
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 6, 2013

149 | P a g e
www.ijacsa.thesai.org

A Comprehensive Evaluation of Weight Growth and

Weight Elimination Methods Using the Tangent Plane

Algorithm

 P May

K College,

Brook Street, Tonbridge,

Kent, UK

E Zhou

Engineering, Sports and Sciences

Academic Group,

University of Bolton, UK

C. W. Lee

Engineering, Sports and Sciences

Academic Group

University of Bolton, UK

Abstract—The tangent plane algorithm is a fast sequential

learning method for multilayered feedforward neural networks

that accepts almost zero initial conditions for the connection

weights with the expectation that only the minimum number of

weights will be activated. However, the inclusion of a tendency to

move away from the origin in weight space can lead to large

weights that are harmful to generalization. This paper evaluates

two techniques used to limit the size of the weights, weight

growing and weight elimination, in the tangent plane algorithm.

Comparative tests were carried out using the Extreme Learning

Machine which is a fast global minimiser giving good

generalization. Experimental results show that the generalization

performance of the tangent plane algorithm with weight

elimination is at least as good as the ELM algorithm making it a

suitable alternative for problems that involve time varying data
such as EEG and ECG signals.

Keywords—neural networks; backpropagation;

generalization; tangent plane; weight elimination; extreme
learning machine

I. INTRODUCTION

In Lee [1] an algorithm was described for supervised
training in multilayered feedforward neural networks giving
faster convergence and improved generalization relative to the
gradient descent backpropagation algorithm. This tangent
plane algorithm starts the training with the connection weights
set to values close to zero in the expectation that the minimum
weights necessary will be activated.

The results based on two real world datasets indicated that
the tangent plane algorithm gives improved generalization
over a range of network sizes and that it is robust with respect
to the choice of its internal parameters.

Despite the success of the tangent plane algorithm there is,
however, strong evidence to suggest that growing the weights
to assume large values can actually hurt generalization in
different ways. Excessively large weights feeding into output
units can cause wild outputs far beyond the range of the data if
an output activation function is not included. To put it another
way, large weights can cause excessively large variances in
the output. According to Bartlett [2], the size of the weights is
more important than the number of weights in determining
good generalization. This poses the following question: can
we modify this algorithm so that it discourages the formation

of weights with large values? Further, can the algorithm
encourage weights with small values to decay rapidly to zero
thus producing a network having the optimum size for good
generalization?

Weight decay is a subset of regularization methods. The
principal idea of weight decay is to penalize connection
weights with small values so that the network removes the
superfluous weights itself. The simplest method is to subtract
a small proportion of a weight after it has been updated [3].
This is equivalent to adding a penalty term ∑ji wji

2 to the
objective function and performing gradient descent on the
resulting total error. Unfortunately this method penalizes
more of the wji’s than necessary whilst keeping the relative
importance of the weights unchanged. This can be cured by
using a different penalty term, ∑ji wji

2
/ (1 + wji

2
), so that the

small wji’s decay faster than the larger ones [4]. Williams [5]
proposed yet another type of penalty function which is
proportional to the logarithm of the l1 norm of the weights,

∑ji | wji |. It was shown in [5] that using this penalty term is
more appropriate for internal weights than weight decay.
Hoyer [6] proposed a sparseness measure based on the l1 norm
and l2 norm of weights. Experiments with Hoyer’s method
indicate that it performs well in comparison with weight decay
and weight elimination. A further refinement involves using a
mixed norm penalty term [7]. In this procedure the l1 norm of
the weight vector is minimised subject to the constraint that
the l2 norm equals unity.

II. OBJECTIVES

The principal objective of this paper is to describe an
alternative strategy for improving generalization in neural
networks trained using the tangent plane algorithm. In the
newly developed algorithm, the training is started from
arbitrary initial conditions and the inactive weights in the
network encouraged decaying to zero by using the weight
elimination procedure.

Unlike other implementations of weight elimination
procedures [4, 6, 8 - 9], the method used here is built into the
geometry used in the derivation of the algorithm. A secondary
objective is to compare the newly developed algorithm with
the extreme learning machine [10], which obtains the least
squares solution with the minimum training error and
minimum norm of weights.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 6, 2013

150 | P a g e
www.ijacsa.thesai.org

III. DERIVATION OF THE ALGORITHM

In Lee [1] an algorithm is described that accepts almost
zero staring conditions for the connection weights, and which
moves away from the origin in a direction indicated by the
training data with the expectation that only the minimum
weights would be activated. This tangent plane algorithm uses
the target values of the training data to define a (n – 1) surface
in weight space Rn. The weights are adjusted by moving from
the current position to a point near to the foot of the
perpendicular to the tangent plane to this surface, but
displaced somewhat in the direction away from the origin, on
the expectation that the smaller the distance moved from the
foot of the perpendicular the less disturbance there will be to
the previous learning.

