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Abstract—Online mining of data streams poses many new 

challenges more than mining static databases. In addition to the 

one-scan nature, the unbounded memory requirement, the high 

data arrival rate of data streams and the combinatorial explosion 

of itemsets exacerbate the mining task. The high complexity of 

the frequent itemsets mining problem hinders the application of 

the stream mining techniques. In this review, we present a 

comparative study among almost all, as we are acquainted, the 

algorithms for mining frequent itemsets from online data 

streams. All those techniques immolate with the accuracy of the 

results due to the relatively limited storage, leading, at all times, 
to approximated results.  
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I.  INTRODUCTION 

Recently, the data generation rates in some data sources 
become faster than ever before. Examples include network 
traffic analysis, Web click stream mining, network intrusion 
detection, sensor networks, web logs, and on-line transaction 
analysis. This rapid generation of continuous streams of 
information has challenged our storage, computation and 
communication capabilities in computing systems. Systems, 
models and techniques have been proposed and developed 
over the past few years to address those challenges [Gaber M. 
et al., 2005]. 

In [Babcock B. et al., 2002] and [Lin C.H. et al., 2005], the 
Data Stream Model is characterized by that, some or all of the 
input data that are to be operated on are not available for 
random access from disk or memory, but rather arrive as one 
or more continuous data streams.  

Data streams differ from the conventional stored relation 
model in several ways: 1) Continuity: Data continuously 
arrive at a high rate. 2) Expiration: Data can be read only 
once. 3) Infinity: The total amount of data is unbounded. 
These characteristics lead respectively to the following 
challenges [Zhu Y. and Shasha D. 2002] in mining data 
streams: 1) Limited memory space. 2) Each item in a stream 
could be examined only once. 3) The mining result should be 
generated as fast as possible. 

The infinite nature of these data sources is a serious 
obstacle to the use of most of the traditional methods since 
available computing resources are limited. One of the first 
effects is the need to process data as they arrive. The amount 
of previously happened events is usually overwhelming, so 
they can be either dropped after processing or archived 

separately in secondary storage. In the first case access to past 
data is obviously impossible whereas in the second case the 
cost for data retrieval is likely to be acceptable only for some 
”ad hoc” queries, especially when several scan of past data are 
needed to obtain just one single result [Silvestri C., 2006]. In 
the process of mining frequent itemset, traditional methods for 
static data usually read the database more than once. However 
due to the consideration of performance and storage 
constraints, on-line data stream mining algorithms are 
restricted to make only one pass over the data. Thus, 
traditional methods cannot be directly applied to data stream 
mining [Pauray S. and Tsai M., 2009]. 

II. BACKGROUND 

According to [Li H. F. et al, 2006], data streams are further 
classified into: 1) offline data streams: which characterized by 
discontinuity or regular bulk arrivals [Manku G. and Motwani 
R., 2002], such as a bulk addition of new transactions as in a 
data warehouse system, and 2) online data streams: which 
characterized by real-time updated data that come one by one 
in time, such as a continuously generated transaction as in a 
network monitoring system.  

A transaction data stream is a sequence of incoming 
transactions and an excerpt of the stream is called a window. A 
window,W, can be (1) either time-based or count-based, and 
(2) either a landmark window or a sliding window. W is time-
based if W consists of a sequence of fixed-length time units, 
where a variable number of transactions may arrive within 
each time unit. W is count-based if W is composed of a 
sequence of batches, where each batch consists of an equal 
number of transactions. W is a landmark window if W = [T1, 
T2, . . . , Tτ]; W is a sliding window if W = [Tτ−w+1, . . . , Tτ ], 
where each Ti is a time unit or a batch, T1 and Tτ are the 
oldest and the current time unit or batch, and w is the number 
of time units or batches in the sliding window, depending on 
whether W is time-based or count-based. Note that a count-
based window can also be captured by a time-based window 
by assuming that a uniform number of transactions arrive 
within each time unit. 

An itemset X is a Frequent Itemset (FI) in W, if sup(X) ≥ σ, 
where σ (0 ≤ σ ≤ 1) is a user-specified minimum support 
threshold. In the process of mining data streams, it is 
necessary to keep not only the FIs, but also the infrequent 
itemsets that are promising to be frequent later, since an 
infrequent itemset may become frequent later in the stream. 
Therefore, many of the existing approximate mining 
algorithms used a relaxed minimum support threshold (also 
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called a user-specified error parameter), ϵ, where 0 ≤ ϵ  ≤ σ ≤ 
1, to obtain an extra set of itemsets that are potential to 
become frequent later.  

