
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 6, 2013

Probabilistic Distributed Algorithm for Uniform
Election in Triangular Grid Graphs

El Mehdi Stouti
FS–Abdelmalek Essaâdi University

P.O. Box. 2121 M’Hannech II
93030 Tetuan Marocco
Email: stouti@uae.ma

Ismail Hind
FS–Abdelmalek Essaâdi University

P.O. Box. 2121 M’Hannech II
93030 Tetuan Marocco

Email: ismailhind@gmail.com

Abdelaaziz El Hibaoui
FS–Abdelmalek Essaâdi University

P.O. Box. 2121 M’Hannech II
93030 Tetuan Marocco
Email: hibaoui@uae.ma

Abstract—Probabilistic algorithms are designed to handle
problems that do not admit deterministic effective solutions. In
the case of the election problem, many algorithms are available
and applicable under appropriate assumptions, for example: the
uniform election in trees, k−trees and polyominoids.

In this paper, first, we introduce a probabilistic algorithm
for the uniform election in the triangular grid graphs, then, we
expose the set of rules that generate the class of the triangular
grid graphs. The main of this paper is devoted to the analysis
of our algorithm. We show that our algorithm is totally fair in
so far as it gives the same probability to any vertex of the given
graph to be elected.

Keywords—Uniform Election, Distributed Algorithms,
Probabilistic Election, Markov Process, Randomized Algorithm
Analysis.

I. INTRODUCTION

Election in a network is to chose one and only one
element of this network. The elected element may be used to
manage such shared resources (printer, connection, etc.), or
to centralize some network informations (size, diameter, etc.).

The election problem holds the attention of many
researchers since it was first proposed by LE LANN [1].
Therefore, it has been studied under various assumptions: the
proposed network could be oriented or not, synchronous or
asynchronous (no shared global clock), anonymous or with
identifiers (no unique identity is attributed to elements), size
knowing or not, etc.

The solutions take also into account the network topology.
Some solutions are deterministic while others are probabilistic.
Another aspect is that we want also to study the uniform
election. In this type of election, we attribute the same chance
to all nodes and at any position in the network to be elected.
The algorithms known in the literature are probabilistic and
run on well defined topologies. We quote for trees [2][3],
for k-trees [4] and for polyominoids [5]. The work presented
here is a continuation of this researches. Thus, we introduce
a probabilistic algorithm for uniform election in a network
with the topology of triangulated grid graphs.

The triangular grid graph is, in graph theory, a finite
sub-graph induced from the infinite graph associated with

the two-dimensional triangular grid [6]. It is a subclass of
planar graphs [7]. However, networks discussed in this work
have the topology of a triangular grid graphs. We assume
that the network can be synchronous or asynchronous, and
it is anonymous; no unique identity is attributed to its vertices.

The main objective behind this study is to suggest and
analyse the uniform election of a probabilistic distributed
algorithm in the triangular grid graphs. So and for a given
graph G, each vertex v ∈ G generates its lifetime duration
depending to its weight wv . The lifetime of a vertex v is an
exponential random variable of parameter λv equals to its
weight wv . According to our algorithm, when the lifetime
of a vertex expired, it removed with its incident edges, and
its neighbour in the standard spanning tree recovers its weight.

The analysis of this algorithm proves that, whatever
the vertex is situated in the studied graph, it has the same
probability to be elected. We can consider our algorithm as
a probabilistic variant of the distributed algorithm introduced
in [8], where random delays are presented.

We consider local computations in the cells. At each step
of computation, the vertices of a cell can change their status
(or labels). Indeed, the new label of a vertex depends on
its previous label (state) and the labels of its neighbours. In
our approach we used a random delay for labelling; a vertex
can not change its state if its associated lifetime duration
is not over. These delays are exponential random variables,
independently defined, for active vertices.

The parameter of a random variable associated with a
vertex is equal to the weight assigned to this vertex. The
weight is locally calculated in term of initial weight and
the weights collected from the vanishing neighbours. The
labelling process continues until no transformation is possible,
that is to say, the last configuration is reached. In this
configuration, there was only one vertex which has a different
tag (label) from the others, this vertex is considered as the
elected one (leader) [5].
For the analyse of this algorithm we model the elimination
process with a continuous time of a Markov death Process.

This paper is organized as follows. In Section II, we give

273 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 6, 2013

some definitions required to understand the rest of the paper.In
section III we give a set of rules generating the class of
triangular grid graphs. The section IV devoted to the analysis
of a probabilistic algorithm for uniform election in this family
of graphs. In section V we presents the operation of the
algorithm, providing some tools for its analysis (section 5).

II. PRELIMINARIES AND NOTATION

A Triangular Grid Graph (TGG) is a finite graph where
its vertices are points in Z = Z × Z, where Z denotes the
set of decimal integers. They are linked by neighbourhood
relationships [7].

The edges are the links between pairs of points. They are
of the forms : {(x, y), (x, y + 1)} or {(x, y), (x + 1, y)} or
else {(x, y), (x + 1, y − 1)} for all x ∈ Z and for all y ∈ Z
(see Fig 1).