Two enhancements are made to the tangent plane
algorithm to obtain the improved tangent plane algorithm
referred to as iTPA. Firstly, a directional movement vector is
introduced into the training process to push the movement in
weight space towards the origin.

This movement vector simulates weight decay which is
known to have a beneficial effect on generalization in
backpropagation learning. Secondly, the directional vector is
further modified to give a heavier weighting to weights with
small weight values to avoid penalizing more of the weights
than necessary; one large weight costs much more than many
smaller ones. A high degree polynomial term is used to select
the proportion of weights for pruning. This term can be
adjusted so that a weight decay procedure is implemented or
refined in a way that specific weights are removed by causing
them to decay more rapidly to zero.

Fig. 1 Movement from the present position a to the point d inclined at an

angle β to the perpendicular from a to the tangent plane to the constraint

surface фk = f
 -1

(yk) at point b in the weight space R
n
. The vector m

represents the orthogonal projection of the weight elimination vector w’

orthogonally onto the normal n to the constraint surface at point b

The method assumes a feed-forward neural network of
units { uj}, where the connection between ui and uj is mediated
by wji. фj and θj denote the input and output of uj, so that θj =
f(фj), and фj = ∑i wji θi. The single output unit uk is trained to
mimic the target value yk. Let n denote the number of weights

in the network. For a given set of inputs we can consider фk
to be a function of the weights фk : R → R

n. The tangent
plane algorithm adjusts the weights by moving along the line
at an angle β to the perpendicular from the current position a
to the tangent plane to the surface фk = f

 - 1
(yk), on the side of

the perpendicular away from the origin (see Fig. 1).

Let a = ∑ji w'ji iji be the current values of the weights,
where iji is a unit vector in the direction of the wji axis. Use
the equation f -1

(yk) = wk0 + ∑i≠0 wki θi to find a value, w''k0, for
the bias weight wk0 from the values wji of the other weights, so
that the surface фk = f

 - 1
(yk) contains the point

b = w''k0 ik0 + ∑j,i≠k,0 w'ji iji. Now, if we use the equation
f

-1
(yk) = w''k0 + ∑i≠0 w'ki θi and f -1

(θk) = w'k0 + ∑i≠0 w'ki θi, and
note that b differs from a only in the value of wk0, we get

0

11

0

'

0

"

0

))()((

)(

kkk

kkk

fyf

ww

i

iab

 (1)

Let n̂ be the unit normal to the surface at b, so

kk
ˆ n . The length of the perpendicular from a to

the tangent plane at b is nab ˆ)(. . If c is the foot of the

perpendicular from a to the tangent plane at b,

nniac ˆ)ˆ.())()((0kk

1

k

1 fyf

k

k

k

k

1

k

1 fyf

)()(
 (2)

And

k

k

1

k

1 fyf

)()(
ac (3)

The vector that is directed towards the origin and biased
along the axes of the weights wji that have small weight values
relative to some small positive constant wa is

w' = - ∑j,i (wji /wa) iji / (1 + w
2

ji /w
2
a). The projection of w' onto

the tangent plane is given by

nn.wwm ˆ)ˆ(''

k

k

m,l lm

k'

lm

k

'

w
w

1

 w (4)

Where

ij

ij
2

a

2

ji

aji

ww1

ww
,

,

'

)(

)(
iw

 (5)

Thus, if d is the point of intersection with the tangent plane
of a line from a inclined at angle β to the perpendicular, then

)()(accdad

m

m
ac tan)(ac (6)

0ki

o

b

 kk yf 1

n̂

a

m

a

d

c

'
w

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 6, 2013

151 | P a g e
www.ijacsa.thesai.org

Let δ = f
– 1

(yk) – f
– 1

(θk) be the error in the input to final
unit. Hence using equations (2), (3) and (4) in (5) yields

k

k

lm lm

k'
lm

k

'

k

k2

k

w
w

1

1
tan

1

w

m
ad

 (7)

Thus, to adjust a given weight wji

ji

k

lm lm

k'
lm2

k

'
ji

k
ji

k

2

k

ji

ww
w

1
w

1
tan

w

1
w

m

 (8)

where

2

ji

k

ij ml lm

k
lm2

k

ji

2

ww
w

1
w

, ,

''
m (9)

The term
jik w is the partial derivative of the net

input to the output unit. The treatment of this term follows
from Lee [1]

i

j

k

ji

k

w

and

 jMm

mj

m

k
jjj

k

kjifwf

kjif1

,)(

,

'

Where Mj is the set of units to which uj passes its output.

