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Abstract—The tangent plane algorithm is a fast sequential 

learning method for multilayered feedforward neural networks 

that accepts almost zero initial conditions for the connection 

weights with the expectation that only the minimum number of 

weights will be activated.  However, the inclusion of a tendency to 

move away from the origin in weight space can lead to large 

weights that are harmful to generalization.  This paper evaluates 

two techniques used to limit the size of the weights, weight 

growing and weight elimination, in the tangent plane algorithm.  

Comparative tests were carried out using the Extreme Learning 

Machine which is a fast global minimiser giving good 

generalization. Experimental results show that the generalization 

performance of the tangent plane algorithm with weight 

elimination is at least as good as the ELM algorithm making it a 

suitable alternative for problems that involve time varying data 
such as EEG and ECG signals.   

Keywords—neural networks; backpropagation; 

generalization; tangent plane; weight elimination; extreme 
learning machine  

I. INTRODUCTION 

In Lee [1] an algorithm was described for supervised 
training in multilayered feedforward neural networks giving 
faster convergence and improved generalization relative to the 
gradient descent backpropagation algorithm.  This tangent 
plane algorithm starts the training with the connection weights 
set to values close to zero in the expectation that the minimum 
weights necessary will be activated.   

The results based on two real world datasets indicated that 
the tangent plane algorithm gives improved generalization 
over a range of network sizes and that it is robust with respect 
to the choice of its internal parameters.   

Despite the success of the tangent plane algorithm there is, 
however, strong evidence to suggest that growing the weights 
to assume large values can actually hurt generalization in 
different ways.  Excessively large weights feeding into output 
units can cause wild outputs far beyond the range of the data if 
an output activation function is not included.  To put it another 
way, large weights can cause excessively large variances in 
the output.  According to Bartlett [2], the size of the weights is 
more important than the number of weights in determining 
good generalization.  This poses the following question: can 
we modify this algorithm so that it discourages the formation 

of weights with large values?  Further, can the algorithm 
encourage weights with small values to decay rapidly to zero 
thus producing a network having the optimum size for good 
generalization? 

Weight decay is a subset of regularization methods.  The 
principal idea of weight decay is to penalize connection 
weights with small values so that the network removes the 
superfluous weights itself.  The simplest method is to subtract 
a small proportion of a weight after it has been updated [3].  
This is equivalent to adding a penalty term ∑ji wji

2 to the 
objective function and performing gradient descent on the 
resulting total error.  Unfortunately this method penalizes 
more of the wji’s than necessary whilst keeping the relative 
importance of the weights unchanged.  This can be cured by 
using a different penalty term, ∑ji wji

2 
/ (1 + wji

2
), so that the 

small wji’s decay faster than the larger ones [4].  Williams [5] 
proposed yet another type of penalty function which is 
proportional to the logarithm of the l1 norm of the weights, 

∑ji | wji |.  It was shown in [5] that using this penalty term is 
more appropriate for internal weights than weight decay.  
Hoyer [6] proposed a sparseness measure based on the l1 norm 
and l2 norm of weights.  Experiments with Hoyer’s method 
indicate that it performs well in comparison with weight decay 
and weight elimination.  A further refinement involves using a 
mixed norm penalty term [7].  In this procedure the l1 norm of 
the weight vector is minimised subject to the constraint that 
the l2 norm equals unity. 

II. OBJECTIVES 

The principal objective of this paper is to describe an 
alternative strategy for improving generalization in neural 
networks trained using the tangent plane algorithm.  In the 
newly developed algorithm, the training is started from 
arbitrary initial conditions and the inactive weights in the 
network encouraged decaying to zero by using the weight 
elimination procedure.  

Unlike other implementations of weight elimination 
procedures [4, 6, 8 - 9], the method used here is built into the 
geometry used in the derivation of the algorithm.  A secondary 
objective is to compare the newly developed algorithm with 
the extreme learning machine [10], which obtains the least 
squares solution with the minimum training error and 
minimum norm of weights. 
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III. DERIVATION OF THE ALGORITHM  

In Lee [1] an algorithm is described that accepts almost 
zero staring conditions for the connection weights, and which 
moves away from the origin in a direction indicated by the 
training data with the expectation that only the minimum 
weights would be activated.  This tangent plane algorithm uses 
the target values of the training data to define a (n – 1) surface 
in weight space Rn.  The weights are adjusted by moving from 
the current position to a point near to the foot of the 
perpendicular to the tangent plane to this surface, but 
displaced somewhat in the direction away from the origin, on 
the expectation that the smaller the distance moved from the 
foot of the perpendicular the less disturbance there will be to 
the previous learning.   

