
(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 4, No. 6, 2013 

1 | P a g e  
www.ijacsa.thesai.org 

A multi-scale method for automatically extracting the 

dominant features of cervical vertebrae in CT images 

Tung-Ying Wu 

Department of Electrical and Computer Engineering 

National Chiao Tung University 
Hsinchu City, Taiwan (R.O.C) 

Sheng-Fuu Lin 

Department of Electrical and Computer Engineering 

National Chiao Tung University 

Hsinchu City, Taiwan (R.O.C) 

 

 
Abstract—Localization of the dominant points of cervical 

spines in medical images is important for improving the medical 

automation in clinical head and neck applications. In order to 

automatically identify the dominant points of cervical vertebrae in 

neck CT images with precision, we propose a method based on 

multi-scale contour analysis to analyzing the deformable shape of 

spines. To extract the spine contour, we introduce a method to 

automatically generate the initial contour of the spine shape, and 

the distance field for level set active contour iterations can also be 

deduced. In the shape analysis stage, we at first coarsely segment 

the extracted contour with zero-crossing points of the curvature 

based on the analysis with curvature scale space, and the spine 

shape is modeled with the analysis of curvature scale space. Then, 

each segmented curve is analyzed geometrically based on the 

turning angle property at different scales, and the local extreme 

points are extracted and verified as the dominant feature points. 

The vertices of the shape contour are approximately derived with 

the analysis at coarse scale, and then adjusted precisely at fine 

scale. Consequently, the results of experiment show that we 

approach a success rate of 93.4% and accuracy of 0.37mm by 
comparing with the manual results. 

Keywords—cervical spine; active contour; curvature scale space; 

turning angle. 

I. INTRODUCTION  

Anatomical landmarks and dominant points of cervical 
vertebrae are of considerable importance for many applications 
on orthopedics, neurology, and radiation therapy planning. In 
many researches about computer-aided techniques, the 
geometric characteristics of anatomical features were 
mentioned to be utilized on the applications like image-based 
surgical guidance and operation planning [1] . However, 
because of the anatomical variation between patients and the 
complexity of medical images, automatic analysis and 
information collection in computerized tomography (CT) 
images are still challenging tasks.  

In [1] , Lee et al. proposed a method to automatically locate 
the lumbar spine pedicles in CT images by referencing the 
canal boundaries for pedicle screw. But for cervical vertebrae 
operation planning, more landmarks are required [7] . 
Dominant feature points of cervical vertebrae include 
transverse foramens, spinous processes, and corners of lateral 
facets, etc. In order to automatically find the dominant features 
points in cervical vertebrae, Rochies and Winter proposed 
researches about detection of anatomical landmarks and 
dominant points by matching feature sets derived from 2D 
wavelet and Gabor transform in CT and MRI images [8-9].

 
The 

proposed methods used the graph matching algorithm to 
perform a global search, and the similarity of two feature sets 
was utilized to localize dominant points. However, the method 
was less adaptive to morphological deformation and the 
performance on accuracy was not satisfied. Besides, automatic 
recognition of spine shape is not only used for surgery 
applications mentioned above, but also an issue of importance 
of computer-aided diagnosis (CAD). As the growth of the 
volume of medical images with the progress of medical 
imaging techniques, it becomes exhausting to inspect all the 
data in detail manually. Therefore, CAD system is introduced 
to improve medical automation and the medical data can be 
pre-processed automatically and then provide information for 
assisting diagnosis. The anatomical structure around the spine 
such as soft tissues, muscles, and glands can be regarded as a 
planar adjacent anatomical space, so the relative location of 
anatomical structure is able to be inferred according to 
anatomical knowledge [10].  

The anatomical landmarks detected in images are able to be 
set as the starting points of image segmentation for automatic 
diagnosis and navigation. In addition, the points of dominant 
features in 2D slices can also be seeds for shape modeling, 3D 
reconstruction and registration. In neck CT images, the cervical 
vertebrae are significant landmarks for medical application but 
to automatically extract the precise feature points from the 
complex images is still a challenging task. In this paper, we 
propose a method to automatically find the feature points of 
cervical spines in CT slices as shown in Fig 1 based on 
geometric analysis in companion with anatomical knowledge.  