The new iTPA algorithm requires two parameters that
need to be set manually. First parameter is the angle
parameter tanβ, which gives the angle between the movement
vector and the perpendicular from the current position to the
tangent plane. Its value is usually chosen to be small,
typically 0.05, so that movement is to a point nearby the foot
of the perpendicular. Second parameter is the weight
sensitivity parameter wa, which gives the value an individual
weight wji receives a large push towards the origin. wa is
preferred to be small, typically 0.5, so that weights with small
values are selected for removal from the network. This will
produce the required separation of active and inactive weights
in the network.

An individual term w'ji = - (wji /wa) / (1 + (wji /wa)
2
) in the

directional vector w' varies according to (wji /wa) in an anti-
symmetric fashion. This permits the necessary sign changes
in w'ji so that the movement along a weight dimension is

always directed towards the origin. When | wji | < wa the
directional term for that weight is approximately linear. On
the other hand, when | wji | > wa the directional term
approaches to zero. Thus a weight will receive a large push
when wji equals wa. A potential difficulty arises when both wji

and wa are less than 0.5. If | wji | = wa, the resulting push
may be large enough to overshoot the origin. This situation
can be avoided through the appropriate choice of tanβ.

The approach of the new iTPA algorithm is reminiscent of
the Newton-Raphson method of first degree [10] used to find
the zero points of functions that depend on one value. An
important difference is that it provides a whole R

n plane of
suitable points to move towards. Any method that does a
zero-point search of a function cannot get trapped in a local
minimum unless it hits one by accident. The new iTPA

algorithm uses the vector фk to do a linear extrapolation of
the surface фk = f

– 1
(yk) in order to gain a new weight vector

that is hoped to be on, or at least close, to this surface.

A simple cost saving can be made by replacing the term

||m|| = ||w' – (w'. n̂) n̂ || in the algorithm with w'. || w'|| is

greater than or equal to ||w' – (w'. n̂) n̂ || with equality holding

when w' is perpendicular to n̂ . Its use will result in a
reduction in the size of m, but this term is scaled by tanβ
anyway. This reduction is greatest when w' is perpendicular to
the tangent plane. According to equation (9) ||m|| involves

adding n products of the terms w'lm and фk / wlm, and then

using this result to scale n partial derivatives, фk / wji. Thus
the total computational saving is 2n operations per weight
update.

The algorithm can be further improved by using a high
degree polynomial in the denominator of each term w’

ji in the
directional vector w', so that w'ji = -(wji/wa)/(1 + (wji/wa)

n
)

where n is a positive constant. The curves of an individual
directional term w'ji for three values of parameter n are shown

in Fig. 2. Examination of the curves for | wji| > wa yield the
following observation. When n is large (typically > 6), the
directional term w'ji for that weight decays rapidly to zero.
Thus the proper choice of the parameter n will permit some
weights in the network to assume values that are larger than
with n = 2.

Fig. 2 Variation of an individual directional term w’
ji for different values

of the parameter n

0.0

0.2

0.4

0.6

0.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0

w a = 1.0, n = 2

w a = 1.0, n = 4

w a = 1.0, n = 8

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 6, 2013

152 | P a g e
www.ijacsa.thesai.org

IV. ESTIMATING THE WEIGHT SENSITIVITY

The rationale of pruning is to reduce the number of free
parameters in the network by removing dispensable ones. If
applied properly, this approach often reduces overfitting and
improves generalization. At the same time it produces a
smaller network. The approach adopted in this paper is to
automatically prune superfluous weights by using the method
of weight elimination [4]. But how do we know whether the
method of weight elimination actually produces the required
separation of active and inactive weights? One approach
might be to measure the significance or importance of each
weight, as the magnitude of the weights is not the best
measure of their contribution to the training process [11].