Two enhancements are made to the tangent plane 
algorithm to obtain the improved tangent plane algorithm 
referred to as iTPA.  Firstly, a directional movement vector is 
introduced into the training process to push the movement in 
weight space towards the origin.   

This movement vector simulates weight decay which is 
known to have a beneficial effect on generalization in 
backpropagation learning.  Secondly, the directional vector is 
further modified to give a heavier weighting to weights with 
small weight values to avoid penalizing more of the weights 
than necessary; one large weight costs much more than many 
smaller ones.  A high degree polynomial term is used to select 
the proportion of weights for pruning.  This term can be 
adjusted so that a weight decay procedure is implemented or 
refined in a way that specific weights are removed by causing 
them to decay more rapidly to zero.   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Movement from the present position a to the point d inclined at an 

angle β to the perpendicular from a to the tangent plane to the constraint 

surface фk = f
 -1

(yk) at point b in the weight space R
n
.   The vector m 

represents the orthogonal projection of the weight elimination vector w’ 

orthogonally onto the normal n to the constraint surface at point b 

The method assumes a feed-forward neural network of 
units { uj}, where the connection between ui and uj is mediated 
by wji.  фj and θj denote the input and output of uj, so that θj = 
f(фj), and фj = ∑i wji θi. The single output unit uk is trained to 
mimic the target value yk.  Let n denote the number of weights 

in the network.  For a given set of inputs we can consider фk 
to be a function of the weights фk : R → R

n.  The tangent 
plane algorithm adjusts the weights by moving along the line 
at an angle β to the perpendicular from the current position a 
to the tangent plane to the surface фk = f

 - 1
(yk), on the side of 

the perpendicular away from the origin (see Fig. 1).   

Let a = ∑ji w'ji iji be the current values of the weights, 
where iji is a unit vector in the direction of the wji axis.  Use 
the equation f -1

(yk) = wk0 + ∑i≠0 wki θi to find a value, w''k0, for 
the bias weight wk0 from the values wji of the other weights, so 
that the surface фk = f

 - 1
(yk) contains the point  

b = w''k0 ik0 + ∑j,i≠k,0 w'ji iji. Now, if we use the equation             
f 

-1
(yk) = w''k0 + ∑i≠0 w'ki θi and f -1

(θk) = w'k0 + ∑i≠0 w'ki θi, and 
note that b differs from a only in the value of wk0, we get  
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Let n̂  be the unit normal to the surface at b, so 
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ˆ  n .  The length of the perpendicular from a  to 

the tangent plane at b is nab ˆ)( . .  If c is the foot of the 
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The vector that is directed towards the origin and biased 
along the axes of the weights wji that have small weight values 
relative to some small positive constant wa is  

w' = - ∑j,i (wji /wa) iji / (1 + w
2

ji /w
2
a).  The projection of w' onto 

the tangent plane is given by 
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Thus, if d is the point of intersection with the tangent plane 
of a line from a inclined at angle β to the perpendicular, then 
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Let δ = f 
– 1

(yk) – f 
– 1

(θk) be the error in the input to final 
unit.  Hence using equations (2), (3) and (4) in (5) yields 
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Thus, to adjust a given weight wji 
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The term 
jik w  is the partial derivative of the net 

input to the output unit.  The treatment of this term follows 
from Lee [1] 
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Where Mj is the set of units to which uj passes its output. 

The new iTPA algorithm requires two parameters that 
need to be set manually.  First parameter is the angle 
parameter tanβ, which gives the angle between the movement 
vector and the perpendicular from the current position to the 
tangent plane.  Its value is usually chosen to be small, 
typically 0.05, so that movement is to a point nearby the foot 
of the perpendicular.  Second parameter is the weight 
sensitivity parameter wa, which gives the value an individual 
weight wji receives a large push towards the origin.  wa is 
preferred to be small, typically 0.5, so that weights with small 
values are selected for removal from the network.  This will 
produce the required separation of active and inactive weights 
in the network.    

