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Abstract—The liner of an ore grinding mill is a critical 

component in the grinding process, necessary for both high metal 

recovery and shell protection. From an economic point of view, it 

is important to keep mill liners in operation as long as possible, 

minimising the downtime for maintenance or repair. Therefore, 

predicting their wear is crucial. This paper tests different 

methods of predicting wear in the context of remaining height 

and remaining life of the liners. The key concern is to make 

decisions on replacement and maintenance without stopping the 

mill for extra inspection as this leads to financial savings. The 

paper applies linear multiple regression and artificial neural 

networks (ANN) techniques to determine the most suitable 

methodology for predicting wear. The advantages of the ANN 

model over the traditional approach of multiple regression 
analysis include its high accuracy. 
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I. INTRODUCTION  

The development of a maintenance system for mechanical 
structures that has both intelligent features in fault detection 
and knowledge accumulation is an academic goal for 
researchers as it can greatly assist industry where it is now 
almost impossible to manually analyse the rapidly growing 
data to extract valuable decision-making information. 

Engineering prognostics is used by industry to manage 
business risks that result from equipment failing unexpectedly; 
reliability estimation of equipment and estimation of its 
remaining useful life (RUL) are mandatory [1]. 

In practice, such estimations remain predominantly intuitive 
and are based on the experience of personnel familiar with the 
equipment. However, due to improved asset reliability and an 
ageing engineering workforce, it is increasingly difficult to rely 
on experience. Furthermore, human decision making is not 
always sufficiently reliable or accurate when dealing with 
complex equipment with a multitude of interrelated failure 
modes.  

Therefore, developing methods to reduce industry’s 
dependence on human experience is desirable. Appropriate 
model selection to ensure successful practical implementation 
requires a mathematical understanding of each model type and 
an appreciation of how a particular business intends to utilise 

the models and their outputs. In reality, industry sites will not 
be able to use every prognostic modelling option with equal 
efficacy. The models’ ability to perform the modelling is highly 
dependent on the availability of required data, skilled personnel 
and computing infrastructure. Consequently, model 
requirements must be clearly understood [2].  

For example, autogenous mills used in the mining industry 
and in ore dressing plants can cause major bottlenecks in 
downtime and negatively influence production economics. The 
rubber liners inside these mills are critical for protecting the 
mill shell and grinding ore. The replacement and inspection of 
these mill liners are major factors in mill stoppages and lead to 
production losses. Therefore, the wear prediction of mill liners 
is critical for making replacement decisions, as is prediction 
accuracy.  

Selecting the appropriate wear prediction method can lead 
to a significant reduction in the overall costs [3, 4]. This paper 
examines two methodologies, linear multiple regression and 
artificial neural networks (ANN), to determine which is best for 
prediction [5].  

 

Fig. 1.  Cross sectional view of grinding mill and Shell feed lifter bar  
(by Metso Mineral) 

II. DATA COLLECTION AND PREPARATION 

Assessing wear using life cycle data is hampered because of 
the unavailability of operating information, particularly in the 
wear out phase of liner measurement. The data requirements 
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for this research were met by selecting the shell feed lifter bar 
(LB) of the liner of grinding mill machines see Fig. 1. The 
following sources were used to gather life cycle and condition 
monitoring (CM) data. 

 Metso mineral AB for wear measurement data during 
different life cycles.  

 Boliden mineral AB for process data during the same 
life cycle. 

Process data for five years were obtained from the Boliden 
mining company. The process data include the ore type, ore 
feed (ton/h), power (kW), angular speed (% of centrifugal 
critical speed), torque (% of the max torque), water addition 
(m3/h), grinding energy (kWh/ton), load (ton). The mill in this 
case study processes ore types which come from different 
mines and have different physical characteristics in grade 
values (% of metal content), densities, hardness indexes, rock 
size etc.  

A. Interpolation Technique 

Because total value of lost production during any mill 
stoppage is extremely high, it is not economical to stop the mill 
at intervals and measure liner wear, except for maintenance, 
inspection, installation, and replacement. As a result, few wear 
measurement data were available from Metso. The solid circles 
and triangle in Fig. 2 show real measured remaining height and 
remaining life of LB during one life cycle; other data shown in 
the figure were generated by piecewise cubic Hermit 
interpolating polynomial (PCHIP). PCHIP preserves the shape 
of the data and respects monotonicity. It is the best 
interpolating method for this study because of the 
monotonically deceasing characteristics of CM data in the 
context of the remaining height and remaining life of the liners. 

 
 Real and interpolated  data using PCHIP method 

Methodologies 

Making reliable decisions on maintenance and replacement 

of the liners’ components requires a thorough analysis of their 
behaviour during their life cycle. As every product has a 
different operating environment, individual assessment of the 
capacity of each component is necessary.   