There are several methods suggested for calculating the
importance of connection weights. Karnin [12] measures the
sensitivity sji of each weight by monitoring the sum of all the
changes to the weights during training. Thus the saliency of a

weight is given as sji = ∑t
(t)

k / wji w
(t)

ji w
f
ji / (w

f
ji – w

0
ji),

where t is the number of epochs trained, w
 f

ji and w0
ji are the

final and initial values of weight wji. LeCun et al [13] measure
the saliency of a weight by estimating the second derivative of
the error. They also reduce the network complexity by
constraining certain weights to be equal. Low saliency means
low importance of the weights. A more sophisticated
approach avoids the drawbacks of approximating the second
derivatives by computing them exactly [14].

The last two methods have the disadvantage of requiring
training down to the error minimum. The autoprune method
[11] avoids this problem. It uses a statistic t to allocate an
importance coefficient to each weight based upon the
assumption that a weight becomes zero during the training
process

)(jiwt log

t

2
ji

t
ji

t

t
jiji

ww

ww

))((
 (10)

In the above formula, sums are over all training examples t
of the training set, and the overline means arithmetic mean
over all examples. A large value of tji indicates high
importance of weight wji.

V. SIMULATIONS AND RESULTS

The convergence behaviour of the new iTPA algorithm
was evaluated and compared with the gradient descent
backpropagation algorithm. The dataset used was the two
spiral problem [15 – 16]. Like most published work
classifying the two spiral problem [17], a network with three
hidden layers was used. 10 trials were performed with the
classification error on the training and test sets, mean number
of epochs to converge, and number of successful trials
recorded. Network training was terminated when all the
training patterns were learned correctly or 5,000 epochs or
presentations of the entire dataset.

Next, the ability of the new iTPA and original tangent
plane algorithms to generalise from a given set of training data
was evaluated and compared with the Extreme Learning

Machine [18]. The Extreme Learning Machine (ELM) is a
fast learning algorithm that obtains the least squares solution
with the minimum training error and minimum norm of the
weights. The benchmark datasets used were the Henon map
[19] and the non-linear dynamic plant [20]. A standard
feedforward neural network with two hidden layers was
utilised with the number of hidden units determined by grid
search. For each test, 10 trials were performed with the
normalised mean square error on the training and test sets
recorded together with the number of successful trials.
Network training was terminated after 5,000 epochs or
presentations of the entire training set.

Finally, the evolution and development of the weights in
the new iTPA algorithm was evaluated and compared with the
original tangent plane algorithm. The benchmark datasets
used were the Henon map [19] and the non-linear dynamic
plant [20]. The method used to estimate the sensitivity of the
weights was autoprune [11]. Histograms of weight
sensitivities were plotted after 100, 300 and 500 epochs.

A. Network initialization

The algorithms used in the study require manually set
parameters. Preliminary tests showed that the best results
were obtained with the parameters set as follows. First test is
the new iTPA algorithm. For the two spiral problem, tanβ =
0.01. The weight sensitivity parameter wa and n were varied
according to a grid search. The input weights were set to
random values in the range [-2, 2]. For the Henon map and
non-linear dynamic plant, tanβ = 0.01, wa = 0.5, and n = 4.0.
The input weights were set to random values in the range [-
0.5, 0.5]. Next test is the original tangent plane algorithm.
The angle parameter tanβ = 0.01. The input weights were set
to random values in the range [-0.01, 0.01]. Finally test is the
standard back-propagation algorithm. For the two spiral
problem, the learning rate η = 0.01, and momentum
coefficient α = 0.3. The input weights were set to random
values in the range [-2, 2].

B. Simulation problems

The two spiral problem consists of two interlocking
spirals, each made up of 97 data points. The network must
learn to discriminate the two spirals. Traditionally this is
known to be a very difficult problem for the back-propagation
algorithm to solve. There are two inputs and one output. The
inputs are the x and y co-ordinates, and the output notifies
which spiral the point belongs to. For the points in the first
spiral the output is set to +1, and for points on the other spiral
the output is set to -1. The number of training samples is 194.
A test set of 192 samples was generated by rotating the two
spirals by a small angle.

The Henon map problem is a chaotic time-series prediction
problem. The time series is computed by

)()()(][1t2t1t xbxc1x (11)

Where x(t) is the value at taken time t, and the parameters b
= 0.3, and c = 1.4. Initial values for the time series are x

(1)
 =

x
(0)

 = 0.63133545. This point is called the fixed point of the
time series. In neural network simulations, four successive
values of the time series are used in predicting the next value.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 6, 2013

153 | P a g e
www.ijacsa.thesai.org

Thus, the number of inputs is four and the number of output is
one. Data values were taken from the range [31,230] as given
in Lahnajärvi et al [19]. The number of training samples is
100, and testing samples is 100.

