
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.3, 2013

26 | P a g e
www.ijacsa.thesai.org

Transmission Control for Fast Recovery of Rateless

Codes

Jau-Wu Huang

Department of Computer Science

National Tsing Hua University

Hsinchu, Taiwan

Kai-Chao Yang, Han-Yu Hsieh, Jia-Shung Wang

Department of Computer Science

National Tsing Hua University

Hsinchu, Taiwan

Abstract—Luby Transform (LT) codes are more important in

communication applications due to the characteristics of fast

encoding/decoding process, and low complexity. However, LT

codes are optimal only when the number of input symbols is close

to infinity. Some researches modified the degree distribution of

LT codes to make LT codes suitable for short symbol length. In

this article, we propose an optimal coding algorithm to recover

all of the encoded symbols for LT codes quickly. The proposed

algorithm observes the coding status of each client and increases

the coding performance by changing the transmission sequence

of low-degree and high-degree encoding packets. Simulation

results show that the resulting decoding overhead of our

algorithm are lower than the traditional LT codes, and our

algorithm is very appropriate to server various clients in the
broadcasting channel environment.

Keywords—LT codes; broadcasting channel; degree

distribution

I. INTRODUCTION

Due to the rapid development of embedded system and
wireless communication, smart phones and tablet computer are
widely used by people. Many multimedia applications, online
video and TV, are delivered in the broadcasting channel.
Nevertheless, the network traffic loads are change frequently
and unpredictably, the channel errors and loss are very serious.
Some data acknowledgement and retransmission methods such
as Automatic Repeat Request (ARQ) scheme and Forward
Error Correction (FEC) codes are proposed to alleviate the
problem of data packet loss. However, these methods will
incur additional overhead that includes data retransmission and
add redundancy into the original data. They cannot correctly
decode the source data when the packet loss rate is large.

Another method, rateless codes, is proposed to solve the
problem of data packet loss. Rateless codes can infinitely
generate unique packets from a given set of source data. As
long as the encoding packets with the size just slightly larger
than the number of source blocks can be received, the original
source data can be fully recovered. Rateless codes include
Luby Transform (LT) codes [1], Raptor codes [2], and Online
codes [3]. LT codes are the most popular full realization of
rateless codes. The encoding process of LT codes is to perform
XOR operations on randomly chosen d of k source data
according to Robust Soliton Distribution (RSD). On the
decoding side, If the original data consists of k input symbols,
any encoding packet can be generated on average by O(ln(k/δ))
symbol operations. LT codes can recover k input symbols from

any k+O(√k ln2(k/δ)) of the encoding packets with probability
(1 – δ) by on average O(k · ln(k/δ)) symbol operations.
Therefore, the encoding and decoding processes are very
simple and fast. Due to the advantages of easy implementation,
low complexity, and rateless encoding, LT codes have been
widely adopted, such as the Third Generation Partnership
Project (3GPP) [4] and Digital Video Broadcasting (DVB) [5].

The objective of our work is to keep the features of LT
codes, reduce overhead of LT codes in short block length, and
serve majority of clients first to fully decode source data as
soon as possible. Compare to LT codes, the proposed method
has better intermediate performance and low decoding
complexity than traditional LT codes. Consequently, the
proposed method is more appropriate to implement on the real-
time decoders, such as mobile phone with strictly delay time
constrained.

The rest of the article is organized as follows. We discuss
some related works in Section II. We describe our proposed
method. In Section III, we describe our proposed method.
Simulation results and the discussions are given in Section IV.
Finally, the conclusion and future work will be given in Section
V.

II. RELATED WORK

In 2006, Kamra et sl. [6] proposed growth codes that
increase the data persistence of sensor network. In growth
codes, the encoder gradually increases the degree of encoded
packets according to z, the ratio of number of decoded symbols
at the receiver to number of input symbols, such that each
delivered packet has the highest probability of decoding the
source symbol at the receiver. That is to say, the degree
distribution is adjusted depending on the number of symbols
received by the receiver. The drawback of growth codes is that
the assumption requires several feedbacks from the receiver.