Left(x − 1, y)

Up − right(x, y + 1)Up − left(x − 1, y + 1)

Down − left(x, y − 1) Down − right(x + 1, y)

Right(x + 1, y)
(x, y)

Figure 1. Vertex’s neighbours in TGG.

Two vertices v = (x, y) and v′ = (x′, y′) of Z are
neighbours if one of the following conditions are satisfied:

• y = y′ and |x− x′| = 1, or

• x = x′ and |y − y′| = 1, or

• |x− x′| = 1 and |y − y′| = 1.

Two neighbours are the ends of an edge.

For each vertex v of coordinates (x, y), we use the usual
terms such as ‘up’ to denote the neighbour of coordinates
(x, y + 1), ‘down’ for the neighbour (x + 1, y − 1), ‘right’
for (x+ 1, y) and ‘left’ for (x− 1, y) neighbour, see Fig 1.

Let SE be the set of all edges whose ends are neighbours
and IG=(Z,SE) the infinite graph consisting of the set of
vertices Z and the set of edges SE . A cell is a sub-graph
of SE , induced by a set of three pairwise neighbour vertices
{(x, y), (x + 1, y), (x, y + 1)} having the form M, called up
triangle cell, or else {(x, y), (x+1, y), (x+1, y− 1)} for the
vertices with form O, called down triangle cell.

A path is a finite alternated sequence σ = v0, e1,
v1, · · · , vk−1, ek, vk of k + 1 vertices and k distinct edges
(k ≥ 0), such that vi−1 and vi are the ends of the edge ei, for
1 ≤ i ≤ k.

We recall that the length of a path σ is the number of its
edges k. It should be noted that a path may pass several times

through a vertex, but can not borrow an edge more than once.
A cycle is a path of length k ≥ 3 in which the first vertex
v0 and the last vertex vk coincide. For a given cycle, we can
easily and according to [9] define the vertices or edges inside
this cycle.

Definition 2.1: A vertex (x, y) is inside the cycle
γ=(x0, y0), (x1, y1), · · · , (xk−1, yk−1), (x0, y0), ((xk, yk) =
(x0, y0)) if (card {i | y = yi and y 6= yi+1 and x ≤ xi}) is
odd. Therefore, the boundary vertices of γ are inside γ.

����
�
�
�
�

�
�
�
� ���

���
���
���

��
��
��
��
��
��
��
��

�
�
�
�����
���
�
�
�����

������
��
��
�� ��

��
��
��

��
��
��

������
��
��
������

���
�
�
�
������

��
��
��

��
��
��

��
��
��

����
��
��
��
��

��
��
��

��
��
��

�������������
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
��
�
�
�

�
�
�

��
��
��
��
��

�
�
�
�
�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
��
��
��
��

����

�� ��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��

��
��
��
��

��
��
��
��

(x,y)

Figure 2. Example of vertex inside a cycle.

Proposition 2.1: For a given TGG and for a given vertex
v inside a cycle γ in this graph, we have for each linear path
(LP) including v, the number of vertices belonging to both
LP and γ is even.

Example 2.1: The vertex (x, y) of the figure 2 is inside
the cycle consisting by the white vertices and the edges in
bold. For the linear path LP = (x, y), (x + 1, y), (x + 2, y),
(x + 3, y), ..., we have the cardinal of vertices set inside the
said cycle and belonging to LP is even.

Definition 2.2: A triangular grid graph G = (V,E) is a
sub-graph of IG if the following conditions are satisfied:

1) V is finite,

2) G is connected and

3) G does not contain holes, i.e. for any cycle γ in G,
the vertices inside γ are contained in V and if two
neighbours are inside γ, so the edge connects these
two vertices belongs to E.

We define the size of G = (V,E) as the cardinal of V .

Definition 2.3: A triangular grid graph Gs = (Vs, Es) is
called sub-triangular grid graph of the triangular grid graph
G = (V,E) if only if Vs ⊆ V and Es ⊆ E such that Es =
E ∩ {{u, v}| ∃!e = (u, v), for all (u, v) ∈ V 2

s }.

III. DISTRIBUTED CONSTRACTION OF TRIANGULAR GRID
GRAPH

Let SP be the set of partial sub-graphs of the infinite
graph IG obtained by the following inductive rules:

274 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 6, 2013

a) For all (x, y) ∈ Z , the graph G = ({v = (x, y)}, φ)
is in SP .

b) Let G = (V,E) ∈ SP . Consider two neighbouring
vertices v and v′ such that v ∈ V and v′ /∈ V , then
G′ = (V ∪ {v′}, E ∪ {{v, v′}}) is in SP .

c) Let G = (V,E) ∈ SP . Suppose that V contains three
neighbouring vertices v1 = (x, y), v2 = (x+1, y) and
v3 = (x, y + 1) or else v1 = (x, y), v2 = (x + 1, y)
and v3 = (x+ 1, y − 1) located in a cell of IG , such
as two edges of this cell are in E and the third one,
called e, is not then the graph G′ = (V,E ∪ {e}) is
in SP .