The non-linear dynamic plant problem is a high order non-
linear system introduced in Narendra and Parthasarathy [20].
It is modelled by the following discrete time equation

23t22t

t3t1t3t2t1t

t

yy1

u1yuyyy
y

][][

][

)()(

)()()()()(

)(

 (12)

Where y(t) is the model output at time t. Like Narendra and
Parthasarathy [20], training data was generated using a
random input signal uniformly distributed over the interval
[-1, 1]. Five hundred data points were generated, the first
three hundred used as training data whilst the remaining used
as test data.

C. Error metrics used to determine convergence

The error metrics used in the simulations were CERR
(Classification ERRor) for classification problems and NMSE
(Normalized Mean Square Error) for regression problems.
The CERR was calculated using the 40-20-40 criteria e.g. the
actual output does not differ from the target output by more
than 0.4 [15 – 16]. The NMSE was calculated by dividing the
MSE by the variance of the target output.

D. Discussion of results

Two spiral problem. The first test is a difficult non-
linearly separable problem where a set of co-ordinates (x,y) is
classified as belonging to one of two interwoven spirals. A 2-
100-100-100-1 network topology was chosen as given in [16].
For the new iTPA algorithm, 10 trails gave no failures and a
mean number of steps to converge of 28 with standard
deviation 9. The classification error on the test set was
1.3×10-2 (e.g. % test set learned = 98.7) with all of the points
on the training set correctly classified. Using the standard
backpropagation algorithm, there was one failure and a mean
number of steps to converge of 736 with standard deviation
462. The classification error on the test set was 1.5×10-2 (e.g.
% test set learned = 98.5). The results compare very
favourably with those given in Linder et al [16] (Aprop:
epochs = 67, % test set learned = 96.6; Rprop: epochs = 246,
% test set learned = 65.6).

Table 1 demonstrates the effects of changing the weight
sensitivity parameters wa and n of the new iTPA algorithm. A
2-20-20-20-1 architecture was chosen to determine the degree
to which the iTPA algorithm could generalize in a large
network with many free parameters. It was found that the
classification error improved slightly when large values were
chosen for the weight sensitivity parameter wa.

Further, increasing the value of the parameter n caused the
classification error to dip to a clearly defined minimum.
When wa is large (e.g. typically > 0.5) the directional vector w'
will push more of the network weights to small values close to
zero thus implementing a weight decay procedure. This
suggests that weight decay is a far more effective strategy for

improving generalization than weight elimination in large
neural networks trained using the tangent plane algorithm.

TABLE I. CONVERGENCE SPEED AND CLASSIFICATION ACCURACY FOR

DIFFERENT PARAMETERS IN THE ITPA ALGORITHM

Note: the columns in Table 1 refer to the classification
error on the training set (Cerr) and test set (Cerr*), the mean

number of steps to converge, and number of success trials for
different values of the weight sensitivity parameter wa and n.

Fig 3 and 4 show some typical test curves for both
algorithms on the two spiral problems. Different sets of initial
weights were used in each test. The test curves of the new
iTPA algorithm show some variation (Fig 3). In many of the
curves generated the test error was found to diminish slowly at
the start of the training run with intermittent rises in the test
error fairly typical (test 2). When the new algorithm was close
to a solution, the convergence was usually rapid (test 1 and 3).
The test curves of the standard back-propagation algorithm
also show wide variation in the test error. Some curves
exhibited turbulent behaviour similar to the new iTPA
algorithm (test 3). Other curves got trapped in local minima
of the error landscape resulting in very long runtimes (test 1).
Generally speaking the new iTPA algorithm is prone to
problems with stability. Introducing a 50% staged reduction
in the step size resulted in faster convergence speeds.