There are many algorithms for mining frequent itemsets 
from data streams; according to [Pauray S. and Tsai M., 
2009], all those algorithms are fallen into one of the following 
data stream mining models: 1) Landmark model, 2) Fading 
model and 3) Sliding window model. 

III. APPROACHES OF MINING FIS FROM DATA STREAMS 

A. Landmark model 

Which considers all the data from a specified point of time 
(usually the time the system starts), to the current time. All the 
data considered are treated equally. In this model, knowledge 
discovery is performed based on the values between a specific 
timestamp called landmark and the present. See Figure 1. 

In [Cormode. G., 2007], an algorithm called Lossy 
Counting is presented. It produces an approximate set of FIs 
over the entire history of a stream. The stream is divided into a 

sequence of buckets and each bucket consists of B = 1/    
transactions. It processes a batch of transactions arriving on 
the stream at a time, where each batch contains β buckets of 
transactions. The idea of maximum possible error is used to 
maintain all the possible frequent itemsets. Although the 
output is approximate, the error is guaranteed not to exceed a 
user-specified threshold. 

According to [Cormode. G., 2007], this method attempts to 
use the available space as fully as possible. As, for each new 
transaction, it generates all the subsets, and stores them in a 
compact trie-based structure. When the space is full, it uses a 
pruning algorithm based on frequent items algorithms to 
delete the least frequent itemsets, and track the error in the 
estimated counts of each item.  

In [Yu J. X. et al, 2004], an algorithm called FDPM is 
derived from the Chernoff bound, to approximate a set of FIs 
over a landmark window. Suppose that there is a sequence of 
N observations and consider the first n (n << N) observations 
as independent coin flips such that Pr(head) = p and Pr(tail) = 
1 − p. Let r be the number of heads. Then, the expectation of r 
is np. The Chernoff bound states, for any   > 0 : 

Pr                                             (1) 

After applying some substitutions and derivations: 

Pr{ p - ϵ ≤     ≤ p + ϵ } ≥ (1-)                                    (2) 

The underlying idea of the FDPM algorithm is explained 
as follows. First, a memory bound, n0 ≈ (2 + 2 ln(2/δ))/σ , is 
also derived. Given a probability parameter, δ, and an integer, 
k. The batch size, B, is given as k · n0. Then, for each batch of 
B transactions, FDPM employs an existing non-streaming FI 
mining algorithm to compute all itemsets whose support in the 
current batch is no less than (σ − ϵB), where ϵB = 

               . The set of itemsets computed are then 

merged with the set of itemsets obtained so far for the stream. 
If the total number of itemsets kept for the stream is larger 
than c · n0, where c is an empirically determined float number, 
then all itemsets whose support is less than (σ − ϵN) are 
pruned, where N is the number of transactions received so far 

in the stream and ϵN =                  . Finally, FDPM 

outputs those itemsets whose frequency is no less than σ N. 

 
 

Fig.1. The landmark model 

It solves the problem of huge number of sub-FIs problem, 
by first using a constant lowered minimum support threshold 
to compute a set of potential FIs and then using a gradually 
increasing lowered minimum support threshold to control the 
total number of sub-FIs kept in memory, but with a drawback 
of producing false negatives. 

In [Jin R. and Agrawal. G., 2005], an algorithm called 
StreamMining is proposed. It is built on the idea of [Karp 
R.M. et al, 2003] to determine frequent items (or 1-itemsets). 
In [Karp R.M. et al, 2003] a two pass algorithm was presented 

for this purpose, which requires only (1/) memory, where  is 
the desired support level. Their first pass computes a superset 
of frequent items, and the second pass eliminates any false 
positives. StreamMining algorithm addressed three major 
challenges in applying their idea for frequent itemset mining 
in a streaming environment. First, it developed a method for 
finding frequent k-itemsets, while still keeping the memory 
requirements limited. Second, it developed a way to have a 
bound on the superset computed after the first pass. Third, it 
developed a data structure and a number of other 
implementation optimizations to support efficient execution. 
This data structure called TreeHash, which implements a 
prefix tree using a hash table. It has the compactness of a 
prefix tree and allows easy deletions like a hash table. It also 
uses a relaxed minimum support threshold ϵ, like almost all 
the mining algorithms for data streams, so the memory 
requirements increase proportional to 1/ϵ. So, this algorithm 
should had to compute k-itemsets approximately after the first 
pass, without requiring any out-of-core or large summary 
structure, and ensure a provable bound on the accuracy of the 
results after the first pass on the dataset; because in streaming 
environments, second pass on the dataset is usually not 
feasible. Therefore, it is important that the set K computed 
above does not contain many false positives. It was different 
with [53]2002 in the space requirements. As, for finding 

