
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.3, 2013

31 | P a g e
www.ijacsa.thesai.org

A Project Based CS/IS-1 Course with an Active

Learning Environment

Dr. Suvineetha Herath*, Dr. Ajantha Herath*, Mr. Mohammed A.R. Siddiqui*, Mr. Khuzaima AH. El-Jallad*

*ACMSIG Teaching & Learning Group

University of Bahrain

Kingdom of Bahrain

Abstract—High level programming languages use system

defined data types and the user defined data types in

computations. We have developed a project-based CS/IS-1 course

to substitute the traditional lecture based classroom to help

students design and use at least two user defined data types in

their computations to solve real world problems. Abstract data

types and basic programming constructs are introduced

efficiently to the students in an active learning environment using

games. To assess and evaluate the changes made we distributed

the course module among our students and other instructors.

This paper describes our experience in developing the project
based active learning environment.

Keywords-I/O; arithmetic expressions; if-else and switch

conditional operations; for-while iterative computation;

inheritance; polymorphism; recursion; searching and sorting

algorithms; IDE.

I. INTRODUCTION

The objectives of this course are to introduce computer
science fundamentals using C++, provide the ability to design
algorithms to solve problems and implement those using test
and document programs. The course focuses on software
engineering process and techniques. Student outcomes at the
end of the course are shown below:

They will be able to:

1) Design, implement, test and document application

programs of simple to moderate complexity that use two or

more user defined types and variables, classes or abstract

data types, and one main program.

2) Apply basic programming constructs such as

sequence, selection, iteration, functions in complete,

syntactically correct programs.

3) Communicate both technical and non-technical

aspects of student’s work in formal and informal settings.

4) Develop programs in multiple stages; use stubs to

test the system as a whole; use drivers to carry out unit testing

for functional components and for data abstractions.

5) Maintain a record of time devoted to the component

tasks in the completion of programming projects.
There is both local and national need for high-quality

trained programmers with the ability to learn in a short period
of time and stay current with the information technology
advances. Colleges can help to meet this demand by
redesigning their programming courses allowing more
students to succeed at the entry level. Successful application of

active learning with rapidly changing technologies in the
learning process is a way to remove the difficulties at entry
level. Such changes will help the students to improve their
skills. Consequently, both the public and private sectors will
benefit with the greater number of highly-skilled trained
programmers.

We identified many deficiencies in teaching a traditional
lecture based CS/IS-1 class and the importance of
transforming the course into a project based e-learning
environment. The lecture based environment is relatively
passive. In addition, we want to connect this class to other
classes such as computer architecture, digital design, operating
systems, security, parallel computing, and importantly the
needs of industry. An effective computer programming class
could provide these links. From our initial planning input we
took actions to transform the course to a project based one and
then collected results. Feedback from the action stage and
results are used to improve the plan. We continuously
improved the quality of instruction and actions while using the
feedback received from the students, and took action to
transform the course suitable for e-learning. A course with the
features outlined above could help our students develop design
skills in several different languages before their graduation.

The following sections outline the details of research
model, actions taken, course plan, goals achieved, difficulties
encountered, course assessment, plan for future work and
summary.

II. RESEARCH MODEL

Over the years we have reviewed many textbooks and
papers, and attended workshops and conferences [1-5]. We
continuously improved our offerings by making changes to the
course, collecting data and evaluating them, and using the
feedback for further improvements. There are many good
books published on C++ programming. Malik authored a very
good book for this class and published the seventh edition by
Cengage learning [2]. Gaddis’ C++ programming with objects
first, published by Pearson is also another very good book
with many supplements for this class [3]. Deitel’s C++
programming, published by Pearson is also another very good
book with many supplements for this class [4]. Horstmann has
also written a good C++ Programming book published by
Wiley. Because of the simplicity and the clustered sets of
programming examples and problems presented in the book
we selected Liang’s C++ programming second edition
published by Pearson as the main text for our class [1].