An individual term w'ji = - (wji /wa) / (1 + (wji /wa)
2
) in the 

directional vector w' varies according to (wji /wa) in an anti-
symmetric fashion.  This permits the necessary sign changes 
in w'ji so that the movement along a weight dimension is 

always directed towards the origin.  When | wji | < wa the 
directional term for that weight is approximately linear.  On 
the other hand, when | wji | > wa the directional term 
approaches to zero.  Thus a weight will receive a large push 
when wji equals wa.  A potential difficulty arises when both wji 

and wa are less than 0.5.  If | wji | = wa, the resulting push 
may be large enough to overshoot the origin.  This situation 
can be avoided through the appropriate choice of tanβ. 

The approach of the new iTPA algorithm is reminiscent of 
the Newton-Raphson method of first degree [10] used to find 
the zero points of functions that depend on one value.  An 
important difference is that it provides a whole R

n plane of 
suitable points to move towards.  Any method that does a 
zero-point search of a function cannot get trapped in a local 
minimum unless it hits one by accident.  The new iTPA 

algorithm uses the vector  фk to do a linear extrapolation of 
the surface фk = f 

– 1
(yk) in order to gain a new weight vector 

that is hoped to be on, or at least close, to this surface. 

A simple cost saving can be made by replacing the term 

||m|| = ||w' – (w'. n̂ ) n̂ || in the algorithm with w'. || w'|| is 

greater than or equal to ||w' – (w'. n̂ ) n̂ || with equality holding 

when w' is perpendicular to n̂ .  Its use will result in a 
reduction in the size of m, but this term is scaled by tanβ 
anyway. This reduction is greatest when w' is perpendicular to 
the tangent plane.  According to equation (9) ||m|| involves 

adding n products of the terms w'lm and фk / wlm, and then 

using this result to scale n partial derivatives, фk / wji.  Thus 
the total computational saving is 2n operations per weight 
update. 

The algorithm can be further improved by using a high 
degree polynomial in the denominator of each term w’

ji in the 
directional vector w', so that w'ji = -(wji/wa)/(1 + (wji/wa)

n
) 

where n is a positive constant.  The curves of an individual 
directional term w'ji for three values of parameter n are shown 

in Fig. 2.  Examination of the curves for | wji| > wa yield the 
following observation.   When n is large (typically > 6), the 
directional term w'ji for that weight decays rapidly to zero.  
Thus the proper choice of the parameter n will permit some 
weights in the network to assume values that are larger than 
with n  = 2.   

 

 

 

 

 

 

 

 

 

Fig. 2 Variation of an individual directional term w’
ji for different values 

of the parameter n 
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IV. ESTIMATING THE WEIGHT SENSITIVITY  

The rationale of pruning is to reduce the number of free 
parameters in the network by removing dispensable ones.  If 
applied properly, this approach often reduces overfitting and 
improves generalization.  At the same time it produces a 
smaller network.  The approach adopted in this paper is to 
automatically prune superfluous weights by using the method 
of weight elimination [4].  But how do we know whether the 
method of weight elimination actually produces the required 
separation of active and inactive weights?  One approach 
might be to measure the significance or importance of each 
weight, as the magnitude of the weights is not the best 
measure of their contribution to the training process [11].       

There are several methods suggested for calculating the 
importance of connection weights.  Karnin [12] measures the 
sensitivity sji of each weight by monitoring the sum of all the 
changes to the weights during training.  Thus the saliency of a 

weight is given as sji = ∑t 
(t)

k / wji  w
(t)

ji w
f
ji  / (w

f
ji – w

0
ji), 

where t is the number of epochs trained, w
 f

ji and w0
ji are the 

final and initial values of weight wji.  LeCun et al [13] measure 
the saliency of a weight by estimating the second derivative of 
the error.  They also reduce the network complexity by 
constraining certain weights to be equal.  Low saliency means 
low importance of the weights.  A more sophisticated 
approach avoids the drawbacks of approximating the second 
derivatives by computing them exactly [14].    

The last two methods have the disadvantage of requiring 
training down to the error minimum.  The autoprune method 
[11] avoids this problem.  It uses a statistic t to allocate an 
importance coefficient to each weight based upon the 
assumption that a weight becomes zero during the training 
process 
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In the above formula, sums are over all training examples t 
of the training set, and the overline means arithmetic mean 
over all examples.  A large value of tji indicates high 
importance of weight wji.   