frequent items, it takes O(1/) space, while [Manku G., and 

Motwani R., 2002] requires O((1/) log (N)) space. As 
[Manku G., and Motwani R., 2002] requires an out-of-core 
data structure, while it used an in-core data structure. It also 
has deterministic bounds on the accuracy. One exception is 
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datasets with the average length of an itemset is quite large. In 
such case, some additional knowledge of maximal frequent 
itemsets helps efficiency of our algorithms. 

In [Liu X. et al, 2005], an algorithm called FP-DS is 
presented. It uses a Frequent Pattern structure similar to the 
FP-DS tree in [Han J. et al, 2000]. The user can obtain current 
frequent itemsets online continuously without pattern-delay. 
Compared with the existing related algorithms, the FP-DS 
algorithm is especially suitable for the mining of long frequent 
items. It is unnecessary to enumerate every subset on 
transactions, nor produce a lot of frequent candidate items.  
The FP-DS tree stores the potential frequent itemsets. It does 
not need to store all subsets of itemsets independently. It 
reduces the storage capacity of itemsets and moreover, the 
itemsets are put in the order of the descending sequence of 
support of global 1-itemset. The more frequently the items 
appear the closer to the root of the tree. Such a compression 
tree has a higher compression ratio. 

In the Landmark model, all FIs are outputted, although 
they are approximated; in other words, the data stream from 
system start to the existing point is scanned for mining 
(considering historical data, not only recent data). The support 
count is computed from the entire data set between the 
landmark and the current time. But, it isn't aware of time (time 
unconscious) and therefore it cannot distinguish between new 
data and old ones. In other words, it losses the time 
information the itemsets mined.  

B. Fading model 

That is called the Fading model in [Chang J. and Lee W., 
2004], the Damped model according to [Zhu Y. and Shasha 
D., 2002] or Time-titled model according to [Chen, Y. et al, 
2002] and [Pauray S. and Tsai M., 2009]; which is considered 
a variation of the landmark model. It also considers data from 
the start of streams up to the current moment, but the time 
period is divided into multiple time slots or assigned different 
weights to transaction such that new ones have higher weights 
than old ones. In other words time slots in recent time period 
are assigned at a fine granularity, while those in ancient time 
period are assigned at a coarse granularity. In this model, 
recent sliding windows are more important than previous 
ones. See Figure 2. 

In [Chang J.H. and Lee WS., 2003], an algorithm called 
estDec is proposed. It uses a decay rate, d (0 < d < 1), to 
diminish the effect of old transactions on the mining result. As 
a new transaction comes in, the frequency of an old itemset is 
discounted by a factor of d. Thus, the set of FIs returned is 
called recent FIs. estDec algorithm adopts the mechanism in 
[Hidber C., 1999] to estimate the frequency of the itemsets. 
For example, let the decay rate and the support count of 
itemset X be d and v, respectively. As a new transaction 
containing X arrives, the new support count of X is equal to 
v×d+1. Obviously, when d equals 1, the time-fading model 
becomes the landmark model. Assume that the stream has 
received τ transactions,               . The decayed total 
number of transactions, Nτ, and the decayed frequency of an 
itemset, freqτ (X), are defined as follows: 

Nτ = d
τ−1

 + d
τ−2

 +· · ·+d
1
 + 1   =   

  –   

   
            (3) 

freqτ(X) = d
τ−1

 × w1(X) + d
τ−2

 × w2(X)+· · ·+d
1
 × wτ−1(X) + 1 × wτ (X)  (4) 

where wi (X) =  
             
           

  

 

 
 

Fig.2. a) Fading model, b) Tilted time window 

In [Giannella, J. et al, 2003], an algorithm called FP-
Streaming is proposed. It proposed an FP-stream structure 
[Han J. et al, 2000] based algorithm, to mine frequent itemsets 
at multiple time granularities by a novel titled-time windows 
technique of [Chen, Y. et al, 2002]. Frequent patterns are 
maintained under a tilted-time window framework in order to 
answer time-sensitive queries. The frequency of an itemset is 
kept at a finer granularity for more recent time frames and at a 
coarser granularity for older time frames. For example, we 
may keep the frequency of an FI in the last hour, the last 2 h, 
the last 4 h, and so on.  