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.3, 2013

32 | P a g e
www.ijacsa.thesai.org

At the beginning of this course we introduced number
systems and simple game designs using binary numbers.
Thereafter, we included random number generators and
simulations with basic programming constructs as open and
close project laboratories. We have integrated security-related
concepts into the course. At the end, we incorporated modules
to help the students understand the importance of parallelism
in enhancing performance of sorting algorithms and its
benefits as an application programmer, a systems programmer,
an algorithm designer, and a computer architect.

Topics presented in this course include the implementation
of basic programming constructs such as I/O, arithmetic
expressions, if-else and switch conditional operations, for-
while iterative computation controls, simple functions, classes,
inheritance, polymorphism, recursion, searching and sorting
algorithms. This course includes twenty eight lecture
modules, fifteen hands-on project activities. Several examples
of classroom activities are given below.

III. TRANSFORMATIONS-ACTIONS TAKEN

We have replaced the old text based programming style to
Graphical User Interface (GUI). Students downloaded the free
online and open software (FOSS) Code Blocks IDE from
http://www.codeblocks.org/downloads/26/ to complete the
project activities using Windows 7 operating system. [6]. The
following paragraphs describe the projects assigned with
sample solutions completed by the students from simple to
moderate complexity.

A. Project 1:

The following code 1, depicts the first classroom project
assigned to illustrate a simple vending machine. The goal of
this particular activity is to introduce the concepts of cout, cin,
<< , >>, and simple arithmetic operations. Towards the end of
the class this project is extended to demonstrate the design and
the use of multiple classes.

#include <iostream>

using namespace std;

int main()

{

 int juice_money, cent_85, cent_1;

 cout << "This juice machine accepts Dollar bills.\n";

 cout << "How many dollars will you insert?\n";

 cin >> juice_money;

 // Find the number of 85 cent juice cans to be dispensed.

 cent_85 = 100 * juice_money / 85;

 // Find the number of pennies to be dispensed.

 cent_1 = 100 * juice_money % 85;

 //Tell the user how many juice cans they will get.

 cout << "The juice vendor will dispence:\n";

 cout << "1) " << cent_85 << " 85 cent juice cans.\n";

 cout << "2) " << cent_1 << " Pennies.\n";

 return 0;

}

Code 1. I/O Project

B. Project 2:

In this project students design and implement a game
based on binary number to decimal conversion that is able to

produce a number from 1 to 31 and hence any individual’s
birthday [1]. First the binary number system is introduced
with binary to decimal conversions. Students were allowed to
discover that any decimal number from 1 to 31 can be
represented with five bits and to identify the corresponding
five groups. See Code 2.

#include <iostream>

using namespace std;

int main()

{

 // Initialize 6 input/output variables

 int bit1, bit2,bit3, bit4, bit5, day;

 cout << "I can guess your birthday.\n";

 cout << "Remember to put a 1 for yes and a 0 for no.\n";

 cout << "Is your birth day in set 1?\n";

 cout << "Set 1: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29,

31\n";

 cin >> bit1;

 cout << endl << "Is your birth day in set 2?\n";

 cout << "Set 2: 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30,

31\n";

 cin >> bit2;

 cout << endl << "Is your birth day in set 3?\n";

 cout << "Set 3: 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30,

31\n";

 cin >> bit3;

 cout << endl << "Is your birth day in set 4?\n";

 cout << "Set 4: 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30,

31\n";

 cin >> bit4;

 cout << endl << "Is your birth day in set 5?\n";

 cout << "Set 5: 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31\n";

 cin >> bit5;

 day = bit5*16 + bit4*8 + bit3*4 + bit2*2 + bit1;

 cout << endl << "Your birth day is on the " << day << " day of your

birth month.";

 return 0;

}

Code 2. Binary to Decimal Conversion game

C. Project 3:

Conditional if else switch statements are central to writing
computer programs and aimed at helping students understand
and solve intractable problems. In this project students were
introduced to random number generation and asked to design a
game that simulates a lottery drawing [1]. They implemented
the game for one, two and three digit lottery numbers, with
prizes awarded to the winning numbers.