V. SIMULATIONS AND RESULTS 

The convergence behaviour of the new iTPA algorithm 
was evaluated and compared with the gradient descent 
backpropagation algorithm.  The dataset used was the two 
spiral problem [15 – 16].  Like most published work 
classifying the two spiral problem [17], a network with three 
hidden layers was used.  10 trials were performed with the 
classification error on the training and test sets, mean number 
of epochs to converge, and number of successful trials 
recorded.  Network training was terminated when all the 
training patterns were learned correctly or 5,000 epochs or 
presentations of the entire dataset.   

Next, the ability of the new iTPA and original tangent 
plane algorithms to generalise from a given set of training data 
was evaluated and compared with the Extreme Learning 

Machine [18].  The Extreme Learning Machine (ELM) is a 
fast learning algorithm that obtains the least squares solution 
with the minimum training error and minimum norm of the 
weights.  The benchmark datasets used were the Henon map 
[19] and the non-linear dynamic plant [20].  A standard 
feedforward neural network with two hidden layers was 
utilised with the number of hidden units determined by grid 
search.  For each test, 10 trials were performed with the 
normalised mean square error on the training and test sets 
recorded together with the number of successful trials.  
Network training was terminated after 5,000 epochs or 
presentations of the entire training set.   

Finally, the evolution and development of the weights in 
the new iTPA algorithm was evaluated and compared with the 
original tangent plane algorithm.  The benchmark datasets 
used were the Henon map [19] and the non-linear dynamic 
plant [20].  The method used to estimate the sensitivity of the 
weights was autoprune [11].  Histograms of weight 
sensitivities were plotted after 100, 300 and 500 epochs.    

A. Network initialization 

The algorithms used in the study require manually set 
parameters.  Preliminary tests showed that the best results 
were obtained with the parameters set as follows.  First test is 
the new iTPA algorithm.  For the two spiral problem, tanβ = 
0.01.  The weight sensitivity parameter wa and n were varied 
according to a grid search.  The input weights were set to 
random values in the range [-2, 2].  For the Henon map and 
non-linear dynamic plant, tanβ = 0.01, wa = 0.5, and n = 4.0.  
The input weights were set to random values in the range [-
0.5, 0.5].  Next test is the original tangent plane algorithm.  
The angle parameter tanβ = 0.01. The input weights were set 
to random values in the range [-0.01, 0.01].  Finally test is the 
standard back-propagation algorithm.  For the two spiral 
problem, the learning rate η = 0.01, and momentum 
coefficient α = 0.3.  The input weights were set to random 
values in the range [-2, 2].   

B. Simulation problems 

The two spiral problem consists of two interlocking 
spirals, each made up of 97 data points.  The network must 
learn to discriminate the two spirals.  Traditionally this is 
known to be a very difficult problem for the back-propagation 
algorithm to solve.  There are two inputs and one output.  The 
inputs are the x and y co-ordinates, and the output notifies 
which spiral the point belongs to.  For the points in the first 
spiral the output is set to +1, and for points on the other spiral 
the output is set to -1.   The number of training samples is 194.  
A test set of 192 samples was generated by rotating the two 
spirals by a small angle.   

The Henon map problem is a chaotic time-series prediction 
problem.  The time series is computed by  

)()()( ][ 1t2t1t xbxc1x    (11) 

Where x(t) is the value at taken time t, and the parameters b 
= 0.3, and c = 1.4.  Initial values for the time series are x

(1)
 = 

x
(0)

 = 0.63133545.  This point is called the fixed point of the 
time series.  In neural network simulations, four successive 
values of the time series are used in predicting the next value.  
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Thus, the number of inputs is four and the number of output is 
one.  Data values were taken from the range [31,230] as given 
in Lahnajärvi et al [19].  The number of training samples is 
100, and testing samples is 100.   

The non-linear dynamic plant problem is a high order non-
linear system introduced in Narendra and Parthasarathy [20].  
It is modelled by the following discrete time equation 
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Where y(t) is the model output at time t.   Like Narendra and 
Parthasarathy [20], training data was generated using a 
random input signal uniformly distributed over the interval    
[-1, 1].  Five hundred data points were generated, the first 
three hundred used as training data whilst the remaining used 
as test data.   