The count of each itemset is asymmetrically distributed 
into multiple time slots such that the recent time period is 
assigned more time slots than the past. It is suitable for people 
to mine the recent data at a fine granularity while mining the 
long-term data at a coarse granularity. It computes a set of 
sub-FIs at the relaxed minimum support threshold, ϵ, over 
each batch of incoming transactions by using the FI mining 
algorithm, FP-growth [Han J. et al, 2000]. Two parameters, 
the minimum support count σ and the maximum support error 
ε where σ ≥ ε, are used to classify all the itemsets into three 
categories: 1) Frequent: Support count is greater than and 
equal to σ. 2) Sub-frequent: Support count falls in [ε, σ]. 3) 
Infrequent: Support count is smaller than ε. Next, only 
frequent and sub-frequent itemsets are stored and organized in 
the FP-stream.  

 [Cohen E. and Strauss M., 2003] and [Chang J. and Lee 
W., 2004] have also provided variations of decay functions, 
like in [56]2003, under the time-fading model. 

The fading model was proposed to overcome the limitation 
of time unconscious in the landmark model. It diminishes the 
effect of the old and obsolete information of a data stream on 
the mining result. In other words, it considers the effect of old 
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transactions in some way. It can assign different weights to 
transactions such that new ones have higher weights than old 
ones, these weights are decreasing as time passes by.  

C. Sliding window model 

In [Chang J.H and Lee WS., 2003], an algorithm called 
estWin is presented. At which the itemsets generated are 
maintained in a prefix tree structure, D. An itemset, X, in D 

has the following three fields: freq    , err(X) and tid(X), 

where freq     is assigned as the frequency of X in the current 
window since X is inserted into D, err(X) is assigned as an 
upper bound for the frequency of X in the current window 
before X is inserted into D, and tid(X) is the ID of the 
transaction being processed, for X is inserted into D. For each 
incoming transaction Y with an ID tidτ , estWin increments 
the computed frequency of each subset of Y in D. We prune 
an itemset X and all X’s supersets if (1) tid(X) ≤ tid1 and 

freq     <     , or (2) tid(X) > tid1 and freq     <       
 (tid(X)   tid1)). For each expiring transaction of the sliding 
window, those itemsets in D that are subsets of the transaction 
are traversed. For each itemset, X, being visited, if tid(X) ≤ 

tid1, freq     is decreased by 1; otherwise, no change is made 
since the itemset is inserted by a transaction that comes later 
than the expiring transaction. Then, pruning is performed on X 
as described before. Finally, for each itemset, X, in D, estWin 

outputs X as an FI if (1) tid(X) ≤ tid1 and freq     ≥ σ.N, or 

(2) tid(X) > tid1 and (freq     + err(X)) ≥ σ N. 

In [Chang JH. and Lee WS., 2004], an algorithm called 
estWin Lossy-counting-based is also presented as a similar 
method to [Chang J.H and Lee WS., 2003] based on the 
estimation mechanism of [Manku G. and Motwani R., 2002].  

In [Lin C.H. et al, 2005], the first time-sensitive sliding-
window was proposed, which regards a fixed time period as 
the basic unit for mining. At which the transaction data stream 
TDS = T1,T2, . . .,TN is a continuous sequence of transactions, 
where N is the transaction identifier of latest incoming 
transaction TN.  

A transaction T = (TUid, Tid, itemset), where TUid is the 
identifier of the time unit, and Tid is the identifier of the 
transaction. A time-sensitive sliding window (TimeSW) in the 
transaction data stream is a window that slides forward for 
every time unit (TU). Each time unit TUi consists of a variable 
number, |TUi|, of transactions, and |TUi| is also called the size 
of the time unit. Hence, the current time-sensitive sliding 
window with w time units is TimeSWN_w+1 = [TU N_w+1, TU 

N_w+2, . . .,TUN], where N N_w+1 is the id of time unit of current 
TimeSW, and N is the TUid of latest time unit TUN. The 
window at each slide has a fixed number, w, of time units. The 
value w = |TUN_w+1| +|TUN_w+2| + …… + |TUN| is called the 
size of the time-sensitive sliding window and denoted as 
|TimeSW|. 