The program first invites the user to enter the number
corresponding to the version of the game they are playing.
Once the user inputs the numbers for their lottery ticket, the
computer generates a random number and compares to see a
match. At the end of the program it displays the winning
award.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.3, 2013

33 | P a g e
www.ijacsa.thesai.org

In the one digit game, a simple if/then statement matches
the random number generated by the program for the lottery to
the users guess. The random number is generated by the
rand() mod 10 to ensure one digit. See Code 3.

#include <iostream>

#include <ctime>

#include <cstdlib>

using namespace std;

int main()

{

 srand (time(0));

 int lottery = rand() % 10, guess, prize =1;

 cout << "Would you like to play the lottery and win?\n";

 cout << "Please enter any number from 0 to 9 to find out if you

win!!\n";

 cin >> guess;

 if (lottery == guess)

 prize = 1000;

 else prize = 0;

 if (prize >0)

 cout << "Congratulations you have won " << prize << " dollars\n"

<<"The correct number was " <<lottery<< endl;

 else cout << "Sorry you have not won this time.\n" <<"The correct

number was " <<lottery<<". Please try again.";

 return 0;

}

Code 3. One digit game program

In the two digit game, the two numbers need to be
separated from one another. There are four different winning
outcomes and each will be determined by an if/then statement.
The random integer, generated by the rand() mod 100 ensures
two digits, from 00 to 99. The division and modulus operators
are used to separate the first and second digits. See Code 4.

#include <iostream>

#include <ctime>

#include <cstdlib>

using namespace std;

int main()

{

 srand (time(0));

 int lottery = rand() % 100, firstdig, seconddig, guess, firstguess,

secondguess;

 int prize = 1;

 firstdig=lottery/10;

 seconddig=lottery % 10;

 cout << "Would you like to play the lottery and win?\n";

 cout << "Please enter any number from 00 to 99 to find out if you

win!!\n";

 cin >> guess;

 firstguess=guess/10;

 secondguess=guess % 10;

 if ((firstdig == firstguess) && (seconddig == secondguess))

 prize = 10000;

 else if ((firstdig == firstguess) && (seconddig != secondguess))

 prize = 5000;

 else if ((firstdig != firstguess) && (seconddig == secondguess))

 prize = 5000;

 else if ((firstdig == secondguess) && (seconddig == firstguess))

 prize = 7500;

 else prize = 0;

 if (prize >0)

 cout << "Congratulations you have won " << prize << " dollars\n"

<<"The correct number was " <<lottery<< endl;

 else cout << "Sorry you have not won this time.\n" <<"The correct

number was " <<lottery<<". Please try again.";

 return 0;

}

Code 4. Two digit game program

In the three digit game, the rand() mod 1000 ensures three
digits, ranging from 000 to 999. The largest amount will be
awarded to the users who guess all three numbers in the
correct order. In this program we limited the number of
matches to produce eight potential outcomes, having one
number right in any of the three locations (three outcomes),
having two of the numbers correct and in the proper location
(three more outcomes), having all three numbers correct but in
the wrong order, and having all three numbers correct in the
correct order. See Code 5.

#include <iostream>

#include <ctime>

#include <cstdlib>

using namespace std;

int main()

{

 srand (time(0));

 int lottery = rand() % 1000, firstdig, seconddig, thirddig, guess,

firstguess, secondguess, thirdguess;

 int prize = 1;

 firstdig=lottery/100;

 seconddig=lottery % 100 / 10;

 thirddig=lottery % 100 % 10;

 cout << "Would you like to play the lottery and win?\n";

 cout << "Please enter any number from 000 to 999 to find out if you

win!!\n";

 cin >> guess;

 firstguess=guess/100;

 secondguess=guess % 100 / 10;

 thirdguess=guess % 100 % 10;

 if ((firstdig == firstguess) && (seconddig == secondguess) &&

(thirddig == thirdguess))