Fig. 3 Typical generalization behaviour of the new iTPA algorithm on
the two spiral problem

aw n Cerr Cerr* Steps Succ

0.10 4.0 0.46 1.35 497 10

0.20 4.0 0.36 1.56 634 10

0.50 4.0 0.41 0.78 563 10

1.00 4.0 0.36 0.78 460 10

0.50 2.0 0.31 0.89 435 10

0.50 4.0 0.41 0.78 563 10

0.50 6.0 0.52 0.99 532 10

0.50 8.0 0.41 0.89 559 10

0

50

100

150

200

0 100 200 300 400 500

Epochs

N
M

S
E

 x
 1

0
0

iTPA test 1

iTPA test 2

iTPA test 3

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 6, 2013

154 | P a g e
www.ijacsa.thesai.org

Fig. 4 Typical generalization behaviour of the gradient descent
backpropagation algorithm on the two spiral problem

Henon map time series. The second test is a classical
deterministic one-step-ahead prediction problem. Preliminary
tests showed that the best results for both tangent plane
algorithms were obtained using a 4-15-15-1 architecture.
Network training was terminated after 5,000 epochs or
presentations of the entire dataset. For the new iTPA
algorithm, 10 trials gave a normalised mean square error on
the training set and test set of 0.00007 and 0.00008
respectively. Using the original tangent plane algorithm, 10
trials gave (training set = 0.00005, test set = 0.00009). There
was little evidence of overtraining. The performance of both
tangent plane algorithms compare favourably with the
Extreme Learning Machine. For ELM a single hidden layer
feedforward neural net with 80 hidden units gave (training set
= 0.00001, test set = 0.00011).

Fig 5 and 6 show histograms of the importance
coefficients of the weights for both algorithms on the Henon
map problem. The importance coefficients were recorded
from the same trial at epochs 100, 300 and 500. The
coefficient sizes were grouped in classes of width one and
histograms plotted to show the distribution of the tji values at
three different stages of training. The new iTPA algorithm
gave average coefficient sizes at 100, 300, 500 epochs of 1.82,
1.95, and 1.95 respectively. The original algorithm gave 1.70,
1.96, and 2.25. Notice the right skewness of the histograms
produced by the new algorithm (see Fig 5). After 500 epochs
the histogram is dominated by a single high peak and long
right tail. This suggests that many of the weights have taken
on equally important roles in the network. Thus are likely to
be fewer outlier weights with extreme values that are known
to produce overtraining in neural networks.

Fig. 5 Importance coefficient histograms for the new iTPA algorithm

(Henon map problem). Horizontal axis: coefficient size grouped in classes of

width 1. Vertical axis: absolute frequency of weights with this coefficient
size.

Fig. 6 Importance coefficient histograms for the original tangent plane

algorithm (Henon map problem). Horizontal axis: coefficient size grouped in

classes of width 1. Vertical axis: absolute frequency of weights with this
coefficient size

Non-linear dynamic plant. The third test is a high order
non-linear discrete time system. Preliminary tests showed that
the best results for both tangent plane algorithms were
obtained using a 2-10-10-1 architecture. Network training
was terminated after 5,000 epochs or presentations of the
entire dataset. For the new iTPA algorithm, 10 trials gave an
average normalised mean square error on the training and test
sets of 0.00045 and 0.00086 respectively. Using the original
tangent plane algorithm, 10 trials gave (training set = 0.00142,
test set = 0.00393).

0

50

100

150

200

0 100 200 300 400 500

Epochs

N
M

S
E

 x
 1

0
0

GD-BP test 1

GD-BP test 2

GD-BP test 3

0

30

60

90

120

150

180

-5 0 5 10 15

Epoch 100

Epoch 300

Epoch 500

0

30

60

90

120

150

180

-5 0 5 10 15

Epoch 100

Epoch 300

Epoch 500

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 6, 2013

155 | P a g e
www.ijacsa.thesai.org

Once again the performance of both tangent plane
algorithms compare favourably with the Extreme Learning
Machine. For ELM a single hidden layer neural net with 200
hidden units gave (training set = 0.00007, test set = 0.00568).
The results on the training set suggest that the new iTPA
algorithm is an effective global minimizer capable of reaching
the smallest training error.

Fig 7 and 8 show histograms of the importance
coefficients of the weights for both algorithms on the non-
linear dynamic plant problem. The importance coefficients
were recorded from the same trial at epochs 100, 300 and 500.
The coefficient sizes were grouped in classes of width one and
histograms plotted to show the distribution of the tji values at
three different stages of training. The new iTPA algorithm
gave average coefficient sizes at 100, 300, 500 epochs of 2.24,
2.68, and 2.79 respectively. The original algorithm gave 2.56,
3.33, and 3.81. Notice the left drift of the histograms
produced by the new algorithm (see Fig 7). In contrast the
histograms produced by the original algorithm tend to drift
right, as expected (Fig 8). Further, these histograms have a
long right tail which suggests that some weights are taking on
a far more active role in the network. This might account for
the worse generalization of the original algorithm on this
problem.