C. Error metrics used to determine convergence 

The error metrics used in the simulations were CERR 
(Classification ERRor) for classification problems and NMSE 
(Normalized Mean Square Error) for regression problems.  
The CERR was calculated using the 40-20-40 criteria e.g. the 
actual output does not differ from the target output by more 
than 0.4 [15 – 16].  The NMSE was calculated by dividing the 
MSE by the variance of the target output. 

D. Discussion of results  

Two spiral problem.  The first test is a difficult non-
linearly separable problem where a set of co-ordinates (x,y) is 
classified as belonging to one of two interwoven spirals.  A 2-
100-100-100-1 network topology was chosen as given in [16].  
For the new iTPA algorithm, 10 trails gave no failures and a 
mean number of steps to converge of 28 with standard 
deviation 9.  The classification error on the test set was      
1.3×10-2 (e.g. % test set learned = 98.7) with all of the points 
on the training set correctly classified.  Using the standard 
backpropagation algorithm, there was one failure and a mean 
number of steps to converge of 736 with standard deviation 
462.  The classification error on the test set was 1.5×10-2 (e.g. 
% test set learned = 98.5).  The results compare very 
favourably with those given in Linder et al [16] (Aprop: 
epochs = 67, % test set learned = 96.6; Rprop: epochs = 246, 
% test set learned = 65.6).   

Table 1 demonstrates the effects of changing the weight 
sensitivity parameters wa and n of the new iTPA algorithm.  A 
2-20-20-20-1 architecture was chosen to determine the degree 
to which the iTPA algorithm could generalize in a large 
network with many free parameters.  It was found that the 
classification error improved slightly when large values were 
chosen for the weight sensitivity parameter wa.  

Further, increasing the value of the parameter n caused the 
classification error to dip to a clearly defined minimum.  
When wa is large (e.g. typically > 0.5) the directional vector w' 
will push more of the network weights to small values close to 
zero thus implementing a weight decay procedure.  This 
suggests that weight decay is a far more effective strategy for 

improving generalization than weight elimination in large 
neural networks trained using the tangent plane algorithm. 

TABLE I.  CONVERGENCE SPEED AND CLASSIFICATION ACCURACY FOR 

DIFFERENT PARAMETERS IN THE ITPA ALGORITHM 

Note:  the columns in Table 1 refer to the classification 
error on the training set (Cerr) and test set (Cerr*), the mean 

number of steps to converge, and number of success trials for 
different values of the weight sensitivity parameter wa and n. 

Fig 3 and 4 show some typical test curves for both 
algorithms on the two spiral problems.  Different sets of initial 
weights were used in each test.  The test curves of the new 
iTPA algorithm show some variation (Fig 3).  In many of the 
curves generated the test error was found to diminish slowly at 
the start of the training run with intermittent rises in the test 
error fairly typical (test 2).  When the new algorithm was close 
to a solution, the convergence was usually rapid (test 1 and 3).  
The test curves of the standard back-propagation algorithm 
also show wide variation in the test error.  Some curves 
exhibited turbulent behaviour similar to the new iTPA 
algorithm (test 3).  Other curves got trapped in local minima 
of the error landscape resulting in very long runtimes (test 1).  
Generally speaking the new iTPA algorithm is prone to 
problems with stability.  Introducing a 50% staged reduction 
in the step size resulted in faster convergence speeds. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Typical generalization behaviour of the new iTPA algorithm on 
the two spiral problem  

aw  n  Cerr Cerr* Steps Succ 

0.10 4.0 0.46 1.35 497 10 

0.20 4.0 0.36 1.56 634 10 

0.50 4.0 0.41 0.78 563 10 

1.00 4.0 0.36 0.78 460 10 

0.50 2.0 0.31 0.89 435 10 

0.50 4.0 0.41 0.78 563 10 

0.50 6.0 0.52 0.99 532 10 

0.50 8.0 0.41 0.89 559 10 
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Fig. 4 Typical generalization behaviour of the gradient descent 
backpropagation algorithm on the two spiral problem 

Henon map time series.  The second test is a classical 
deterministic one-step-ahead prediction problem.  Preliminary 
tests showed that the best results for both tangent plane 
algorithms were obtained using a 4-15-15-1 architecture.  
Network training was terminated after 5,000 epochs or 
presentations of the entire dataset.  For the new iTPA 
algorithm, 10 trials gave a normalised mean square error on 
the training set and test set of 0.00007 and 0.00008 
respectively.  Using the original tangent plane algorithm, 10 
trials gave (training set = 0.00005, test set = 0.00009).  There 
was little evidence of overtraining.  The performance of both 
tangent plane algorithms compare favourably with the 
Extreme Learning Machine.  For ELM a single hidden layer 
feedforward neural net with 80 hidden units gave (training set 
= 0.00001, test set = 0.00011).   