In 2007, Sanghavi [7] presented the first paper to solve the
problem of intermediate performance of rateless codes. The
author divides the percentage of received coded symbols into
three regions. The first region is z [0, 1/2] and the optimum
degree distribution has degree-one packets only. The second
region is z [1/2, 2/3] and the optimum degree distribution
has degree-two packets only. The optimal degree distribution
for the third region z [2/3, 1] is unknown, but the author
presented an upper bound. However, the optimum degree
distribution are asymptotic, they could not perform well in the
practical applications with message of finite length. In 2009,

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.3, 2013

27 | P a g e
www.ijacsa.thesai.org

Talari et al. [8] defined the packet recovery rates at three values
of z as the conflicting objective functions and employ NSGA-II
multi-objective genetic algorithms optimization method to find
several degree distributions with optimum packet recovery
rates. They also propose degree distributions for both cases of
message with finite and infinite (asymptotic) length.

In 2009, Kim et al. [9] proposed rateless codes that have
both good intermediate performance and capacity-achievability
property. Their proposed codes are generated in a similar
manner as growth codes [6]; however, from a capacity-
achieving degree distribution in order to be able to recover all
message symbols from a minimal number of received encoding
symbols. In 2011, Bioglio et al. [10] proposed Optimal Partial
Decoder (OPD) that is the first optimal partial decoding
algorithm for rateless codes, and furthermore analyzed its
decoding complexity. OPD is an incremental decoding
algorithm that spreads the decoding process during all the
symbols reception and starts to decode as soon as the first
coded symbol is received.

In 2010, Yang et al, [11] proposed approximate LT codes
that still follow the Soliton Distribution of LT codes. The
proposed codes are driven by a receiver-aware control policy,
which monitors the receiving status and improves the coding
performance of short data block length by rearranging low-
degree and high-degree encoding packets sent to receivers.
With the proposed approximate LT codes can introduce lower
decoding overhead, graceful quality degradation over a wide
range of channel loss rates, and unequal error protection
property.

III. PROPOSED METHOD

A. LT Codes

The encoding process of LT codes contains two phases.
First, a bipartite coding graph is decided. Second, encoding
packets are generated by performing XOR operations. In the
bipartite coding graph, one side is input symbols, and the other
side is encoding packets. The edges between input symbols and
encoding packets are randomly generated according to the
Robust Soliton Distribution.

The Robust Soliton Distribution is based on two
distributions proposed in [1]: the Ideal Soliton Distribution
ρ(1), . . . , ρ(k)

ρ(1) = 1/k
 For all i = 2, . . . , k, ρ(i) = 1/i(i − 1).

and the distribution τ(i), …, τ(k)

 τ(i) = R/ik for i = 1, . . . , k/R− 1

τ(i) = Rln(R/δ)/k for i = k/R
 τ(i) = 0 for i = k/R + 1, . . . , k

where R =c・ ln(k/δ)√k for some suitable constant c > 0,

and δ is the maximum decoding failure probability.

Add the Ideal Soliton Distribution ρ(i) to τ(i) and normalize
it, the Robust Soliton Distribution μ(i) can be obtained, and its
spike is at i = k/R.

When generate the ith encoding block, we first decide its
degree di according to the Robust Soliton Distribution μ(i).
Next, di input symbols are randomly selected. An XOR
operation is performed on these di input symbols to generate a
new encoding packet. This encoding process can be infinitely
repeated to form the rateless codes.

In the decoder side, the input symbols can be recovered by
using the Belief Propagation (BP) decoder. The decoder has to
reconstruct the coding graph. The degree-one encoding blocks
are first decoded by duplication.

Then, all edges connecting to the recovered input blocks are
removed. By iteratively decoding degree-one encoding blocks
and removing the edges connecting to recovered input symbols.
The decoder receives n = (1 + ε)k from potentially unlimited
number of encoding packets can fully decode source symbols,
and the constant ε is the code overhead. The number of
encoding packets generated can be determined on the fly. k
input symbols are used to generate n − k redundant symbols for
a total of n encoding symbols, and the rate of the code is k/n.