Fig. 7 Importance coefficient histograms for the new iTPA algorithm

(non-linear dynamic plant). Horizontal axis: coefficient size grouped in

classes of width 1. Vertical axis: absolute frequency of weights with this
coefficient size

VI. COMPARISON OF THE DIFFERENT ALGORITHMS

In order to determine whether the difference in the results
is statistically significant, we perform some hypothesis tests.
The test used was a standard t-test with the sample of test
errors from the iTPA algorithm compared with the
corresponding sample from the original tangent plane
algorithm for each dataset used in the study. A second test
was carried out by comparing these test results with the ELM
algorithm on the same set of problems.

Fig. 8 Importance coefficient histograms for the original tangent plane

algorithm (non-linear dynamic plant). Horizontal axis: coefficient size

grouped in classes of width 1. Vertical axis: absolute frequency of weights
with this coefficient size

The ELM algorithm requires the number of hidden units to
be set which was found be grid search. For the correct
application of the t-test, it was necessary to take the logarithm
of the test errors (since the test errors have log-normal
distribution) and remove any outliers, following the same
procedure in [21]. The resulting samples were tested for
normality using the Kolmogorov-Smirnov test.

TABLE II. RESULTS OF A T-TEST COMPARING THE MEAN TEST ERRORS

OF THE DIFFERENT ALGORITHMS

Note: The entries show differences that are statistically
significant on a 10% level and dashes mean no significance
found. Column (a): iTPA algorithm (“L”) vs. original tangent
plane algorithm (“T”). Column (b): iTPA algorithm vs. ELM
algorithm (“E”). Column. (c): original tangent plane
algorithm vs. ELM algorithm.

The results are tabulated in Table 2. Dashes mean
differences that are not significant at the 10% level i.e. the
probability that the differences are purely accidental. Other
entries indicate the superior algorithm (e.g. iTPA algorithm -
L, original tangent plane algorithm – T, ELM algorithm - E),
and the value of the t statistic. Column (a) gives a comparison
between the new iTPA algorithm and the original tangent
plane algorithm. The results show two times L is better (spiral
and non-linear dynamic plant) and once T is better (Henon
map).

Problem
Training

samples

Test

samples
Inputs (a) (b) (c)

Spiral 194 192 2
L

6.51
-

E

7.03

Henon 100 100 4 - - -

Plant 150 103 13
L

5.37
L

11.98
-

0

40

80

120

160

200

-5 0 5 10 15

Epoch 100

Epoch 300

Epoch 500

0

40

80

120

160

200

240

-5 0 5 10 15

Epoch 100

Epoch 300

Epoch 500

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 6, 2013

156 | P a g e
www.ijacsa.thesai.org

The new iTPA Algorithm performed better on the datasets
that were more difficult to learn and so convergence speeds
tended to be slower. Where convergence occurred quickly the
original algorithm was the better method. Column (b) and (c)
give comparisons between the new iTPA and original tangent
plane algorithms, and the ELM algorithm. The results show 4
times no statistical difference, once L is better and twice E is
better.

This suggests that the generalization performance of the
tangent plane method is at least as good as the ELM
algorithm, which is one of the best neural network classifiers.
In situations where time varying signals are required, such as
EEG and ECG signals, the sequential learning ability of the
tangent plane algorithm might be the preferred method.

VII. CONCLUSIONS

A new variant of the tangent plane algorithm referred to as
iTPA is proposed for feed-forward neural networks. This new
algorithm includes two modifications to the existing
algorithm. Firstly, a directional movement vector is
introduced into the training process to push the movement in
weight space towards the origin. This directional vector is
built into the geometry of the tangent plane algorithm and
implements a weight elimination procedure. Secondly, a high
degree polynomial term is utilised to adjust the proportion of
weights that receive an inwards push. Thus the algorithm can
be tuned to decay specific weights to zero (which can help
generalization).

Comparative tests were carried out using the new iTPA
and original tangent plane algorithms, the gradient descent
back-propagation algorithm and the Extreme Learning
Machine. The results indicate that the new iTPA algorithm
retains the fast convergence speed of the original method.
However, the new iTPA algorithm is prone to problems with
stability. Including a 50% reduction in step size often
improves convergence behaviour without any diminution in
learning speed. The results also show that the new algorithm
gives improved generalization relative to the original
algorithm in some problems, and has comparable
generalization performance in yet others. Further, the
generalization performance of the tangent plane method is at
least as good as the Extreme Learning Machine, which is one
of the best neural network classifiers.