Fig 5 and 6 show histograms of the importance 
coefficients of the weights for both algorithms on the Henon 
map problem.  The importance coefficients were recorded 
from the same trial at epochs 100, 300 and 500.  The 
coefficient sizes were grouped in classes of width one and 
histograms plotted to show the distribution of the tji values at 
three different stages of training.  The new iTPA algorithm 
gave average coefficient sizes at 100, 300, 500 epochs of 1.82, 
1.95, and 1.95 respectively.  The original algorithm gave 1.70, 
1.96, and 2.25.  Notice the right skewness of the histograms 
produced by the new algorithm (see Fig 5).  After 500 epochs 
the histogram is dominated by a single high peak and long 
right tail.  This suggests that many of the weights have taken 
on equally important roles in the network.  Thus are likely to 
be fewer outlier weights with extreme values that are known 
to produce overtraining in neural networks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Importance coefficient histograms for the new iTPA algorithm 

(Henon map problem). Horizontal axis: coefficient size grouped in classes of 

width 1. Vertical axis: absolute frequency of weights with this coefficient 
size.  

 

 

 

 

 

 

 

 

 

Fig. 6 Importance coefficient histograms for the original tangent plane 

algorithm (Henon map problem). Horizontal axis: coefficient size grouped in 

classes of width 1. Vertical axis: absolute frequency of weights with this 
coefficient size 

Non-linear dynamic plant.  The third test is a high order 
non-linear discrete time system.  Preliminary tests showed that 
the best results for both tangent plane algorithms were 
obtained using a 2-10-10-1 architecture.  Network training 
was terminated after 5,000 epochs or presentations of the 
entire dataset.  For the new iTPA algorithm, 10 trials gave an 
average normalised mean square error on the training and test 
sets of 0.00045 and 0.00086 respectively.  Using the original 
tangent plane algorithm, 10 trials gave (training set = 0.00142, 
test set = 0.00393).   
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Once again the performance of both tangent plane 
algorithms compare favourably with the Extreme Learning 
Machine.  For ELM a single hidden layer neural net with 200 
hidden units gave (training set = 0.00007, test set = 0.00568).  
The results on the training set suggest that the new iTPA 
algorithm is an effective global minimizer capable of reaching 
the smallest training error. 

Fig 7 and 8 show histograms of the importance 
coefficients of the weights for both algorithms on the non-
linear dynamic plant problem.  The importance coefficients 
were recorded from the same trial at epochs 100, 300 and 500.  
The coefficient sizes were grouped in classes of width one and 
histograms plotted to show the distribution of the tji values at 
three different stages of training.  The new iTPA algorithm 
gave average coefficient sizes at 100, 300, 500 epochs of 2.24, 
2.68, and 2.79 respectively.  The original algorithm gave 2.56, 
3.33, and 3.81.  Notice the left drift of the histograms 
produced by the new algorithm (see Fig 7).  In contrast the 
histograms produced by the original algorithm tend to drift 
right, as expected (Fig 8).  Further, these histograms have a 
long right tail which suggests that some weights are taking on 
a far more active role in the network.  This might account for 
the worse generalization of the original algorithm on this 
problem. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Importance coefficient histograms for the new iTPA algorithm 

(non-linear dynamic plant). Horizontal axis: coefficient size grouped in 

classes of width 1. Vertical axis: absolute frequency of weights with this 
coefficient size 