CM and process data must be analysed to identify which 
parameters can be used to estimate the wear of components. As 
recommended in [5, 6], the following methods were selected 
for analysing and investigating these data to determine the wear 
of components under given conditions of use.  

B. Multiple Regression Analysis 

Regression analysis is one of the most useful tools to 
estimate and forecast future trends of variables by analysing 
historical data. It is an extremely flexible procedure that can aid 
decision making in many areas, such as sales, medicine, 
weather forecasting etc. Regression is a technique used to 
predict the value of a dependent variable using one or more 
independent variables. Mathematically, 

                 
kk
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            (1) 

Where Y is the response variable, a and bi i=1...k are 
regression coefficients, x1, x2 …… xk represent the explanatory 
variables, and K is the total number of explanatory variables.  

The method of least squares estimation as [7] is used to 
calculate the regression coefficients. R-square, the coefficient 
of determination is used as the performance measure to 
determine how successfully the method explains the variation 
of the data [8]. However, the  purpose  of  carrying  out  
regression  analysis is to know how  the explanatory variables, 
also called predictors or independent  variables, such as ore 
type, ore feed, power, speed, torque, water addition, grinding 
energy, and load, are related to the response (dependent) 
variables in this case, the remaining height and remaining life 
of the LB. In other words, the primary goal is to estimate or 
predict the LB’s wear given current and past values of the 
explanatory variables.  

The regression analysis is done using Microsoft Excel. It 
can perform stepwise regression analysis that helps to 
determine the impact of each of the explanatory variables in the 
system. The multiple regression equation can be expressed as 
(2). Applying a multiple regression technique to the data yields 
the following regression equation: 
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Where, wear in (2) shows the remaining height or 
remaining life of the liner. The multiple regression coefficients’ 
p-values and the correlation results for when the dependent 
variable is either the remaining life or the remaining height of 
the LB for shell feed are shown in Tables I and II respectively.  
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TABLE I.  MULTIPLE REGRESSION ANALYSIS RESULTS WHEN DEPENDENT VARIABLE (WEAR) IS REMAINING LIFE 

Wear Intercept Ore type Ore feed Power Speed Torque Load 
Grinding 

 energy 

Water 

 addition 
R

2
 

Coefficients 298,77 1,44 -0,04 0,17 -4,12 -3,32 0,01 -0,43 3,13 
0,40 

P-value 0% 2% 0% 3% 3% 1% 98% 82% 0% 
 

TABLE II.  MULTIPLE REGRESSION ANALYSIS RESULTS WHEN DEPENDENT VARIABLE (WEAR) IS REMAINING HEIGHT 

Wear Intercept Ore type Ore feed Power Speed Torque Load 
Grinding 

 energy 

Water 

 addition 
R

2
 

Coefficients 990,63 4,23 -0,09 0,50 -11,81 -10,29 0,11 -1,59 8,89 
0,42 

P-value 0% 1% 0% 3% 3% 1% 86% 76% 0% 
 

TABLE III.  MULTIPLE REGRESSION ANALYSIS RESULTS WHEN DEPENDENT VARIABLE (WEAR) IS REMAINING LIFE AFTER APPLYING STEPWISE 

REGRESSION 

Wear Intercept Ore type Ore feed Power Speed Torque 
Water 

addition 
R

2
 

Coefficients 308,29 1,42 -0,03 0,18 -4,37 -3,47 3,10 
0,40 

P-value 0% 2% 0% 2% 1% 0% 0% 
 

TABLE IV.  MULTIPLE REGRESSION ANALYSIS RESULTS WHEN DEPENDENT VARIABLE (WEAR) IS REMAINING LIFE AFTER APPLYING STEPWISE 

REGRESSION 

Wear Intercept Ore type Ore feed Power Speed Torque 
Water 

addition 
R

2
 

Coefficients 1039,04 4,19 -0,09 0,53 -12,84 -10,84 8,78 
0,42 

P-value 0% 1% 0% 1% 1% 0% 0% 
 

Because we want an explanatory model, we only keep 
variables where the error (p-value) is less than 0.05, giving us a 
95% confidence level. Stepwise regression (backward 
elimination) is used; this involves starting with all candidate 
variables, testing the deletion of each variable (those with a p-
value greater than 5%) to determine whether this improves the 
model, and repeating this process until no further improvement 
is possible.  

In Tables I and II, the load and grinding energy which have 
p-values greater than 5% are deleted from (1); this does not 
improve the R2 but the rest of variables are significant at 95% 
confidence level; see results in Tables III and IV. Thus, the 
remaining height and remaining life of the shell feed LB can be 
predicted, following (3), (4), as 
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Despite this remarkable improvement in establishing a good 
correlation between input and output variables, the multiple 
regression results are still not acceptable for decision making 
on life assessment because of the low value of the coefficient 
of determination, (R2). In the best case scenario, fitted models 
for the remaining height and remaining life explain 40 and 42% 
respectively of the total variation in the data.  