 prize = 100000;

 else if ((firstdig == firstguess) && (seconddig == secondguess) &&

(thirddig != thirdguess))

 prize = 4000;

 else if ((firstdig == firstguess) && (seconddig != secondguess) &&

(thirddig == thirdguess))

 prize = 4000;

 else if ((firstdig != firstguess) && (seconddig == secondguess) &&

(thirddig == thirdguess))

 prize = 4000;

 else if (((firstdig == secondguess) || (firstdig == thirdguess)) &&

((seconddig == firstguess) || (seconddig == thirdguess)) && ((thirddig ==

secondguess) || (thirddig == firstguess)))

 prize = 25000;

 else if ((firstdig == firstguess) && (seconddig != secondguess) &&

(thirddig != thirdguess))

 prize = 1000;

 else if ((firstdig != firstguess) && (seconddig == secondguess) &&

(thirddig != thirdguess))

 prize = 1000;

 else if ((firstdig != firstguess) && (seconddig != secondguess) &&

(thirddig == thirdguess))

 prize = 1000;

 if (prize >0)

 cout << "Congratulations you have won " << prize << " dollars\n"

<<"The correct number was " <<lottery<< endl;

 else cout << "Sorry you have not won this time.\n" <<"The correct

number was " <<lottery<<". Please try again.";

 return 0;

}

Code 5. Three digit game program

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.3, 2013

34 | P a g e
www.ijacsa.thesai.org

D. Project 4:

In this project students simulate a rock, paper, scissors
game [1]. The program asks the user to choose one of the
options to play the game. After that, the computer will
determine its choice and decides the outcome of the game. A
number mod 3 generates three possibilities 0, 1 or 2, with each
number being assigned a value: rock, paper or scissors.

A switch will take the computer’s choice and compare it to
the user’s choice using an if/then statement. If the two choices
are the same, the game will end up tied. .

The else part will give one of the two alternative scenarios
for the game in another if statement and the result of that
outcome, with a final else being the result of the only other
potential outcome for the scenario, since only three exist for
each possibility. See Code 6.

#include <iostream>

#include <ctime>

#include <cstdlib>

using namespace std;

int main()

{

 srand (time(0));

 int number = rand() % 3;

 string playerguess, cpuoption;

 cout << "Would you like to play rock/paper/scissors?\n";

 cout << "Please choose whether you would like the rock, paper, or

scissors.\n";

 cin >> playerguess;

 if (number == 0)

 cpuoption = "rock";

 else if (number == 1)

 cpuoption = "paper";

 else if (number == 2)

 cpuoption = "scissors";

 switch (number)

 {

 case 0: if (playerguess == cpuoption)

 cout << "You have tied. Please play again.\n";

 else if (playerguess == "paper")

 cout << "You have won. Paper covers rock.\n";

 else cout << "You have lost. Rock breaks scissors.\n";

break;

 case 1: if (playerguess == cpuoption)

 cout << "You have tied. Please play again.\n";

 else if (playerguess == "scissors")

 cout << "You have won. Scissors cuts paper.\n";

 else cout << "You have lost. Paper covers rock.\n"; break;

 case 2: if (playerguess == cpuoption)

 cout << "You have tied. Please play again.\n";

 else if (playerguess == "rock")

 cout << "You have won. Rock breaks scissors.\n";

 else cout << "You have lost. Scissors cut paper.\n";

break;

 }

 return 0;

}

Code 6. Rock, Paper, Scissor

E. Project 5:

In this project students use at least three functions to
design and implement a game that simulates the actions of an
ATM machine, where the user initially has no money, then
makes an initial deposit, and then is able to withdraw money.