VI. COMPARISON OF THE DIFFERENT ALGORITHMS 

In order to determine whether the difference in the results 
is statistically significant, we perform some hypothesis tests.  
The test used was a standard t-test with the sample of test 
errors from the iTPA algorithm compared with the 
corresponding sample from the original tangent plane 
algorithm for each dataset used in the study.  A second test 
was carried out by comparing these test results with the ELM 
algorithm on the same set of problems.   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Importance coefficient histograms for the original tangent plane 

algorithm (non-linear dynamic plant). Horizontal axis: coefficient size 

grouped in classes of width 1. Vertical axis: absolute frequency of weights 
with this coefficient size 

The ELM algorithm requires the number of hidden units to 
be set which was found be grid search.  For the correct 
application of the t-test, it was necessary to take the logarithm 
of the test errors (since the test errors have log-normal 
distribution) and remove any outliers, following the same 
procedure in [21].  The resulting samples were tested for 
normality using the Kolmogorov-Smirnov test. 

TABLE II.  RESULTS OF A T-TEST COMPARING THE MEAN TEST ERRORS 

OF THE DIFFERENT ALGORITHMS 

Note:  The entries show differences that are statistically 
significant on a 10% level and dashes mean no significance 
found.  Column (a): iTPA algorithm (“L”) vs. original tangent 
plane algorithm (“T”). Column (b): iTPA algorithm vs. ELM 
algorithm (“E”).  Column. (c): original tangent plane 
algorithm vs. ELM algorithm.     

The results are tabulated in Table 2.  Dashes mean 
differences that are not significant at the 10% level i.e. the 
probability that the differences are purely accidental.  Other 
entries indicate the superior algorithm (e.g. iTPA algorithm - 
L, original tangent plane algorithm – T, ELM algorithm - E), 
and the value of the t statistic.  Column (a) gives a comparison 
between the new iTPA algorithm and the original tangent 
plane algorithm.  The results show two times L is better (spiral 
and non-linear dynamic plant) and once T is better (Henon 
map).   

  

Problem 
Training 

samples 

Test 

samples 
Inputs (a) (b) (c) 

Spiral 194 192 2 
L 

6.51 
- 

E 

7.03 

Henon 100 100 4 - - - 

Plant 150 103 13 
L 

5.37 
L 

11.98 
- 
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The new iTPA Algorithm performed better on the datasets 
that were more difficult to learn and so convergence speeds 
tended to be slower.  Where convergence occurred quickly the 
original algorithm was the better method.  Column (b) and (c) 
give comparisons between the new iTPA and original tangent 
plane algorithms, and the ELM algorithm.  The results show 4 
times no statistical difference, once L is better and twice E is 
better.  

This suggests that the generalization performance of the 
tangent plane method is at least as good as the ELM 
algorithm, which is one of the best neural network classifiers.  
In situations where time varying signals are required, such as 
EEG and ECG signals, the sequential learning ability of the 
tangent plane algorithm might be the preferred method. 

VII. CONCLUSIONS 

A new variant of the tangent plane algorithm referred to as 
iTPA is proposed for feed-forward neural networks.  This new 
algorithm includes two modifications to the existing 
algorithm.  Firstly, a directional movement vector is 
introduced into the training process to push the movement in 
weight space towards the origin.  This directional vector is 
built into the geometry of the tangent plane algorithm and 
implements a weight elimination procedure.  Secondly, a high 
degree polynomial term is utilised to adjust the proportion of 
weights that receive an inwards push.  Thus the algorithm can 
be tuned to decay specific weights to zero (which can help 
generalization).   

Comparative tests were carried out using the new iTPA 
and original tangent plane algorithms, the gradient descent 
back-propagation algorithm and the Extreme Learning 
Machine.  The results indicate that the new iTPA algorithm 
retains the fast convergence speed of the original method.  
However, the new iTPA algorithm is prone to problems with 
stability.  Including a 50% reduction in step size often 
improves convergence behaviour without any diminution in 
learning speed.  The results also show that the new algorithm 
gives improved generalization relative to the original 
algorithm in some problems, and has comparable 
generalization performance in yet others.  Further, the 
generalization performance of the tangent plane method is at 
least as good as the Extreme Learning Machine, which is one 
of the best neural network classifiers. 

VIII. FUTURE WORK 

This paper shows that the newly developed improved 
tangent plane algorithm (iTPA) is at least as good as the 
extreme learning machine, which is one of the best neural 
network classifiers.  In situations where time varying signals 
are required, such as EEG and ECG signals, the sequential 
learning ability of the improved tangent plane algorithm might 
be the preferred method. 
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