The construction is totally distributed and applying
rewrite rules, as seen in [10], requires only knowledge of
neighbouring areas that are in a ball of radius 1. Therefore,
the local construction can be expressed by considering
transformations assigned to a vertex v and the set of all
its neighbours. In this case, it is difficult to show that the
set SP is the class of all the triangular grid graphs on IG .
The following proposition proves the equivalence of the two
definitions.

Proposition 3.1: A partial sub-graph G = (V,E) of IG is
a triangular grid graph iff it belongs to SP .

Proof:

⇐= Let G = (V,E) ∈ SP and prove that G is a TGG.
We just need to prove that the constructions given
by the rules (b) and (c) preserving the structure of
the triangular grid graphs. So, suppose that G is a
TGG and prove that the sub-graph G′b of IG obtained
by (b) and the sub-graph G′c of IG obtained by (c)
are also triangular grid graphs. The properties of the
connectivity and the finiteness are obvious. We will
show that no hole is created during the application of
the rule (b) or the rule (c).

◦ Applying the rule (b), a new vertex v′ is
added to G. Since v′ is of degree 1, there is
no new cycle in G′b and all the vertices inside
a cycle in G remain inside the same cycle in
G′b. Obviously, the same fact is verified for
every edge whose ends are in G′b.

◦ Let G′c = (V,E′c) be an extension of the
triangular grid graph G = (V,E) obtained by
applying the rule (c). Let v be a vertex inside
the cycle γ included in G′c. If all edges are
in E, then v should be in V . Otherwise, we
use an edge of a cell formed by the set of
the vertices S = {v1, v2, v3}, say {v1, v2},
which does not belong to E. In addition
E′c = E ∪ {v1, v2}. In this case, it is possible
to transform γ into another cycle γ′ included
in E avoiding v1 and borrowing other vertices
of the set S.

=⇒ Let G = (V,E) be a TGG. We show by induction
proof on the cardinal of the set V that G belongs to
SP .
◦ If V is of cardinality 1, then obviously

G ∈ SP .

◦ Now suppose that a graph G with size n ≥ 2
is a TGG, then G ∈ SP . We prove that it’s
true for a graph G′ with size equals to n+ 1.

Let G′ = (V ′, E′) be a TGG of size n + 1.
If G′ has a vertex v of degree 1, then when
we delete v and its incident edge, G′ will
transform to G. It is clear that G preserves
the properties (1)–(3) of Definition 2.2 and
therefore, by the recurrence assumption, it
belongs to SP . Indeed, an application of Rule
(b) allows that G′ is also in SP .

Suppose now that all vertices of a triangular
grid graph G = (V,E) are of degree greater
than or equal to 2. We have |E| − |V | ≥ 0, if
not, G is a tree and admits a vertex of degree
1.
We use now a second recurrence on |E|− |V |.
It is clear that G has at least one cycle. Let
γ be a maximum cycle in G. It is easy to
see that if we remove an edge from γ, the
residual graph obtained, denoted R, preserves
properties (1)–(3) seen in Definition 2.2. Thus
the induction assumption on |E| − |V | gives
R ∈ SP .
An application of the rule (c) on the triangular
grid graph R allows to reconstruct the graph
G as a member of SP .

IV. UNIFORM ELECTION IN TRIANGULAR GRID GRAPH

A. Model used

We represent a communication network by a graph, where
a nodes (stations) are represented by a vertices and the edges
represent communication links.

The election algorithm presented here is designed for
anonymous networks which have the topology of a triangular
grid graph. So, We assume that each vertex does not know the
size of the graph neither its own coordinates in the plan. Its
only knowledge is the directions of its incident edges.

We use the asynchronous system where no global clock is
shared. This means that the transmitter sends the message but
there is no information on when the receiver actually receives
it. Hence, the processes execute the instructions with arbitrary
speeds and the messages reach their destinations in a finite
time but also arbitrary.

B. Distributed election

In this section, we describe our election algorithm
by a graph rewriting system. The rewriting systems or

275 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 6, 2013

more generally the local computations in graph are a
powerful models providing general tools to encode distributed
algorithms, to understand their power, and to prove their
validity [8][10][11][12].
Our distributed algorithm is based on the rewriting systems
presented in [12]. Each vertex (resp. edge) has a label that
represents its state. In fact, the labels attached to the vertices
and the edges are locally modified.

So, initially, all vertices of the TGG have the same weight
1 according to the anonymity condition imposed on the graph.
The election process behaves as a continuous-time Markov
process.

Each vertex has a weight local knowledge and depending
to the situation it changes its state by applying one of the set
of Ri and R′i rules described below.

The random delay associated to each removable vertex
are independent and can locally be generated. These vertices
may be removed in a random delay which is an exponentially
distributed random variable with a parameter equal to the
weight of the vertex. Whenever the lifetime (delay removal) of
a vertex has expired, it is removed with all its incident edges.
The weight of the removed vertex is collected by one of its
neighbours according to the R′i-rules.

The rewriting is performed step by step, then after a
number of rewriting steps, we obtained an irreducible graph
where no rule is applicable. In this graph there is a special
label attached to exactly one vertex. This vertex will be
considered as elected one (called leader).