TABLE I. ENCODING ALGORITHM

Encoding algorithm (at Server):

1. FOR i = 1 TO N

2.

3.

Compute the numbers of received ACK1, ACK2 and

Fully_Decoded respectively.

4. IF (((NUM_ACK2 - NUM_Fully_Decoded) / (NUM_Total_Client -

5. NUM_Fully_Decoded)) >= 0.5) OR ((Previous Mode ==

6. Highest_Mode) AND (NUM_ACK2 - NUM_Fully_Decoded) != 0)

7. Use Robust Soliton Distribution to generate a packet with degree

8. d bigger than Spike-1

9. NUM_Highest_Mode++

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

ELSE IF ((NUM_ACK1 - NUM_Fully_Decoded) /

(NUM_Total_Client - NUM_Fully_Decoded) >= 0.5)

Use Robust Soliton Distribution to generate a packet with

degree d in the range [5,Spike-1]

NUM_High_Mode++

ELSE

Use Robust Soliton Distribution to generate packet

with degree d packet in the range [1,4]

 NUM_Low_Mode++

 Perform XOR operation on the packet with degree d

 Send the packet to all Clients

END FOR

TABLE II. DECODING ALGORITHM

Decoding algorithm (at Client):

1. WHILE receiving a new encoding packet

2. DO the pure LT decoding process

3.
4.
5.

IF (number of decoded input symbols / number of input

symbols) >= Low_Threshold

Send ACK1 to Server

6.
7.

 IF (number of decoded input symbols / number of input

symbols)) >= High_Threshold

8.
9.

10.

 Send ACK2 to Server

 IF (number of decoded input symbols == number of input

symbols)

11. Send Fully_Decoded to Server

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.3, 2013

28 | P a g e
www.ijacsa.thesai.org

Fig. 1. The broadcasting simulation environment.

B. Rateless Control Policy

In Ideal Soliton Distribution, over 75% of encoding packets
have degrees less than four. We call these packets with degree-
one, degree-two, degree-three, and degree-four as “low-degree.”
High-degree packet includes the degree number from five to
spike-1. Highest-degree packet includes the degree number
more than spike, k/R.

Owing to the LT decoding sequence, degree-one encoding
packets will be decoded earliest. Therefore, at the beginning of
decoding process, low-degree encoding packets are more
useful than high-degree ones, clients can easily recover most of
source data. However, after most source data blocks are
recovered, remaining source data blocks are more likely to be
recovered from high-degree packets because high-degree
packets contain more information of source data blocks. Thus
low-degree packets are more important at the beginning of
decoding process, but they are less important after most source
data blocks have been recovered. Similarly, high-degree
packets are more important than low-degree ones at the latter of
decoding process.

The server tries to satisfy the need of the clients and help
them to fully decode the entire source data as soon as possible.
We propose a three-mode control policy that generates and
transmits low-degree, high-degree and highest-degree packets
depending on the client decoding conditions. In the low-degree
mode, the server generates low-degree encoding packets. In
high-degree mode, the server generates high-degree encoding
packets.

In highest-degree mode, the server generates highest-degree
encoding packets. When the client receives packets from the
server, each client will send two ACKs to acknowledge the
sever its current decoding status. If the client decodes over
Low_Threshold percentage of source data, it sends an ACK1 to
acknowledge the sever. If the client further decodes over
High_Threshold percentage, it sends another ACK2 to the
server. The objective of these two threshold values is to let the
server know the decoding status of each client. In the
broadcasting channels, the server collects the ACKs, ACK1
and ACK2, sent by clients and then decides to transmit which
types of encoding packets in the next stage. If the majority of
clients decodes only few source data, the server continue
generate more low-degree encoding packets. If one half of the
clients have already decoded over Low_Threshold percentage,
we set to 60%, the server generates high-degree encoding
packets. If one half of clients have decoded over

(a)

(b)

Fig. 2. (a) The probability density function of channel loss rate. (b) The

number of clients for each channel loss rate.

High_Threshold percentage, we set to 90%, the server
transmits highest-degree encoding packets. By doing so, the
server can help the majority of clients to fully decode the entire
source symbols as early as possible.