In Section 2, the geodesic active contour model referencing 
the gradient information is mentioned to extract the cervical 
spine. We moreover propose a method to automatically set the 
initial conditions including initial contour and initial distance 
field for active contour iteration. Then in Section 3, the shape 
contour extracted from the previous step is coarsely segmented 
and modeled with a proper scale by means of the curvature 
scale space (CSS) analysis, and multi-scale geometric analysis 
is then applied to identify the dominant feature points at each 
segment. As shown in Fig.1, the dominant points proposed to 
extract include the vertices at both sides of vertebral body, near 
transverse foramens and pedicles (points 1 and 2), the corners 
of the facets (points 3 and 4) and the corners of spinous 
process. Furthermore, the vertebral body and lamina regions 
can be further inferred based on the four determined dominant 
points. In Section 4, the experiment is carried out on 250 neck 
CT slices, and the points found out are finally examined with 
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the points pointed out by the clinical experts to evaluate the 
success rate and accuracy. In Section 5, we discuss the result 
and conclude the work. 

Vertebral Body

Pedicle

LaminaLamina

Spinous Process

Pedicle

 

Fig. 1. Typical cervical spine shape with dominant features labeled. 

II. VERTEBRAE EXTRACTION  

As shown in Fig. 2, the cervical spine locates at the center 
of the neck and appears in high brightness, and there are 
various textured soft tissues around the cervical spine. The air 
path in relatively low brightness is adjacent to the cervical 
spine. 

Air path

Cervical 
Spine

 

Fig. 2. A cervical CT image and the relative location of the air path and the 

cervical spine. 

In order to extract the spines in CT images, there have been 
several segmentation methods proposed, including model-
based segmentation, adaptive thresholding, multi-scale canny 
edge detection and active contour algorithm [1, 10-15].  Among 
these methods, gradient-based methods are considered to 
perform better accuracy than gray level thresholding because 
the magnitude and direction of the gradient can be used to 
accurately locate the edges. Besides, in order to segment 
deformable objects, active contour methods are considered as 
an effective method to generate continuous boundaries. 
Geodesic active contour (GAC) is an active contour model 
(ACM) based on the relation between active contour and the 
computation of geodesic or minimum distance field [16-17]. 

The initial contour deforms and gradually converges toward the 
region boundaries through iterations controlled by the gradient-
based stopping function with updating the distance field [16]. 
In many applications of medical image segmentation, the initial 
contours were manually placed near the targets for more 
effective converging properties and less computation. 
However, manual placement is not appropriate for automatic 

segmentation. In this section, we describe a method about 
automatic placement of the initial contours for delineating the 
cervical spines and the initial distance field for GAC 
computation. The method is summarily shown as the schematic 
diagram in Fig 3.  

Start active contour iteration

Input CT 
images

Gray-level
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Remove small 
blobs
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contour

Extract the 
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field

 

Fig. 3. Schematic flow diagram of the proposed method 

A. Geodesic Active Contour 

The main idea of the active contour model is to minimize 
the energy associated to the contour derived from the image 
gradient and the contour curvature. In order to formulate the 
energy for GAC computation, a contour C in an image is 
represented by the parametric vector equation:  

))(),(()( tytxtC   (1) 

Hence, the energy function of the GAC contour model 
comprising the internal and external energy terms can be 
described as the terms below: 
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t is the arc length parameter, Eint is the internal energy while 
Eext is the external energy of  contour C. Let C0 be the initial 
contour for active contour iterations and g(x) denotes a 
monotonically stopping function which conducts the contour 
converge toward the boundary points based on the direction 
and magnitude of gradient. In order to deform an initial contour 
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towards local minima points of the energy function in the 
image, the steady state solution is given by  
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where κ represents the curvature derived from the equation:   
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where ．means the derivative, i.e., 
dt

tdx
tx
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the unit inward normal. The curve evolves according to the 
steepest-descent method to deform the initial curve C0 based on 
the curvature and gradient. This geodesic problem can be 
solved by introducing the level-sets approach [16-17] . In level 
set formulation, the contour C is regarded as the zero level-set 
of a function, so a contour can be represented as a distance map 
measuring the minimum distance from a point to the contour. 
Therefore, the curve evolution (4) can be represented by  
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where u is a signed distance field of a contour C, and C can 
be regarded as the zero level-set in u with u0 denoting the initial 
distance field. The level set method evolves a contour by 
propagating the wave front. The fronts move ahead with a 
velocity V and arrival time T, and the level set front 
propagation equation is given by [18] 

1 VT . (7) 

The distance map u is iteratively updated by means of 
computing the narrow band near the existing front and solving 
the propagation equation to bring new pixels into the narrow 
band. The curve evolution operation keeps until the front does 
not move or the number of iterations approaches the limit. 
However, in practice, GAC iterations require an initial contour 
C0 in companion the corresponding distance field u0, and the 
initial condition significantly affects the result. 