The program asks the user to insert any number of
quarters, dimes, nickels and pennies. Then the program tells
the user the available balance. The same process will be
repeated for the withdrawal, and the final balance will be
displayed. There are three main functions in this program.
First, is the initialization of the variables, setting the values to
zero, as if this is the first time that the account is filled with
money, or another programmer defines a different value other
than zero that would be available for withdrawal. The second
function is a deposit function to add up the coins entered into
the purse that would give the user a total amount of money
deposited. The third function enables withdrawal from the
account. If the withdrawal exceeds the account balance the
program will state that there are insufficient funds. See Code
7.

#include <iostream>

using namespace std;

void insert(int quarters, int dimes, int nickels, int pennies, double& total);

void withdrawl(int quarters, int dimes, int nickels, int pennies, double&

total);

void initialize (int& quarters, int& dimes, int& nickels, int& pennies,

double& total);

int main()

{

 int quarters, dimes, nickels, pennies;

 double total;

 initialize(quarters, dimes, nickels, pennies, total);

 insert(quarters, dimes, nickels, pennies, total);

 withdrawl(quarters, dimes, nickels, pennies, total);

 return 0;

}

void insert(int quarters, int dimes, int nickels, int pennies, double& total)

{

 cout << "Please insert how many quarters you are inserting.\n";

 cin >> quarters;

 cout << "Please insert how many dimes you are inserting.\n";

 cin >> dimes;

 cout << "Please insert how many nickels you are inserting.\n";

 cin >> nickels;

 cout << "Please insert how many pennies you are inserting.\n";

 cin >> pennies;

 total = quarters*.25+dimes * .10 + nickels * .05 + pennies * .01;

}

void withdrawl(int quarters, int dimes, int nickels, int pennies, double&

total)

{

 cout << "You have $" << total << " that you can withdraw\n";

 cout << "How many quarters do you want to take out?\n";

 cin >> quarters;

 cout << "How many dimes do you want to take out?\n";

 cin >> dimes;

 cout << "How many nickels do you want to take out?\n";

 cin >> nickels;

 cout << "How many pennies do you want to take out?\n";

 cin >> pennies;

 total = total - (quarters*.25+dimes*.10+nickels*.05+pennies*.01);

 if (total>0)

 cout << "Please take your change. Your new balance is $" <<total;

 else cout <<"You do not have enough funds. Please try again.";

}

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.3, 2013

35 | P a g e
www.ijacsa.thesai.org

void initialize (int& quarters, int& dimes, int& nickels, int& pennies,

double& total)

{

 quarters = 0, dimes = 0, nickels =0, pennies = 0;

 total = 0;

}

Code 7. ATM Machine

F. Project 6:

In this project students define two classes and design and
implement a program that simulates a juice vending machine.
The program asks the user to select the juice choice from the
vending machine [2]. Then the program asks for the proper
amount of money for the kind of juice they selected.

The program gives the user two chances to input at least
the proper amount of money before returning their money and
displaying a statement asking them to try again, or outputs a
thank you statement for the selection. The main menu for the
vending machine then reappears after the juice has been paid
for and asks the user again if he/she would like to make a
selection, repeating the process until the user exits the
program.

Although the system doesn’t output the number of items
available for each juice, the program tracks the number of
juice cans, and if it runs out of one it displays a message that
the item as sold out. The user defines the cashRegisterType
and the dispenserType classes. The cashRegisterType acts as
the user interface for the program while the dispenserType
banks the information internally as the user doesn’t need to
know this information. See Code 8.

#include <iostream>

#include <iomanip>

using namespace std;

class CashRegisterType

{

 private:

 int cashOnHand;

 public:

 CashRegisterType(int cashIn = 500); //constructor

 int getCurrentBalance() const;

 void acceptAmount(int amountIn);

};

CashRegisterType::CashRegisterType(int cashIn)

: cashOnHand(cashIn)

{

}

int CashRegisterType::getCurrentBalance() const

{

 return cashOnHand;

}

void CashRegisterType::acceptAmount(int cashIn)

{

 cashOnHand += cashIn;

}

class DispenserType

{

 private:

 int numberOfItems;

 int cost;

 public:

 DispenserType(int noOfItems = 50, int costIn = 50);

 int getCost() const;

 void makeSale();