VIII. FUTURE WORK

This paper shows that the newly developed improved
tangent plane algorithm (iTPA) is at least as good as the
extreme learning machine, which is one of the best neural
network classifiers. In situations where time varying signals
are required, such as EEG and ECG signals, the sequential
learning ability of the improved tangent plane algorithm might
be the preferred method.

REFERENCES

[1] C.W. Lee, “Training feedforward neural networks: an algorithm giving
improved generalization,” Neural Networks, vol. 10. 1997 pp. 61-68.

[2] P. Bartlett, “For valid generalization, the size of the weights is more

important than the size of the network,” Advances in Neural
Information Processing Systems 9, Cambridge, MA: The MIT Press,

1997, pp. 134-140.

[3] S. J. Nowlan, and G. E. Hinton, “Simplifying neural networks by soft
weight sharing,” Neural Computation, vol. 4, no. 4, pp. 473-493, 1992

[4] A.S. Weigend, D.E. Rumelhart and B.A. Huberman, “Generalization by

weight elimination with application to forecasting,” Advances in neural
information processing (3), 1991, pp. 875-882.

[5] P.M. Williams, “Baysian regularisation and pruning using a Laplacian

prior,” Technical report, (312), 1994

[6] P.O. Hoyer, “Non-negative matrix factorisation with sparseness
constraints,” Journal of machine learning research, (5): 1457 – 1469.

2004

[7] Huiwen Zeng, “Dimensionality reduction using a mixed term penalty

reduction,” IEEE workshop on machine learning for signal processing,
2005

[8] C.M. Ennett and M. Frize, “Weight elimination neural networks applied

to coronary surgery morality prediction.” IEEE Trans Inf Technol
Biomed, 2003, 7(2):86-92.

[9] R.M. Zur, Yulei Jiang, L. Pesce, and K. Drukker, “Noise injection for

training neural networks: a comparison with weight decay and early
stopping,” Med. Phys. 2009, 36(10): 4810-4818.

[10] J. Stoer, “Einführung in die numerische Mathematik, ”, Springer, Vol. 1.

S, 1976

[11] W. Finnoff, F. Hergert, and H.G. Zimmermann, “Improving model
selection by non-convergent methods,” Neural Networks, vol.6, 1993,

771-783.

[12] E.D. Karnin, “A simple procedure for pruning back-propagation trained
neural networks,” IEEE trans neural networks, vol. 1, no. 2, 1990, pp.

239-242.

[13] Y.L, LeCun, J.S., Denker,and S.A. Solla, “Optimal brain damage,”

Advances in neural information processing systems, vol.2, 1990, pp.
598-605.

[14] B. Hassibi, and D.G. Stork, “Second order derivatives for network

pruning,” Advances in neural information processing systems, vol.5,
1993, pp. 164-171.

[15] S. Fahlman, and C. Lebiere, “The cascade correlation learning

architecture,” Advances in neural information processing systems, vol.
2. 1990, pp. 524-532.

[16] R. Linder, S. Wirtz, and S.J. Poppl, “Speeding up backpropagation

learning by the APROP algorithm,” Proceedings of the second
international ICSC symposium on neural computation, ICSC Academic

Press, 2000, pp. 122-128.

[17] K.L. Lang, and M.J. Witbrock, “Learning to Tell Two Spirals Apart,”
Proceedings of the 1988 Connectionist Models Summer School, Morgan

Kaufmann 1988.

[18] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Slew, “Extreme
learning machine: Theory and applications,” Neurocomputing, 70, 489-

501, 2006

[19] J.J.T. Lahnajärvi, M.I. Lehtokangas, and J.P.P. Saarinen, “Evaluation of

constructive neural networks with cascade architectures,”
Neurocomputing, vol. 48, 2002, pp. 573-607.

[20] K.S Narandra, and K. Parthasarathy, “Identification and control of

dynamical systems using neural networks,” IEEE transactions on
neural networks, 1 (1), 4 1990.

[21] L. Prechelt, “Connection pruning with static and adaptive pruning

schedules,” Neurocomputing, Volume 16, Issue 1, 1997, pp. 49-61