B. Automatic cervical vertebrae extraction 

In order to obtain C0 and u0 for GAC, we start with 
thresholding the original CT images and the region of gray 
level higher than the threshold is set to 1 or 0 otherwise. 
Because the spine regions in a CT image appear in uniformly 
higher brightness than other regions, the threshold should be 
chosen higher than the result from Otsu thresholding method 
[19].  However, other regions with high brightness as the spine 
region would possibly be found, like mandible bones and 
carotids.  

Fortunately, the air path shows distinguishable darkness in 
cervical CT images and anatomically locates nearby the 
cervical spine. Therefore, after the morphological operation is 
proceeded to remove the regions of small area in the binary 
image, the large blob nearest to the air path is selected. Erosion 
operation with a 33  mask is then involved in to extract the 
external boundary by collecting the removed elements. The 

approximate contour of a spine as a result could be sketched 
out and arranged into a series. The initial contour can be set 
closed to the real boundary, so it is an effective initial contour 
for active contour iteration. Different from traditional methods 
which simply place a circle or a square around the target, the 
initial distance field can be generated based on geometric 
relation. In order to build the distance field with an arbitrary 
contour C0, the field need to be derived by distance transform 
which measured the minimum distance from a point to C0. The 
distance transform can be determined by 
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The pixel inside the closed contour 0C  is set negative. The 

initial distance field 0u  can be computed by 
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(a) (b) 

Fig. 4.  (a) An extracted initial contour (b) the corresponding distance field 

of (a) representing with gray level. The brighter means the point has longer 
distance to the contour. 

III. SHAPE ANALYSIS AND FEATURE IDETIFICATION 

In this section, we describe a coarse-to-fine method to deal 
with the deformable shape. The spine shape contour is at first 
coarsely segmented and modeled with CSS, and the dominant 
feature points on the segmented curves are then figured out by 
analyzing the detail features in fine scales. The method in this 
section is demonstrated in the summarizing diagram in Fig.5. 
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Fig.5. The schematic diagram of our algorithm of extracting the dominant 
feature points by analyzing the shape contour. 

 

A. Coarse contour segmentation with CSS 

After shape contours are extracted from the original images, 
the dominant points on the contour which are meaningful for 
deformable shape recognition need to be figured out. For 
convenience and symmetry, the point, which is closest to the 
center of air path, is assigned as the starting point of the closed 
contour. For shape registration and recognition, geometric 
points invariant over rotation, scaling and partial occlusion are 
in considerable importance for the deformable shapes. In 
general, curvature is a significant property of curves, and the 
local maximum points or zero-crossing points of curvature 
profile are considered as meaningful points of the shape [20-
22]. However, local maximum points of the curvature, which 
could correspond to the corners or vertices of the contour, are 
too sensitive and easily affected by noise. Because zero-
crossing points demonstrate the intersection between a concave 
contour segment and the adjacent convex segment, as the scale 
gets higher, the neighboring zero-crossing points also gradually 
merge together.  

Zero-crossing points of the curvature are more adaptive 
geometric features for deformable shape analysis. CSS is a 
multi-scale method of collecting zero-crossing points of 
curvature of a closed contour derived from each scale and has 
been proven as an effective method for shape description and 
matching over scaling, rotation, partial occlusion and 
deformation [23-26]. The curvature scale space image (CSSI) is 
a binary two-dimensional image that records the position of 
inflection points of the curve convoluted by different-scaled 
Gaussian filters. In CSSI, along the horizontal axis is the 
normalized arc length of the contour from 0 to 1; along the 
vertical axis is the scale parameter. As the standard deviation of 
Gaussian functions varies from small to large, the contour is 
gradually blurred while details are gradually eliminated. The 
multi-scale curvature can be computed by the following 
equations. 
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  is the convolution operator. Function h(t, σ) denotes a 
zero-mean Gaussian function with kernel size parameter σ and 
σ is also referred as the scale parameter. If the curve with 

smoothing parameter has a zero-crossing point at location s on 

scale σ, we set 1),( sCSSI  , or 0),( sCSSI  otherwise.  