};

DispenserType::DispenserType(int noOfItems, int costIn)

: numberOfItems(noOfItems), cost(costIn)

{

}

int DispenserType::getCost() const

{

 return cost;

}

void DispenserType::makeSale()

{

 numberOfItems--;

}

int main()

{

 CashRegisterType reg;

 DispenserType orange;

 DispenserType apple(50, 75);

 DispenserType mango(50, 65);

 DispenserType banana(50, 25);

 DispenserType juices(50, 125);

 int option;

 cout << "Cash in Register: $" << reg.getCurrentBalance() / 100.0 <<

endl;

 //show menu, sell items

 do

 {

 cout << "Select an Item";

 cout << "1. Orange " << orange.getCost() << " Cents." << endl;

 cout << "2. Apple " << apple.getCost() << " Cents." << endl;

 cout << "3. Mango " << mango.getCost() << " Cents." << endl;

 cout << "4. Banana " << banana.getCost() << " Cents." << endl;

 cout << "5. Juice " << juices.getCost() << " Cents." << endl;

 cout << "6. Quit." << endl;

 cout << "Enter Option: ";

 cin >> option;

 if (option == 1)

 {

 cout << "You bought Orange for " << orange.getCost() << "

Cents." << endl;

 reg.acceptAmount(orange.getCost());

 }

 else if (option == 2)

 {

 cout << "You bought Apple for " << apple.getCost() << " Cents."

<< endl;

 reg.acceptAmount(apple.getCost());

 }

 if (option == 3)

 {

 cout << "You bought Mango for " << mango.getCost() << "

Cents." << endl;

 reg.acceptAmount(mango.getCost());

 }

 if (option == 4)

 {

 cout << "You bought Banana for " << banana.getCost() << "

Cents." << endl;

 reg.acceptAmount(banana.getCost());

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.3, 2013

36 | P a g e
www.ijacsa.thesai.org

 }

 if (option == 5)

 {

 cout << "You bought Juice for " << juices.getCost() << " Cents."

<< endl;

 reg.acceptAmount(juices.getCost());

 }

 }while(option != 6);

 cout << endl;

 cout << "Cash in Register: $" << reg.getCurrentBalance() / 100.0 <<

endl;

 cin.ignore(100, '\n');

 system("pause");

 return 0;

}

Code 8. Mutiple Classes

IV. TRANSFORMATIONS, ASSESSMENT, EVALUATION AND

FEEDBACK

With the help of Integrated Development Environment
(IDE) software, students learned how to edit-compile-run
programs in their first class hour. Also, we observed that the
number of assignments completed by the students both during
the course and in the class hour is much more compared to a
typical lecture-based programming class. The IDE helped
students as designers to quickly compare alternative solutions
for problems and test for correctness. Student learning was
evaluated using many different methods. The background
knowledge and preconception checks were performed in the
form of a simple questionnaire/worksheet that the students will
fill in prior to working on the project assignments. Each
student explained the sample programs given in each chapter
of the book to others, compiled and executed to check the
correctness. The students were asked to explain the concepts
they have learned and the programs so that the instructor can
measure student learning. Students completed one
programming assignment daily and submitted one project
report per week. In larger projects, students worked together in
groups. Each member turned in an evaluation of his/her own
learning experiences gained by being part of a team. To
reinforce the learning, a test was scheduled after the
completion of each module. Excellent students performed well
in all levels and had complete understanding of the subject
matter. Very good students were strong in many areas but
weak in some. Average students showed weaknesses in some
levels. Poor students could not perform well in many areas.
Classroom opinion polls and course-related self-confidence
surveys were also performed to receive the feedback.