TABLE I and TABLE II show the encoding and decoding
algorithms of our proposed method, respectively. Note that we
assume that the number of total clients, NUM_Total_Client, is
equal to 1000. In the encoding process, there are three modes,
including Low_Mode, High_Mode, and Highest_Mode.

IV. SIMULATION RESULTS

In this section, the performance of the proposed method is
compared with LT codes.

We assume that 1000 clients are concurrently severed by a
server in the broadcast channel. Fig. 1 shows the broadcasting
simulation environment. The possible channel loss rate for each
client can somehow be modeled by a probability density
function. We adopt a Normal Distribution as shown in Fig. 2(a)
to approximate the channel loss rate model, and the number of
clients for each channel loss rate is as shown in Fig. 2(a). As
we can see in Fig. 2(b), there is only one single client under
zero loss rate channel condition, and also only one single client
under 40% channel loss rate. Most of the clients are under
rather moderate average 20% channel loss rate. Many
applications are sensitive to delay-time-constraint so as to
require short data block length in practice. We therefore apply
the short data block length to evaluate the performance of
proposed codes in comparison with LT codes. The length of
source data k is 660, and we set the constant c = 0.086, δ = 0.5
in Robust Soliton Distribution for LT codes. The parameters
Low_Threshold and High_Threshold are set to 60% and 90%.

0

10

20

30

40

50

60

70

0 10 20 30 40 50

Channel Loss Rate: %

Number of clients

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.3, 2013

29 | P a g e
www.ijacsa.thesai.org

We consider the channel lost rate model with μ = 10%, 20%, and σ = 3.5, 6.5.

Fig. 3. Number of fully decoded clients at different transmission
redundancy in broadcasting applications.

In broadcasting channel, Fig. 3 shows the number of fully
decoded clients at different transmission redundancy in
broadcasting applications. Transmission redundancy is denoted
as the number of transmitted encoding packets divided by k.
Simulation result reveals that our propose method overpass LT
codes, we have lower transmission redundancy than LT codes.
The best performance of all simulation combinations is our
proposed method with μ = 10% and σ = 6.5. The less loss rate,
the lower transmission redundancy. With the proposed method,
we can help over 97% of clients to decode all the source data at
transmission redundancy 1.40.

However, LT codes need almost double overhead to
achieve these. It is because through the ACKs from clients and
voting scheme, the server can be better aware of the decoding
progress of the clients and always try best to serve the majority
first to let them achieve fully-decoded as early as possible. The
server collects the ACKs sent by clients and determines to
generate low-degree, high-degree, and highest-degree encoding
packets to satisfy the need of the majority of clients in the
network. This is worth mentioning that LT codes are
asymptotically optimal only for the number of source data
tending to infinity; thus, when it comes to short source data
block length, LT codes introduce higher decoding overhead.

We would like to determine the best mode-switching time
according to the useless rate of the packet, hence we define the
useless rate of a packet. When one client has already decoded
all source data blocks, any packet that the server sent is useless.

Useless rate = number of useless packets / (number of total
client – number of fully decoded client)

Fig. 4 shows that the useless rate of the packet using
proposed method at μ = 10% and σ = 6.5. When the number of
the transmitted encoding packets is lower than 680, the system
is in low mode. Server generates and transmits the low degree
packet to the client.

When the number of the transmitted encoding packets is
equal to 680, over one half of clients have decoded over 60
percentages of source data, and then the system switches to
high mode. Server starts to generate and transmit the high
degree packet to the client. When the number of the transmitted

encoding packets comes to 858, over one half of clients have
decoded over 90 percentages of source data, and then the
system switches to highest mode. Server starts to generate and
transmit the highest degree packet to the client. When the
number of the transmitted encoding packets comes to 951, the
system switches back to low mode. Unfortunately, the useless
rate of the transmitted packets gradually rise again, the system
switches to high mode. The high useless rate is still high for
some time. When the number of the transmitted encoding
packets comes to 1194, the system switches to highest mode.
Most of clients had decoded all of source data, so the useless
rate of the transmitted encoding packets becomes almost zero.
Finally, when the number of the transmitted encoding packets
comes to 1253, the system switches to low mode, sever
generates and sends low degree packets to the few clients that
had not decoded completely. By observing the useless rate of
the transmitted encoding packets, we can dynamically change
mode-switching time.