As a result, a contour can be represented by a CSSI image 
with several CSS contours corresponding to segments of the 
shape contour in it, and the CSS contours are constructed by 
zero-crossing points at different scales. Each CSS contour in 
the CSSI represents a concave or convex segment of the 
corresponding shape contour. In the CSSI derived from a 
typical cervical spine shape, four significant contours of the 
largest σ are depicted and correspond to four segments of a 
spine shape contour. With the other four segments squeezed 
between every two of the fours corresponding to the four 
significant contours in CSSI, the spine shape contour can be 
mainly segmented into eight periods of curve. Because a zero-
crossing point is regarded as a breakpoint of a concave segment 
and another convex one, a shape contour can be divided into 
several meaningful segments by localizing the zero-crossing 
points.  

Each shape contour has its peculiar arrangement of zero-
crossing points. Ming et al. proposed a CSS-based method for 
pattern matching by comparing the CSSI line by line [23], 
because the zero-crossing points at each scale can be 
recognizable features of shape contours. In order to effectively 
separate the shape contour of spine into the eight main 
segments, an appropriate standard deviation value of Gaussian 
filter σ, which is related to scale needs to be chosen. Let σn 
denote the peak of the CSS contour having the nth highest σ in 
CSSI. The threshold for choosing the analysis scale in this 
paper is determined by  
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Only the contours with peaks higher than analysis  are 

considered for the following steps. 

  

(a) (b) 
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(e) 

Fig.6. (a) is the original image. (b) is the extracted contour. (c) is the contour 
after convolving with the Gaussian filter of σ =15. (d)contour after convolving 
Gaussian filter of σ =30.(e) the CSSI of the contour in (b) 
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(b) 

Fig.10. (a) CSSI of a cervical contour (b) The corresponding segments of 
contour labeled in (a). 

Fig.10 demonstrates a spine shape model based on CSS. It 
can be observed that a spine shape contour can be segmented 
into several CSS contours, and there are four main CSS 
contours labeled as cA1, cA2, cA2 and cB2 in two symmetric 
pairs in a CSSI of a spine shape contour. cA1, cA2, cA2 and cB2 
are corresponding to the four contour segments A1, A2, A2 and 
B2 as shown in Fig.10(b) respectively. The segment 
corresponding to the spinous process locates at the period 
labeled as CB between the pair of CSS contours (cB1, cB2) near 
the middle of the horizontal axis. Also, the segment CA 
corresponding to the vertebral body can be deduced by 
referencing another two apparent CSS contours (cA1, cA2) at 
the both sides of the starting (end) point. The segments 
squeezed by (cA1, cB1) and (cA2, cB2), which are 
corresponding to the facets at both lateral sides of the spine, are 
labeled as C1 and C2 respectively. Eight zero-crossing points 
among (cA1, cA2) and (cB1, cB2) can be extracted at scale 
σanalysis, and the eight points are used to separate the spine 
contour into eight segments. The apparent segments 
corresponding to the vertebral body, the lateral facets and the 
spinous process, as a result can be coarsely indicated in CSSI.  

In order to find the two main symmetric pairs from the 
original CSSI as Fig.6(e), the symmetry property is utilized.  
(cA1, cB1) and (cA2, cB2) are symmetric against the starting 
point of contour, which is contour point closest to the air path 

center at CA. From the CSS contours with the highest σ, every 
four CSS contours such as (cA1, cA2) and (cB1, cB2) in Fig.10 
are extracted at a time. The contour segments within each two 
CSS contour pairs are extracted, such as the segments 
corresponding to the periods of (cA1, C1, cB1) and (cB2, C2, 
cA2). The extracted segments are measured for their curve 
similarity, and high similarity means high symmetry of the 
contour segments. The four CSS contours in CSSI 
corresponding to the two contour segments having the highest 
curve similarity are considered as the four main CSS contours 
of a spine shape and labeled based on the model. The similarity 
of two curves is estimated by measuring the difference the two 
curves. Let f1 and f2 be two curves with N uniform sampling 
points  

  ))(),(( 11111 nynxf   (15) 

 ))(),(( 22222 nynxf   (16) 

where t1 and t2 are integers, (x1, y1) and (x2, y2) are the 

points belonging to f1 and f2 and )0()0( 21 ff  , 

)1()1( 21  NfNf . The dissimilarity D of two curves is 

evaluated by measuring the distance of the points between two 

curves.  
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Fig.11 Measurement of the dissimilarity of two curves. 