C. Artificial Neural Network  

Artificial neural networks (ANNs) are a special case of 
adaptive networks; they have been extensively explored in the 
literature because they can perform nonlinear modelling 
without a priori knowledge and are able to learn complex 
relationships among inputs and outputs. Moreover, from a 
computational point of view, ANNs are quick processes. The 
idea of using ANNs for forecasting is not new. For example, 
[9] used the windrow’s adaptive linear network to forecast the 
weather. However, due to the lack of a training algorithm at the 
time, the research was limited and ANNs were left aside. Since 
the 1980s, research has expanded. One of the first successful 
applications of ANNs in forecasting is reported by [10] who 
designed a feed forward ANN to accurately mimic a chaotic 
series. In general, feed forward ANNs (PMC, RBF) trained 
with the back propagation algorithm have been found to 
perform better than classical autoregressive models for trend 
prediction in nonlinear time series [11, 12]. Many factors can 
affect the performance of ANNs (number of inputs and outputs 
nodes, number of layers, activation functions, learning 
algorithm, training sample etc.). Thus, building a neural 
network predictor is a non-trivial task. Since the 1990s, many 
studies have sought to improve the accuracy of predictions 
while reducing the time required for processing. ANNs have 
successfully been used to support the prediction process, and 
research work emphasizes its importance. Nevertheless, some 
authors remain skeptical, feeling that the design of an ANN is 
more of an art than a science, or calling ANNs black boxes, 
implying that an ANN has no explicit form to explain or 
analyze the relationships between inputs and outputs. However, 
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ANNs have been used to find nonlinear or linear relationships 
between input (process data) and output (CM) variables, 
thereby predicting the values for CM data which show wear. 
The proposed ANN model has the following characteristics: 

1) Architecture: The proposed neural network model is a 

multilayer feed-forward back-propagation neural network 

introduced in [13]; see Fig. 3. The back-propagation neural 

network model has the advantages of handling non-linear 

problems with a learning capability [14]. The architecture of 

the proposed network consists of two hidden layers of sigmoid 

(tansig) neurons followed by an output layer of a linear neuron 

(purelin).  Hidden layers with nonlinear transfer functions 

allow the network to learn nonlinear and linear relationships 

between input and output variables, while the linear transfer 

function of the output layer lets the network produce outputs 

outside the range [-1, 1].  
The number of inputs to the proposed network is given by 

the number of available inputs or process data (ore type, ore 
feed (ton/h), power (kW), speed (%), torque (%), water 
addition (m3/h), grinding energy (kWh/ton), and load (ton)); the 
number of neurons in the output layer is constrained to two, 
remaining height and remaining life.  

The number and size of layers between network inputs and 
the output layer were determined  by  testing  several  
combinations  of  numbers  of  layers  and  various  numbers  of 
neurons in each layer. Each of the selected combinations was 
tested with several different initial conditions to guarantee that 
the proposed model could provide the best solution. The 
resulting network consists of two hidden layers of 25 and 50 
neurons respectively. See Fig. 3 for its architecture. 

 

 
Fig. 2.  Architecture of the proposed ANN. 

2) Data preparation: 886 data sets were collected. Among 

these data sets, 80% of the data (708 sets) were used for the 

neural networks’ training phase, while the remaining 20% (177 

sets) were used to test the network. The testing data were 

grouped in multiples of 6: 6, 12, 18, and so on.  

3) Training the network: The training style was supervised 

learning which provides a set of examples (the training set) of 

proper network behaviour. A training set consists of inputs and 

the corresponding correct outputs (targets). One of the most 

powerful learning algorithms, the Levenberg-Marquardt 

algorithm [13], was used to train the network. In function 

approximation problems, this algorithm is considered to have 

the fastest convergence.   

4) Learning and generalization: After the training was 

completed, the network was tested for its learning and 

generalization capabilities. The test of its learning ability was 

conducted by testing its ability to produce outputs for the set of 

inputs (seen data) used in the training phase. The test for the 

network’s generalization ability was carried out by 

investigating its ability to respond to the input sets (unseen 

data) that were not included in the training process.  
Figs. 4 to 7 show relative error for predicted remaining 

height and remaining life in the training and testing phase (seen 
and unseen data). These indicate the proposed network’s 
performance. As shown in Figs. 4 and 5 the maximum relative 
error was less than 6% and 10% for remaining height and life 
respectively for seen data during the training phase and less 
than 4% and 10% for remaining height and life respectively for 
unseen data during the testing phase.  