Student progress towards attaining each Student Outcome
described in section 1 of this paper is measured in stages. For
each stage, students complete a pre-defined set of activities in
the course. Data collection processes to assess and evaluate
each student outcome include exam questions, group
activities, project presentations, focus groups, industrial
advisory committee meetings, and other processes that are
relevant and appropriate to the program. Student performance
is evaluated in the course by the assessment data collection,
data analysis, review and recommendations, and course
outcomes. Student and Exit surveys are also used to collect
data. Data collection processes for each outcome include

quizzes, tests, final exams, homework, lab reports, oral
presentations, and project work. The undergraduate committee
and the program Chair analyze the data. The program faculty
makes recommendations thereafter. The undergraduate
committee approves the recommendations. The program
faculty and the Chair implement those recommendations. The
faculty retreat and department meeting times are used to
discuss these changes.

Classroom activities were designed to reflect student-
centered design and analysis processes. In general, pre project
assignments helped the students explore and create on their
own. They synthesized the classroom instructions with other
resources to produce algorithms and then to test and to debug.
In the classroom, each student provided with a computer to
extend the concepts they learned in the pre project assignment.
Less challenging design problems that can be solved within a
given period of time were assigned as in-class closed-project
assignments. A post-project assignment helped the students to
analyze the use of in-class activities. More challenging and
time consuming problems were assigned as post laboratories.
After completing each project, students submitted a report
discussing their experience. First, each student worked alone
as the sole developer of the programs. Towards the end of the
semester two to four students were allowed to work in a team
to design, construct and complete the projects. The group was
responsible for developing definitions and specification of a
larger software product to solve a problem as their final
project.

V. SUMMARY

This paper described the project-based CS/IS-1 course we
have developed to substitute the traditional lecture based
classroom to help students design and use at least two user
defined data types in a program. First we have outlined the
expected student outcomes, thereafter the transformations
made, data collected for evaluation and continuous
improvements. For many years, we have been experimenting
with methods to improve the quality of teaching programming
languages for undergraduate computing students. Our goal has
been and continues to be to help them become good
programmers in a relatively short period of time with both
theoretical understanding and practical skills so that they can
enter and make an effective contribution to the profession.
Traditionally, the programming lectures have been presented
to a less than enthusiastic student body in a relatively passive
classroom environment. In general, this lecture based
instructional process consists of multiple copying stages: the
instructor first copies programs from a textbook to his note
book, then the instructor displays the projects onto a
whiteboard, thereafter the students copy programs into their
note books and then edit on a computer to compile and run
after the class. Moreover, each instructor allocates
considerable amount of his/her time to prepare or update the
same course material in each offering. Designing a project
based course with learning-by-doing modules and making it
available for all the instructors on-line. It reduces the course
preparation time for instructors, reduces multiple copying
steps in the learning process, strengthen the abilities and
increase the enthusiasm of both traditional undergraduate
students as well as the adult learners. Growth of any

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.3, 2013

37 | P a g e
www.ijacsa.thesai.org

undergraduate computing program will largely depend on the
strength of the introductory programming language courses in
the curriculum. Learning takes place through creation,
interaction, inspiration and effort. Thus the performance of the
students can be improved by converting the traditional passive
classroom into an active hands-on learning environment.

We have provided the students an efficient, rigorous and
engaging learning environment with necessary tools and
training to become proficient in the C++ programming
language in a relatively short period of time. Also, we have
enhanced the quality of the graduates by helping them to
understand basic programming constructs with hands-on
skills, integration and team-work. Our approaches taught the
students on how to explore a programming language on their
own and learn while interacting with a machine loaded with
necessary tools. Our active learning environment strengthened
student abilities and increase the enthusiasm of both traditional
and adult learners. Our active learning modules consist of a
complete programming solution to problems, partially
completed programs for a given problem and tasks with no
programs. We introduced one programming concept of the
language at a time. Classroom activities include discussions,
reading, writing, modifying and presenting programming
solutions to the class. Students enjoyed program design,
implementation and error correction in an active classroom.

Within our geographic area we will have opportunities to
test our designs which could possibly extend to other colleges,
faculty and students. We would like to compare the student
retention in a project based active learning programming
classes with lecture-based classes. We will continue assessing,
evaluating and improving the course material continuously
through faculty and student feedback for the next couple
semesters. Also, we will continue to share the experience
gained from this experiment with the rest of the C++
programming community.