The rewriting system applied here uses the forbidden
contexts [11][13][14]. The idea is to prevent the application of
a rewriting rule whenever the related occurrences are included
in some special configurations, called forbidden contexts. Thus,
a rule can be applied if the two conditions are satisfied:

1) the rule does not occur in a prohibit context already
mentioned, and

2) its associated delay has expired.

Formally, let GR be a connected graph and two marking
functions of GR: the initial labelling λR and the final labelling
λ′R.

The rewrite rule with forbidden contexts is a quadruple R
= (GR,λR,λ′R,FR) such that (GR,λR,λ′R) is a rewrite rule and
FR is a finite set of forbidden contexts (GR,λR).

R : {FR; (GR, λR) −→ (GR, λ
′
R)} .

For our case, let G = (V,E) be a TGG and
SL = {N,A,B,L} the set of labels. The label N encodes the
neutral state, A encodes the active state, and B encodes the
beat state, and L encodes the leader state (elected).

We denote by X any state except B, i.e., X∈ SL\{B}.

The election process on G runs in distributed manner as
follows:
Initially, all vertices have the same weight w = 1 and each
one is N-labelled.

Each N-labelled vertex v decides locally whether it is
active or not according to the activation rules Ri below. So,
if a vertex v becomes active, it generates its lifetime, which
is an exponential random variable with parameter equal to
its current weight. Once the lifetime of an active vertex is
expired, its weight is transmitted to one of its neighbour. In
the end, only one vertex is active. This surviving vertex is
called the leader.

Activation rules:

Each vertex in the graph can determine locally if it is active
or not according the rules Ri bellows.

• R0: If the degree of v is zero (deg(v) = 0), then
the election is over, and v is the elected vertex. It is
important to note that this vertex is considered as an
active vertex.

R0 :

N

X

N

X

X ;

X N

N

N

X

N

X

N L

In this rule, the forbidden context shows that v
shouldn’t have a X-labelled neighbour.

• R1: If the degree of v is 1, then v becomes active
and generates its lifetime. Once the lifetime of the
vertex v is expired, it disappears with the incident
edge and its neighbour, noted u, recovers its weight.

R1 :

 N

X

X

XX

N

;X

X

N X

N X

A

• R2: If the degree of v is 2 then depending on its

position it could become active or not. We distinguish
five sub-rules to ensure that v becomes active:

R21 :

N

X X

X X

;

N

N

N

NX

N

N X X

N A

The sub-rule R21 expresses that if v = (x, y+1) is on
the top of a up triangle cell {(x, y), (x+1, y), (x, y+
1)} with the existence of the down triangle cell
{(x, y), (x + 1, y), (x + 1, y − 1)}, then v becomes
active.

R22 :

 ; X

N

XX X

N NX

XX

N A
N

276 | P a g e

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 6, 2013

R23 :

X

N

X

X

X

N X
;

NN

XAN X

The sub-rule R22 (resp. R23) expresses that if v =
(x, y) is on the left of a up (resp. down) triangle cell
then v becomes active.

R24 :

 ;

N N

XX

X

X

X

N X AX

N

N

R25 :

;

NNX

X

X

X

N

X
NX X AN

The sub-rule R24 (resp. R25) expresses that if
v = (x + 1, y) is on the right of a up (resp. down)
triangle cell then v becomes active.

• R3: If deg(v) = 3, then two cases arise:

R31 :

X

;

NN

N
X

X

N

X N

X

N

X

N

X

A N

The sub-rule R31 describes that if v is either on the
left of the up and the down triangle cells, then v
becomes active.

R32 :

N

N

N

X

N
;

N XX

XX

N

N N

N

N

X

N

A

The sub-rule R32 explains that if v = (x, y + 1)
is either on the top of the up triangle cell
{(x, y), (x, y + 1), (x + 1, y)} and on the left of the
down triangle cell {(x, y+1), (x+1, y), (x+1, y+1)}
and also the the down triangle cell
{(x, y), (x + 1, y), (x + 1, y − 1)} exists, then v
becomes active.

• R4: If deg(v) = 4, then if v = (x, y + 1) belongs
to three cells {(x, y), (x, y + 1), (x + 1, y)},
{(x, y + 1), (x, y + 2), (x + 1, y + 1)}, and
{(x, y + 1), (x + 1, y + 1), (x + 1, y)} and the
down triangle cell {(x, y), (x + 1, y), (x + 1, y − 1)}

exists, then v becomes active.

R4 :

N

X X

X

X

N

N

N

;

N

X

X

N

N

N

N

X

X N

N
A

Whenever a vertex v of weight wv becomes active,

it generates its lifetime Lt(v) which is an exponentially
distributed random variable (r.v.).

Pr(Lt(v) ≥ t) = ewv(t).

This random variable has the expected value 1/wv .

Weight transmission rules:

Once the lifetime has expired the vertex will be no longer
A-labbled and the algorithm removes the vertex with all
incident edges, giving its weight to the selected neighbours.
The choice of the weight receiver neighbour is done according
to rules R′i. In those rules, d denotes the vertex lifetime and
when a vertex is removed all incident edges are removed
but we conserve the edges through which the weights are
transmitted. Those edges are dotted.

• R′0: The election is terminated, the remaining vertex
is considered as the leader.