In the point-to-point condition, we compare the proposed
method with LT codes. Fig. 5 represents the average decoding
probability of source symbols over 10,000 rounds at lost rate
equaling 10% and 20%. Here decoding probability means the
percentage of the source data that the client can recovered. The
decoding probability increases smoothly at beginning, rapidly
rises up in the middle, and again slowly increases toward one.
Simulation result reveals that our propose method overpass LT
codes, we have higher decoding probability than LT codes.

0

200

400

600

800

1000
Fu

lly
 d

ec
o

d
ed

 c
lie

n
ts

Transmission redundancy

Proposed with σ=3.5 μ=10%

Proposed with σ=3.5 μ=20%

Proposed with σ=6.5 μ=10%

Proposed with σ=6.5 μ=20%

LT with σ=3.5 μ=10%

LT with σ=3.5 μ=20%

LT with σ=6.5 μ=10%

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.3, 2013

30 | P a g e
www.ijacsa.thesai.org

Fig. 4. The useless rate of the packet using proposed method at μ = 20%
and σ = 6.5

Fig. 5. Average decoding probability of a client using proposed method.

V. CONCLUSION

In this article, we proposed a three-mode control policy of
rateless codes. The server can dynamically generate and
transmit low-degree, high-degree and highest-degree packets to
the client according to the decoding status of the client.
Simulation results show that the resulting decoding overhead
and useless packets rate of our proposed algorithm are lower

than the traditional LT codes, and furthermore the proposed
method also has better intermediate performance that LT codes.
In the future, a more effective coding method and optimum
degree distribution could be investigated. Besides, many
multimedia applications on the handheld devices will introduce
various control policies. These are worth to be further
discussed and investigated.

REFERENCES

[1] M. Luby, “LT Codes,” in Proc. of the 43rd Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 271-282, 2002.

[2] Amin Shokrollahi, "Raptor Codes," in IEEE Transactions on
Information Theory, vol. 52, no. 6, pp. 2551-2567, 2006.

[3] P. Maymounkov, “Online codes,” NYU Technical Report TR2003-883,

2002.

[4] 3GPP TS 26.346 V6.1.0, Technical Specification Group Services and
System Aspects; Multimedia Broadcast/Multicast Service; Protocols and

Codecs, 2005.

[5] ETSI DVB TM-CBMS1167, IP Datacast over DVB-H: Content
Delivery Protocols, Sept. 2005, draft Technical Specification,

http://www.dvb.org.

[6] A. Kamra, V. Misra, J. Feldman, and D. Rubenstein, “Growth codes:
Maximizing sensor network data persistence,” ACM SIGCOMM

Computer Communication Rev., vol. 36, no. 4, pp. 255–266, 2006.

[7] S. Sanghavi, “Intermediate performance of rateless codes,” IEEE
Information Theory Workshop, pp. 478–482, Sep. 2007.

[8] A. Talari and N. Rahnavard, “Rateless codes with optimum intermediate
performance,” IEEE GLOBECOM 2009, Dec. 2009.

[9] S. Kim and S. Lee, “Improved intermediate performance of rateless

codes,” ICACT 2009, vol. 3, pp. 1682–1686, Feb. 2009.

[10] Valerio Bioglio, Marco Grangetto, Rossano Gaeta, and Matteo Sereno.
An optimal partial decoding algorithm for rateless codes. IEEE

International Symposium on Information Theory, pages 2731-2735,
2011.

[11] Kai-Chao Yang, Chun Lung Lin, Tung-Lin Wu, Jia-Shung Wang:

“Service-Driven Approximate LT Codes.” IEEE ICC 2010: 1-5.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5

D
ec

o
d

in
g
 p

ro
b

a
b

il
it

y

Decoding redundancy

Proposed with

loss rate=10%

LT with loss

rate=10%

Proposed with

loss rate=20%

LT with loss

rate=20%