REFERENCES

[1] Y.D. Liang, Introduction to Programming with C++, 2nd Edition,

Prentice Hall, 2011

[2] D.S. Malik., C++ Programming From Problem Analysis to Program

Design, 5th Edition, Cengage Learning, 2012

[3] T.Gaddis,J.Walters and G.Muganda Starting out with C++, 7th Edition,
Addison Wesley,2010

[4] P.Dietel and P Dietel, C++ How to Program, 7th Edition, Addison

Wesley, 2010

[5] Horstmannn, C++ For Everyone, 2nd Edition, , Wiley Publishing,
©2011

[6] http://www.codeblocks.org/downloads/26/

AUTHORS PROFILES

The first author of this paper, Dr. Suvineetha Hearth,
is a faculty member of University Bahrain. She taught
Information Systems, Business and Computer Science
departments of Dubuque University, Richard Stockton
College, and Atlantic Cape Community College in New
Jersey, USA. She also worked as a teaching and research
assistant at the Gifu University, and a visiting instructor at

Gifu Technical College, in Japan. She received her PhD in Public Policies
from the Gifu University, Japan in 1998 as a Rotary Yoneyama graduate
Scholar. Also, she continued the coursework required for a second PhD in
International Law at Asahi University in Japan. As an Attorney-at-Law, she
serve for the Herath Foundation as the Vice President of Legal Affairs and
Reforms. Her research interests include security policies, protocols for
security, access control, authentication, integrity, Biometrics, Information
Assurance and e-learning. She is a Life member of Sri Lanka Bar Association
and senior member of the Institute of Electrical and Electronic Engineers
(IEEE W) and a active member of the Association of Computer Machinery
(ACM). Currently, she is leading the ACM GULF Region Teaching and
Learning group and organizing IEEE Computer Society in Bahrain.

Dr. Ajantha Hearth earned his PhD from the Gifu
University, Japan, in 1997. His research interests
include e-commerce protocols; secure network
protocols, computer forensics and algorithm
transformations to cryptographic hardware. He worked
as the Professor at the University of Fiji’s Department
of Computer Science and Information Technology in

2011. At present he is teaching at the University of Bahrain. In 1988 he
received the prestigious Japanese Government Monbusho research scholarship
award. In 2007 he received the Outstanding Research Award for Commitment
to Excellence in Computer Forensics and Development of Student Leaders
and Researchers from the IEEE–Region 2 AIAA USA. He is a senior member
of the IEEE and member of ACM. In 1986, Herath brothers established the
Herath Foundation to help financially needy but talented students and awarded
more than 7000 scholarships to continue their higher education. He functions
as the senior vice president of the Herath Foundation.

Mr. Mohammed A.R. Siddiqui is a faculty of
University Bahrain. He received his MSc and B.Sc. from
Osmania University, India. In 1999,,he joined UOB and
also work as an adjunct faculty at Polytechnic College in
Bahrain. His research interests include Visual
Programming, Knowledge Base System, Database
Management Systems E - Commerce and E-Learning. He
is an a member of the Association of Computer Machinery

(ACM.) since 2010 and an active member of ACM Gulf region Learning and
Research group.

Mr. Khuzaima A.H El-Jallad is a faculty member of
University Bahrain 2003. He received his MSc from
Towson State University 1984, USA and B.Sc. 1982 from
Point Park University, Pittsburgh,. USA. Over the past
fifteen years he was working in many projects related to
development of Instructional Technology and ICTs though
the uses of Digital media. He is a member of the
Association of Computer Machinery (ACM.) and an active

member of ACM Gulf Region learning and Research group. His research
interests are Programming Languages, Elearning, Quality Assurance,
Multimedia, Ecommerce and Human Computer Interface.

http://www.codeblocks.org/downloads/26/