The lower dissimilarity of two curves means the higher 

similarity.  

B. Shape analysis and dominant point identification 

After coarse segmentation, dominant points or landmarks 
can be finely determined by analyzing the contour based on 
geometrical properties of each segment. Curvature is an 
important property of a curve, and has been widely used for 
precisely finding vertices of shape. However, it is so sensitive 
to noise and small variation of the contour that it is not 
appropriate for deformable objects or objects in complex 
images like cervical CT slices. Turning angle is another useful 
geometric property of curves for comprehending the local 
variation [27-29]. Xu et al. applied the turning angle property 
for curve evolution in automatic spine shape analysis [30]. The 
bending angle of two adjacent line segments is computed and 
normalized for evaluating the contribution to the whole shape. 
“Included angle” was defined in [1] to figure out the sharp 
convex characteristics between two adjacent elements. In our 
research, to evaluate the curve segments, bending angle profile 
along the whole contour is calculated by the following 
equation: 
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where 1V  and 2V  are vectors, 
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where   means the inner product operator,   means the 

norm of a vector and d is the scale parameter. The value of 
turning angle is closed to but not larger 180 in degrees at the 
period without acute variation. On the contrary, vertices may 
locate at the points of local extreme value. As the scale 
parameter d grows from small to large, only salient vertices can 
be preserved and more noise is eliminated. Therefore, a multi-
scale method is introduced in this work. The turning angle 
profile of a contour is at first derived at a higher scale d1, and 
the local minimum points recognized as dominant points are 
coarsely localized. Then, the points are adjusted by referencing 
the nearest minimum points derived at a finer scale d2, as 
indicated in Fig.12. For suppressing undesired noise, the 
turning angle profiles convolve with a Gaussian function before 
extracting the local minimum points.  

 

Fig.12. Turning angle profiles of a cervical spine contour with 
different scales and the some corresponding vertices at the two scales 
are pointed out. 

However, the vertices can not be directly discriminated as a 
concave or a convex one by   but it is necessary for verifying 
the dominant shape features at each segment. After points of 
local extreme are localized, each extracted point is recomputed 
for it curvature by (11) at proper scale associated with d1. If the 
curvature is positive, it means that the angle is convex, or 
concave otherwise. As shown in Fig. 1, points 1 and 2 are two 
concave vertices and the segment within point 1 and point 2 
indicates the vertebral body. In order to locate the vertices with 
precision, three adjacent segments of the contour corresponding 
to the period A1, CA and A2 in Fig.7 are introduced to compute 
the geometric information. The two concave vertices result in 
two local minimum points at both ends of the corresponding 
segment of turning angle profile. Moreover, the arc segment of 
the vertebral body can also be accurately determined within 
these two vertices. Besides, the spinous process is considered 
to locate at the period CB, which is the middle segment of the 
whole shape contour. The apparent angles within this period 

are important because the angles may denote the corners of 
spinous processes or bifurcation which are apparent landmarks 
of cervical anatomy. The corners of spinous processes are 
convex angles, and if bifurcation exists, there will be another 
concave angle between the two convex corners. Fig.12 shows 
the convex and concave vertices in the cervical spine denoting 
with different marks. In Fig.1, the facet corners at points 3 and 
4 are convex vertices with angle larger than 90 in degree. The 
“corners” are not only important for nerve root injection 
operations [2, 4], but also for determining the position of 
lamina periods. In addition to the points labeled in Fig.1, at the 
middle of lateral facets C1 and C2, there are sometimes two 
concave vertices near the facet corners as the points denoted 
with crosses in Fig.12.  

If existing, the concave vertices are also dominant points 
near the foramens and spine pedicles as points 1 and 2. The 
region inside the spine contour between the point 1 or 2 with 
the adjacent lateral facet concave vertex could be inferred as 
the spine pedicles denoted with dotted line in Fig.12. 

 

Fig.12. The typical cervical spine shape and ▲ denotes concave vertices and 
● denotes convex vertices. × denote the concave vertices near foramens. 