• R′1: The neighbour vertex u of v recovers the weight
of v, and it is either in the active state, or in the
neutral state. In both cases, we have:

◦ R′11 : If u is neutral then when it recovers
the weight of v, it decides locally if
it becomes active in the residual graph
G′ = (V \{v}, E\{v, u}, u ∈ V).

R′11 :

 ;

B

d = 0

A
(d,w)

N
(∞,w′)

N
(∞,w+w′)

◦ R′12 : Otherwise, u is active before the time

when v is removed. So, u becomes the elected
one. We will be partially in the case of the
rule R0.

R′12 :

 ;

B

L

d < d’

A
(d,w)

A
(d′,w′)

• R′2: If the lifetime of the vertex of degree 2 is expired,

it is removed with its incident edges and the right

277 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 6, 2013

neighbour (x + 1, y) recovers its weight (in a up
triangle case), or else the down neighbour (x+1, y−1)
recovers its weight (in a down triangle case). We have:
◦ R′21: If the active vertex v = (x, y + 1) is

on the top of Tu = {(x, y), (x, y + 1), (x +
1, y)} with condition of the existence of Td =
{(x, y), (x + 1, y), (x + 1, y − 1)}, then the
neighbour u = (x+ 1, y) recovers its weight.

R′21 :

X X N

d = 0

A
(d,w)

N
(∞,w′)

B
(∞,w+w′)

◦ R′22 : If the active vertex v = (x, y) is
the right-down vertex of the up triangle
Tu = {(x, y), (x, y+1), (x+1, y)}, then its
neighbour u = (x, y − 1) recovers its weight
when v is removed.

R′22 :

 XBX

d = 0

N
(∞,w′)

N
(∞,w+w′)

A
(d,w)

◦ R′23 , R′24 and R′25 : Like the rules R′21 and R′22

the transmission of the weight pass through the
diagonal indecent edge of the removed vertex.

R′23 :

X B X

d = 0

N
(∞,w′)

N
(∞,w+w′)

A
(d,w)

R′24 :

 X X
d = 0

N
(∞,w′)

A
(d,w)

N
(∞,w+w′)

B

R′25 :

X BX

d = 0

A
(d,w)

N
(∞,w′)

N
(∞,w+w′)

• R′3: If the deg(v) = 3 then v disappears and the

right-down neighbour gets its weight. In this case we
distinguish the three following sub-rules.

◦ R′31 : If the active vertex v = (x, y) belongs to
the two pairs of cells {(x, y), (x, y + 1), (x+
1, y)} and {(x, y), (x + 1, y), (x + 1, y − 1)},
then when its lifetime ends, its neighbour u =
(x+ 1, y − 1) recovers its weight.

R′31 :

X

d = 0

X

NB

X

N
(∞,w+w′)

N
(∞,w′)

A
(d,w)

◦ R′32 : If the active vertex v = (x, y) belongs to
the two pairs of cells {(x, y), (x+ 1, y), (x+
1, y−1)} and {(x, y), (x+1, y−1), (x, y−1)},
then its neighbour u = (x+ 1, y − 1) collects
its weight when v is vanished.

R′32 :

NN

d = 0

X B

N
N

X

N
(∞,w+w′)

A
(d,w)

N
(∞,w′)

• R′4: If the active vertex v = (x, y) belongs to the tree

cells ({(x, y), (x, y + 1), (x + 1, y)}, {(x, y), (x +
1, y), (x+1, y−1)}, {(x, y), (x+1, y−1), (x, y−1)}),
then its neighbour u = (x + 1, y − 1) recovers its
weight at its disappearance.

R′4 :

N

X

X

N

X

X

N

B

N d = 0

N
(∞,w+w′)

N
(∞,w′)

A(d,w)

C. Invariant proprieties

Our algorithm removes an active vertex once its lifetime
expired. Thus, to ensure the continuity of the removal process,
we must prove that the residual graph preserve the specific
properties of TGG.

Proposition 4.1: Let G = (V,E) be a TGG with
size ≥ 2, v an active vertex in G. The graph
G′ = (V \{v}, E\{{v, u},∀u ∈ V }) is a TGG.

Proof: Let G = (V,E) be a TGG with size ≥ 2,
and v an active vertex in G and let the graph
G′ = (V \{v}, E\{{v, u},∀u ∈ V }). To prove the
proposition, we must show that G′ is a connected graph.

• If deg(v) = 1, then the removal of v and its incident
edge in G doesn’t introduce the disconnection of G′
neither the creation of a hole in G′.

• If deg(v) = 2, deg(v) = 3 or deg(v) = 4, then
let v, v1, v2 be a three vertices in the triangular grid
graph G such as v is the active vertex whose lifetime
has expired (in case of rules Rk and R′k, k = 2, 3, 4).
Consider the vertex u ∈ V \{v, v1, v2}. then, if u
is accessible to a node vi; 1 ≤ i ≤ 2, via a path
passing through v, then when v is deleted, u will still
accessible to vi in another way by taking the vertices
vj 6=i; j = 1, 2.

