low_Threshold percentage of source data, it sends an ACK1 to 
acknowledge the sever. If the client further decodes over 
High_Threshold percentage, it sends another ACK2 to the 
server. The objective of these two threshold values is to let the 
server know the decoding status of each client. In the 
broadcasting channels, the server collects the ACKs, ACK1 
and ACK2, sent by clients and then decides to transmit which 
types of encoding packets in the next stage. If the majority of 
clients decodes only few source data, the server continue 
generate more low-degree encoding packets. If one half of the 
clients have already decoded over Low_Threshold percentage, 
we set to 60%, the server generates high-degree encoding 
packets. If one half of clients have decoded over  

             

 

(a) 

 

(b) 

Fig. 2.  (a) The probability density function of channel loss rate. (b) The 

number of clients for each channel loss rate. 

High_Threshold percentage, we set to 90%, the server 
transmits highest-degree encoding packets. By doing so, the 
server can help the majority of clients to fully decode the entire 
source symbols as early as possible. 

TABLE I and TABLE II show the encoding and decoding 
algorithms of our proposed method, respectively.  Note that we 
assume that the number of total clients, NUM_Total_Client, is 
equal to 1000. In the encoding process, there are three modes, 
including Low_Mode, High_Mode, and Highest_Mode. 

IV. SIMULATION  RESULTS 

In this section, the performance of the proposed method is 
compared with LT codes.  

We assume that 1000 clients are concurrently severed by a 
server in the broadcast channel. Fig. 1 shows the broadcasting 
simulation environment. The possible channel loss rate for each 
client can somehow be modeled by a probability density 
function. We adopt a Normal Distribution as shown in Fig. 2(a) 
to approximate the channel loss rate model, and the number of 
clients for each channel loss rate is as shown in Fig. 2(a). As 
we can see in Fig. 2(b), there is only one single client under 
zero loss rate channel condition, and also only one single client 
under 40% channel loss rate. Most of the clients are under 
rather moderate average 20% channel loss rate. Many 
applications are sensitive to delay-time-constraint so as to 
require short data block length in practice. We therefore apply 
the short data block length to evaluate the performance of 
proposed codes in comparison with LT codes. The length of 
source data k is 660, and we set the constant c = 0.086, δ = 0.5 
in Robust Soliton Distribution for LT codes. The parameters 
Low_Threshold and High_Threshold are set to 60% and 90%. 
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We consider the channel lost rate model with μ = 10%, 20%, and σ = 3.5, 6.5.  

Fig. 3. Number of fully decoded clients at different transmission 
redundancy in broadcasting applications. 

In broadcasting channel, Fig. 3 shows the number of fully 
decoded clients at different transmission redundancy in 
broadcasting applications. Transmission redundancy is denoted 
as the number of transmitted encoding packets divided by k.  
Simulation result reveals that our propose method overpass LT 
codes, we have lower transmission redundancy than LT codes. 
The best performance of all simulation combinations is our 
proposed method with μ = 10% and σ = 6.5. The less loss rate, 
the lower transmission redundancy. With the proposed method, 
we can help over 97% of clients to decode all the source data at 
transmission redundancy 1.40.  

However, LT codes need almost double overhead to 
achieve these. It is because through the ACKs from clients and 
voting scheme, the server can be better aware of the decoding 
progress of the clients and always try best to serve the majority 
first to let them achieve fully-decoded as early as possible. The 
server collects the ACKs sent by clients and determines to 
generate low-degree, high-degree, and highest-degree encoding 
packets to satisfy the need of the majority of clients in the 
network. This is worth mentioning that LT codes are 
asymptotically optimal only for the number of source data 
tending to infinity; thus, when it comes to short source data 
block length, LT codes introduce higher decoding overhead. 

We would like to determine the best mode-switching time 
according to the useless rate of the packet, hence we define the 
useless rate of a packet. When one client has already decoded 
all source data blocks, any packet that the server sent is useless.  

Useless rate = number of useless packets / (number of total 
client – number of fully decoded client)   

Fig. 4 shows that the useless rate of the packet using 
proposed method at μ = 10% and σ = 6.5. When the number of 
the transmitted encoding packets is lower than 680, the system 
is in low mode. Server generates and transmits the low degree 
packet to the client.  

When the number of the transmitted encoding packets is 
equal to 680, over one half of clients have decoded over 60 
percentages of source data, and then the system switches to 
high mode. Server starts to generate and transmit the high 
degree packet to the client. When the number of the transmitted 

encoding packets comes to 858, over one half of clients have 
decoded over 90 percentages of source data, and then the 
system switches to highest mode. Server starts to generate and 
transmit the highest degree packet to the client. When the 
number of the transmitted encoding packets comes to 951, the 
system switches back to low mode. Unfortunately, the useless 
rate of the transmitted packets gradually rise again, the system 
switches to high mode. The high useless rate is still high for 
some time. When the number of the transmitted encoding 
packets comes to 1194, the system switches to highest mode.  
Most of clients had decoded all of source data, so the useless 
rate of the transmitted encoding packets becomes almost zero. 
Finally, when the number of the transmitted encoding packets 
comes to 1253, the system switches to low mode, sever 
generates and sends low degree packets to the few clients that 
had not decoded completely. By observing the useless rate of 
the transmitted encoding packets, we can dynamically change 
mode-switching time. 

In the point-to-point condition, we compare the proposed 
method with LT codes. Fig. 5 represents the average decoding 
probability of source symbols over 10,000 rounds at lost rate 
equaling 10% and 20%. Here decoding probability means the 
percentage of the source data that the client can recovered. The 
decoding probability increases smoothly at beginning, rapidly 
rises up in the middle, and again slowly increases toward one. 
Simulation result reveals that our propose method overpass LT 
codes, we have higher decoding probability than LT codes.  
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Fig. 4. The useless rate of the packet using proposed method at μ = 20% 
and σ = 6.5 

 

Fig. 5. Average decoding probability of a client using proposed method. 

V. CONCLUSION 

In this article, we proposed a three-mode control policy of 
rateless codes. The server can dynamically generate and 
transmit low-degree, high-degree and highest-degree packets to 
the client according to the decoding status of the client. 
Simulation results show that the resulting decoding overhead 
and useless packets rate of our proposed algorithm are lower 

than the traditional LT codes, and furthermore the proposed 
method also has better intermediate performance that LT codes. 
In the future, a more effective coding method and optimum 
degree distribution could be investigated. Besides, many 
multimedia applications on the handheld devices will introduce 
various control policies. These are worth to be further 
discussed and investigated.  
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