 

IV. EXPERIMENT AND RESULT 

All experiments were carried out on 250 cervical CT slices 
without distinction of sex. The CT slices were acquired with a 
pixel size 0.78 mm and with a thickness of 3.0 mm. Each 
image contains various pathologies at the cervical region and 
treatment, e.g., radiation therapy or biopsy was needed. The CT 
images for experiments were chosen from the database of 
Cathay General Hospital.  
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Fig.13. (a)(c) Results of automatically contouring. (b)(d). Results of figuring 

out the dominant points of  (a) and (c). ○ denotes the dominant points derived 

from our algorithm and × denotes the dominant points pointed out by the 

experts. 

 

We evaluated the proposed overall framework with two 
criteria: success rate and accuracy. The success rate was 
defined as the relative number of dominant points that localized 
at acceptable positions, and the accuracy was defined by 
measuring the distance of the points derived from the algorithm 
with the dominant points drawn by the clinical experts. The 

accuracy Acc is calculated as follows: 
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M
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(22) 

where M is the number of points recognized as success. Si 
is the pixel of the ith point recognized as success derived from 
our algorithm and Ri is the closest reference point drawn by 
clinical experts.  

The average success rate was 93.4%, and the average 
success rate per vertebra was within the range 70%-100%. The 
coarse scale of turning angle d1 could affect the average 
success rate from 81.7% to 93.4% in our experiment. The 
reason is that corners with less curvature are blurred at higher 
scales such that the detailed information is suppressed. The 
average accuracy is 0.37 mm while the fine scale of turning 
angle d2 is 15.  

 

Fig. 14. The success rate with different coarse scale d1 of 40, 35, 30 and 25. 

V. DISCUSSION  

The experiment results show that the success rate and 
accuracy are affected by the scale chosen for extract the 
dominant vertices. The scale relies on the resolution of the CT 
images, and if the resolution gets higher, the analyzing scale 
can also get larger. The prominent segments of vertebrae could 
be adopted as the landmarks for modeling, registration and 
clinical evaluation. The method we proposed for automatically 
extract the spine contour can effectively sketch the main 
contour of the vertebrae without manually setting the initial 
contour. Unsatisfied results are mostly caused by wrongly 

contouring, and might occur at the bright blobs connected with 
the spine without obvious edges. Fortunately, scale-based 
segmentation could overcome partial deformation. 
Furthermore, in continuous CT slices, the derived contour can 
also be the initial contour of the adjacent slices and the distance 
field for iteration can also be deduced. This is also an extended 
application of the proposed method in this paper to 3D scene. 
Turning angle is the main idea for geometric analysis in our 
study, and dominant points can be recognized by finding the 
local extreme points of turning angle profile. The vertices with 
low curvature, such as the facet corners and vertebral body 
vertices have lower accuracy and success rate than the vertices 
with sharper angle like spinous processes. The corresponding 
results derived in adjacent slices could be collected for 
adjusting, so the performance can be improved. For the purpose 
of modeling, the dominant points can be applied for building 
the model mentioned in [14] and [15], and the polygonal 
approximation can also be deduced. Points 1 and 2 can be used 
for segmenting the vertebral body, and points 3 and 4 can be 
used for determine the facet corners. Besides, the dominant 
points on spinous processes and bifurcation are important 
landmarks on C7 spine, and can be accurately figured out in 
this paper. In [1], the accuracy defined by MDCP was 0.14mm 
with pixel size in-plane ranging from 0.233 to 0.309mm. 
Comparing with points 3 and 4, which are also landmarks for 
screw insertion operation, our algorithm performed MDCP 
accuracy in 0.35mm with pixel size in-plane of 0.78mm. We 
believe that the detected dominant points are capable for 
operation assist and the accuracy can also be improved if the 
image resolution can be higher. 

VI. CONCLUSION AND FUTURE WORKS 

In this paper, we propose a method for automatically 
extracting the shape features of cervical vertebrae in CT 
images. With shape analysis, dominant points of the extracted 
contour can be figured out. The major contribution of the work 
is that the proposed method can automatically segment the 
dominant feature points of shape or landmarks used for 
operation guiding, therapy planning and model registering. 
Many proposed models of vertebrae can also be built with 
more precision by implemented the proposed framework. The 
framework can also be applied in other the thoracic vertebrae 
and lumbar vertebrae with adjusting the shape model based on 
anatomical knowledge. Future works include not only 
extending the proposed method to other spines, but also 
building an interactive system for aiding surgery and treatment 
planning. 
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