278 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 6, 2013

V. ANALYSIS OF THE ALGORITHM

A. Standard spanning tree

Let G = (V,E) be a TGG and let F the set constituted
by only the edges of E on which the weights of the vanishing
vertices are transmitted. The set F can be built in advance
with a distributed way as follows:

• If e = {(x, y), (x + 1, y − 1)} is an edge in E
then e belongs to F , i.e., any edge of the form
{(x, y), (x+ 1, y − 1)} in E belongs to F .

• If e = {(x + 1, y − 1), (x + 1, y)} belongs
to E and to a single cycle γ of the form
γ = (x, y), (x, y + 1), (x + 1, y), (x + 1, y − 1).
Then e ∈ F .

The graph T= (V, F) connects all vertices of G and it is
acyclic. Then it is a spanning tree.

Proposition 5.1: The graph T= (V, F) as described above
is a spanning tree of the triangular grid graph G.

Proof: We can prove this proposition by an inductive
construction of T on G :

1) If G = ({(x, y)}, ∅), the triangular grid graph
consists of only one vertex, then the proposition is
asserted T= ({(x, y)}, ∅).

2) Let G = (V,E) be a TGG and let T= (V, F ⊆ E) be
the spanning tree of G obtained by the above rules.
Consider two adjacent vertices v and v′ such as v ∈ V
and v′ /∈ V . According to the inductive rules seen
in Section IV-B , the graph G′ = (V ∪ {v′}, E ∪
{{v, v′}}) is a TGG. So, it remains to prove that the
tree T’= (V ∪ {v′}, F ∪ {{v, v′}}) is the spanning
tree of G′.
We can easily see that no cycle is created when
the new edge {v, v′} is added. Now let the
tree A = (VA, FA) where VA = {v, v′} and
FA = {{v, v′}}, then when we join the spanning
tree T with the tree A the residual graph is acyclic.
So it is a spanning tree of the triangular grid graph G′.

3) Let G = (V,E) be TGG and let T= (V, F ⊆ E) be
its spanning tree. Suppose now that V contains three
adjacent vertices v1 = (x, y) and v2 = (x + 1, y)
and v3 = (x, y + 1) or else v1 = (x, y) and
v2 = (x + 1, y) and v4 = (x + 1, y − 1) located
in a cell such as two edges of the cell are in E
and the third one, called e, is not. So according to
inductive rules seen in section IV-B, the residual
graph G′ = (V,E ∪ {e}), after the insertion of the
new edge e, is a TGG.

However, it remains to prove that the weight
transmission occurs through the spanning tree T’=
(V, F ′) of G′.

Let C1 = {v1, v2, v3} or C2 = {v1, v2, v4} be a cell
of G′ = (V,E ∪ {e}) and let e1 = {v1, v2}, e2 =
{v2, v3}, e3 = {v2, v4}, e4 = {v1, v3}, and e5 =
{v1, v4}.
We have:

• If e = e1 or e = e3 or e = e4 then F ′ = F .
(In this case the spanning tree does not
change.)

• If e = e2 then F ′ = F\{e4} ∪ {e2}.

• If e = e5 then F ′ = F\{e3} ∪ {e5}.

We can easily notice that the graph T’ is a connected
graph and, moreover, no cycle is generated when e
is added. Thus, T’ is a spanning tree of G.

Remark 5.1: The spanning tree constructed by these rules
is unique.

Definition 5.1: The spanning tree T= (V, F) is called
standard spanning tree of the triangular grid graph G.

Figure 3. Standard spanning tree of the TGG given in Fig 2.

Proposition 5.2: Let G = (V,E) be a TGG and T= (V, F)
its standard spanning tree. The vertex v ∈ V is an active vertex
in G iff it is a leaf in T.

Proof:

=⇒ Let the six vertices of a TGG
G = (V,E) defined as follows:
• v1 = (x, y) • v2 = (x, y + 1)
• v3 = (x+ 1, y) • v4 = (x+ 1, y − 1)
• v5 = (x+ 1, y + 1) • v6 = (x, y + 2),

and let C1 = {v1, v2, v3}, C2 = {v1, v3, v4}, C3 =
{v2, v3, v5} and C4 = {v2, v5, v6} four cells.
If v one active vertex of those vertices then we will
show that v is a leaf in the spanning tree T of G.

• If deg(v) = 1, then certainly, v is a leaf in T.

279 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 6, 2013

• If deg(v) = 2, then we enumerate the following cases:

(i) if v belongs to the cell C1 and C2 doesn’t
form a cell in G, then v is an extremity of the
horizontal edge {v1, v3}, and since the weight
transmission doesn’t pass through this edge,
thus, v is of degree 1 in T (i.e. it is a leaf).

(ii) If v belongs to the cell C2, then v is an end
of the horizontal edge {v1, v3}, and since the
transmission of weight does not pass through
this edge, thus, v is a leaf in T.

(iii) If v = v2 and the cells C1 and C2 exist in G
then v is one end of the edge {v2, v3}. While
the weight transmission doesn’t pass through
the edge {v1, v2}, it becomes a leaf in T.

• If deg(v) = 3 and v belongs both to C1 and C2, then
we have the bellow cases:

(i) If v = v1 then the weight transmission does
not pass through the edge {v1, v2} either
{(v1, v3}. So v becomes a leaf in T.