In short, the network predicts the height and remaining life 
of the liners with accuracy greater than 90%. Therefore, the 
proposed model can approximate the input-output function 
with high accuracy.  

 
Fig. 3.  Relative error for predicted remaining height for training phase 
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Fig. 4.  Relative error for predicted remaining life for training phase  

 
Fig. 5.  Relative error for predicted remaining height for testing phase  

 
Fig. 6.  Relative error for predicted remaining life for testing phase  

5) Network performance: The performance of the neural 

network model is very consistent for both the training and 

testing data. The network’s outputs have a correlation 

coefficient of about 0.99987 with the desired (actual) outputs, 

as shown in Fig. 8. Clearly, the neural network model is 

capable of handling the complex nonlinear interrelationships 

between variables. In addition, there was no substantial 

difference in network’s output when it was trained with seen 

or unseen data.  

 

Fig. 7.  Neural Network’s Performance 

III. RESULTS AND DISCUSSION 

In this study, regression analysis and artificial neural 
networks were employed to develop input-output relationships 
for wear prediction. When we consider two life cycles of data 
(around five years), it is evident that based on the coefficients 
of determination (R2 values), the artificial neural network 
model is the best of the two methods.  

In one hand, regression analysis methods produce 
reasonable results in situations where the input variables follow 
a well-defined trend over the age of the component, but this 
method has been found struggling to maintain its estimation 
accuracy when the input variables exhibit a complex trend. 
This limits the application of regression procedures to restricted 
ranges of data sets making them unsuitable for the whole range 
of life cycle data. On the other hand, ANN which has been 
widely used for various prediction and forecasting problems is 
predominantly useful for many complex real-world problems 
because of their flexible nonlinear modeling ability.  

A summary of the results appears in Table V. The results 
reveal that the classical procedures of regression analysis fails 
to produce  acceptable  results,  as  the  correlation  between  
input  and  output  variables is very low. Further, the multiple 
regression analysis lacks the required level of accuracy, as the 
R2 is around 40% and 42% for remaining height and remaining 
life respectively, so it is not trustworthy for making decision 
for maintenance scheduling or replacement. But the proposed 
neural network can adapt to the data presented to it in the form 
of input-output patterns with high accuracy more than 99%.  

The model shown in Table V has very high values of R2 for 
ANN. A comparison summary given in the table shows that the 
classical methods are no longer capable of producing 
reasonable results in situations where input-output relationships 
are nonlinear and complex. Once trained, however, the neural 
network model yields outputs very close to the desired targets. 
Therefore, the artificial neural network is the best methodology 
for wear prediction of grinding mill liners. 
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TABLE V.  COMPARISON OF ESTIMATION ACCURACY FOR ANN 

AND REGRESSION MODEL 

Wear prediction  

accuracy base on 

method 
R

2

 
ANN Multiple Regression 

Height   
0.99987 

0.42 
Life (Volume) 0.40 

IV. CONCLUSION 

Wear prediction with nonlinear inputs is far more 
complicated than with linear inputs, especially in the case of an 
intricate mixture of fluctuating and unpredictable trends. This 
study has analysed life cycle data (inputs) by employing 
regression analysis and ANN to predict the wear of grinding 
mill liners.  It finds the classical procedures of regression 
analysis inadequate to handle nonlinear and complex input-
output relationships in life cycle data, as the correlations 
between input and output variables established by these 
techniques are low. The neural network, on the other hand, is 
very effective in this respect. Furthermore, ANNs are found to 
have 90% accuracy, and the performance of the proposed 
model has consistent results for both training and testing data. 
The study further reveals that employing the proposed ANN as 
well as condition monitoring data analysis tools is the key 
factor in securing remaining life estimates associated with 
higher levels of certainty because maximum relative error was 
less than 6% for remaining height and less than 10% for 
remaining life in both training and testing phases.  

The findings represent a critical advance in sustainable 
management of maintenance procedures in industry, especially 
for heavy duty equipment like grinding mill liners which must 
work constantly, since it allows for a better understanding of 
not only service requirements of mill liners but the remaining 
life of each liners component.  

The other advantages of using ANN includes: It doesn’t 
require very expensive and sophisticated equipment for data 
recording and analysis. The accuracy of the results are very 
high. The ANN model can accommodate a wide range of input 
variables with complex and nonlinear input trends/patterns. The 
proposed methodology does not require disassembly of the 
liners or stoppage of grinding mills to make decisions on 
replacement, inspection, installation and maintenance 
scheduling. The dynamic nature of the proposed methodology 

opens up future studies of wear prediction for different 
categories of liner component such as lifter shell, inner lifter 
bar, shell plate, feed end discharge end, Etc. 
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