(ii) If v = v2 then the weight transmission does
not pass neither through the edges {v1, v2}
and {v2, v5}. So v becomes a leaf in T.

• If deg(v) = 4, and v belongs to the three cells C1,
C3, and C4 of G, then the weight transmission pass
only through {v2, v3}. So v (equals v2) becomes a
leaf in T.

⇐= Suppose now that v is a leaf in T=(V, F) and prove
that v is an active vertex in G.

• If deg(v) = 1, then clearly v is an active vertex in G.

• If deg(v) = 2, then the two incident edges to v in G
couldn’t be in the same line, otherwise v is not a leaf
in T. In the case where those edges are in a different
orientations, only the edge {v1, v4} or else the edge
{v2, v3} is in F , in addition, v is in the context of
the rules R2, then it is an active vertex.

• If deg(v) = 3, then with similar reasoning to the
previous case, only one of the incident edges of v is
in F . Thus, v is in the context of the rules R3. So it
is active.

• If deg(v) = 4 and the cells C1, C3, and C4 are in G,
then v is in the context of the rule R4. Consequently,
only the edge {v2, v3} is in F , and according to the
construction rules of F the vertex v is active.

B. Uniform election algorithm

Based on the results of the previous sections, we can
summarize the distributed probabilistic election algorithm in
triangular grid graph G as follows.

While G is not reduced to a single vertex do
• Each active vertex (rules R0-R4) generates its

lifetime according to its weight.
• Once the lifetime of an active vertex has

expired, it is removed with its incident edges
and its neighbour in the standard spanning tree
collects its weight.

The election algorithm in a TGG is seen as an election
algorithm in its standard spanning tree. The Proposition 5.2
shows that each active vertex in a triangular grid graph is
a leaf in its standard spanning tree, and the weights of this
vertex in the both configurations are equals.

Let G = (V,E) be a TGG. Initially, all vertices have the
same weight 1: w(v) = 1, ∀v ∈ V . According to the rules
introduced in Section IV-B, when an active vertex disappears,
its successor collects its weight and adds it to its current
weight. At the time t when a vertex v becomes active, its
weight is the number of the vanishing vertices of its sides in
the standard spanning tree. The lifetime L(v) of a vertex v is
a exponential random variable of parameter λ(v) such that:

λ(v) = w(v) : Pr(L(v) ≥ t) = e−λ(v)t,∀t ≥ 0.

This property is equivalent to say that the probability
of the disappearance of v in the time interval [t, t + h]
is λ(v)h + o(h), when h → 0 at each instant t, and this
is independently of what happening elsewhere and what
happened in the past. The random process is a variant of pure
death process which is, in its turn, a special example of the
Markov process in continuous time.

C. Election process

Probabilistic election can be mathematically modelled by
a Markov process in continuous time. The initial state of the
process is G = (V,E) (the entire TGG). Let SG be the set of
all sub-triangular grid graphs of G and G′ ∈ SG

We define R by:

R= G′ ∪ ({v}, {{v, u}}), u adjacent with v in T, i.e. the
remove of the vertex v and all its incident edges from R leads
to G′.

The transition probability from the triangular grid graph R
to the G′ is:

P(R,G′) =
w(v)∑

u active in R

w(u)

280 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 6, 2013

The following properties characterize the process of
elimination in a TGG.

– The death rate of the triangular grid graph G is:

λ(G) = w(G) =
∑

u active in G

w(u)

– The lifetime of G is: L(G) = minu{L(u), u active
in G} has the following distribution function:

Pr(L(G) ≤ t) = 1− Pr(L(G) ≥ t) = 1− e−λ(G)t,

∀t ∈ R+

Proposition 5.3: Let G′ be a TGG in SG, and let PG′(t)
the probability that G′ is the state of the election at time t.
We have:

(i) dPG(t)
dt = −w(G)PG(t),

(ii) for G′ 6= G of size ≥ 2,

dPG′(t)

dt
= −w(G′)PG′(t) +

∑
v active in R

w(v)PR(t),

(iii) dP({v},∅)(t)

dt =
∑

u adjacent to v in G

w(u)P({u,v},{{v,u}})(t)

with the initial condition PG(0) = 1.

Proof: Let G′ is a sub-TGG of G and consider the
evolution of the elimination process in the interval [t, t + h].
Let’s calculate the probability of being in the state G′ at time
t+ h.

– For G′ 6= G and G′ is not reduced to a leaf, we have:

PG′(t+ h) =
∑

v active in R

PR(t)πR,G′(h)

+PG′(t)πG′,G′(h) + o(h),

where R = G′ ∪ {v} and πR,G′(h) is the probability
of a direct transition from R to G′ in a time interval of
length h; the summation is performed for each vertex
v adjacent to G′.

PG′(t+h) = h
∑
v

λ(v)PR(t)+PG′(t)[1−λ(G′)]+o(h).

Therefore,
PG′(t+ h)− PG′(t)

h
= −λ(G′)PG′(t)+

∑
v

λ(v)PR(t)+
o(h)

h
.

This proves (ii).

– To prove (i), we remark that in the case of PG(t+h),
the sum

∑
v
(. . .) disappeared from the right side, and

since G has no predecessor graph. This established (i).

– To prove (iii), we just need to remark that the singleton
state ({v}, ∅) is absorbing, and, thus, π{v},{v}(h) = 1.
So, in P({v},∅)(t+ h), the negative term disappeared.
A simple computing gives (iii).

Proposition 5.4: The strategy described above leads to a
totally fair election: in a TGG, all vertices have the same
probability of being elected.

Proof: In [3] the authors give the prove of the uniform
election in trees. In our work we have showed that there is
a similarity of the election process over a TGG and over its
standard spanning tree T. Using the similarity between the two
structures, we can conclude, based on the results presented in
[3], that for a triangular grid graph G of size n, the probability
of being elected in G for any vertex v ∈ G is 1

n .

VI. CONCLUSION

In this paper, we proposed and analysed a probabilistic
algorithm for uniform election in triangular grid graphs (TGG).
We have introduce some rules to produce the family of those
graphs.

Our algorithms use random delay associated to discovered
vertices (active ones). These delays are an independent
random variables and are locally generated when the vertices
are discovered. To determine locally the active vertices we
presented the activation rules. Also, we presented the weight
transmissions rules for the successor of the vanishing vertex.

The election process is an elimination process that remove
the actives vertices of the TGG until the graph is reduced to
only one vertex, called leader. Using a single pass and a local
computations, the elimination process is modelled by a pure
death Markov process in a continuous time.

Finally, we showed that our algorithm is totally fair, since
it gives the same probability to each vertex to be elected.

Our further work will be focussed on the study of the
uniform election in the chordal graphs.

REFERENCES

[1] G. L. Lann, “Distributed systems – toward a formal approach,” in
Proceedings of the IFIP Congress 77, 1977, pp. 155–160.

[2] Y. Métivier and N. Saheb, “Probabilistic analysis of an election
algorithm in a tree,” in Colloquium on trees in algebra and
programming, ser. Lecture Notes in Comput. Sci., vol. 787. Spinger-
Verlag, 1994, pp. 234–246.

[3] Y. Métivier, N. Saheb, and A. Zemmari, “A uniform randomized election
in trees (extended abstract),” in Proceedings of The 10th International
Colloquium on Structural Information and Communication Complexity
(SIROCCO 10). Carleton university press, 2003, pp. 259–274.

[4] A. E. HIBAOUI, N. SAHEB, and A. ZEMMARI, “A uniform
probabilistic election algorithm in k−trees,” IMACS : 17th IMACS
World Congress : Scientific Computation, Applied Mathematics and
Simulation, Jully 2005.

281 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 6, 2013

[5] A. E. Hibaoui, J. M. Robson, N. Saheb-Djahromi, and A. Zemmari,
“Uniform election in trees and polyominoids,” Discrete Appl. Math.,
vol. 158, no. 9, pp. 981–987, May 2010.

[6] V. S. Gordon, Y. L. Orlovich, and F. Werner, “Hamiltonian properties of
triangular grid graphs,” Discrete Mathematics, vol. 308, pp. 6166–6188,
2008.

[7] M. Benantar, U. Dogrusoz, J. Flaherty, and N. S. Krishnamoorthy,
“Triangle graphs,” Applied Numerical Mathematics, vol. 17, pp. 85–
96, 1995.

[8] I. Litovsky, Y. Métivier, and E. Sopena, “Different local controls for
graph relabelling systems,” Math. Syst. Theory, vol. 28, pp. 41–65, 1995.

[9] R. Sedgewick, Algorithms in C++, 1st ed. Addison-Wesley Co., 1992.
[10] I. Litovsky, Y. Métivier, and E. Sopena, “Graph relabelling systems and

distributed algorithms,” in Handbook of graph grammars and computing
by graph transformation, H. Ehrig, H. Kreowski, U. Montanari, and
G. Rozenberg, Eds. World Scientific, 1999, vol. 3, pp. 1–56.

[11] A. Sellami, “Des calculs lacaux aux algorithmes distribués,” Ph.D.
dissertation, Université Bordeaux I, 2004.

[12] J. Chalopin, Y. Métivier, and W. Zielonka, “Election, naming and
cellular edge local computations,” in Proc. of International conference
on graph transformation, vol. 3256, ICGT’04, LNCS, 2004, pp. 242–
256.

[13] I. Litovsky, Y. Métevier, and E. Sopena, “Definition and comparison of
local computations on graphs and networks,” in MFCS’92, ser. Lecture
Notes in Comput. Sci., vol. 629, 1992, pp. 364–373.

[14] E. Godard, “Réécritures de graphes et algorithmique distribuée,” Ph.D.
dissertation, Université Bordeaux I, 2002.

282 | P a g e
www.ijacsa.thesai.org

	Introduction
	Preliminaries and notation
	Distributed constraction of triangular grid graph
	Uniform election in triangular grid graph
	Model used
	Distributed election
	Invariant proprieties

	Analysis of the algorithm
	Standard spanning tree
	Uniform election algorithm
	Election process

	Conclusion
	References