It doesn’t use a relaxed minimum support threshold, like 
almost all data stream mining algorithms; instead it 
maintained a data structure named the discounting table (DT) 
to retain the frequent itemsets with their support counts in the 
individual basic TUs of the current window. 

 
Fig.3. The sliding window model 

Moreover, a data structure named the Potentially 
Frequent-itemset Pool (PFP) is used to keep the frequent 
itemsets in Wi and the frequent ones in TUi. it includes the 
itemsets that are frequent in TUi but not frequent in Wi-1 in 
PFP because they are possibly frequent in Wi.  Only the 
summary information derived from Wi-1 is provided for 
mining frequent itemsets in Wi. It provides two alternatives to 
determine the frequent itemsets for output, having trade-off 
between accuracy and efficiency: 1) Recall-oriented and 2) 
Precision-oriented.  

In [Li H. F. et al, 2006] and [Li H. F. and Lee S. Y., 2009], 
an algorithm called MFI-TransSW is presented. It used an 
effective bit-sequence representation of items to reduce the 
time and memory needed to slide the windows. For each item 
X in the current SW, a bit-sequence with w bits, denoted as 
Bit(X), is constructed. If an item X is in the i-th transaction of 
current SW, the i-th bit of Bit(X) is set to be 1; otherwise, it is 
set to be 0. It consists of three phases: 1) window initialization 
phase: when the number of transactions generated so far in a 
transaction data stream is less than or equal to a user-
predefined sliding window size w, each item in the new 
incoming transaction is transformed into its bit-sequence 
representation; 2) window sliding phase: after the sliding 
window TransSW becomes full, a new incoming transaction is 
appended to the sliding window, and the oldest transaction is 
removed from the window. The bitwise left shift operation is 
used to remove the aged transaction from the set of items in 
the current sliding window. After sliding the window, an item 
X in the current transaction-sensitive sliding window is 
dropped if and only if sup(X)TransSW = 0.; 3) frequent 
itemsets generation phase: It is performed only when the up-
to-date set of frequent itemsets is requested. a level-wise 
method is used to generate the set of candidate itemsets CIk 
(candidate itemsets with k items) from the pre-known frequent 
itemsets FIk−1 (frequent itemsets with k-1 items) according to 
the Apriori property [Agrawal R. and Srikant R., 1994]. Then, 
the bitwise AND operation is used to compute the support (the 
number of bit 1) of these candidates in order to find the 
frequent k-itemsets FIk.  

In [Cheng J. et al, 2006], an algorithm called MineSW 
Algorithm is proposed. It is progressively increasing minimum 
support function. See preliminaries of time-sensitive sliding 
window model in the description of [Lin C.H. et al, 2005]. By 
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contrast with other algorithms which uses an error parameter, 
ϵ , to control the mining accuracy, which leads to a dilemma. 
It tackles this problem by considering ϵ=r.σ as a relaxed MST 
, where r (0 ≤ r ≤ 1) is the relaxation rate, to mine the set of 
FIs over each time unit t in the sliding window, allowing to 
increase ϵ at the expense of slightly degraded accuracy, but 
significantly improves the mining efficiency and saves 
memory usage. When an itemset is retained in the window 
longer, its minimum support required to approach the 
minimum support of an FI. Thus, the number of potential FIs 
to be maintained is greatly reduced.  

In [Kun Li. Et al, 2008], an algorithm called BFI Steam is 
presented. It is a Bounded FIs algorithm, which maintains all 
accurate frequent itemsets from sliding windows by 
monitoring the boundary between frequent itemsets and 
infrequent itemsets; it restricts the update process on a small 
part of the tree. Mining all frequent itemsets with accurate 
frequencies is just to traverse the tree. It has no candidate 
generation and it uses a prefix-tree based structure, called BFI-
tree, to maintain all frequent itemsets in the sliding window. 
The BFI-tree is a prefix-tree based data structure and is 
derived from CET structure in the Moment algorithm [Chi Y. 
et al, 2004]. It uses a count-based sliding window with fixed 
size of N, which always contains recent N transactions. BFI-
tree monitors the boundary movements to efficiently maintain 
the selected part of infrequent itemsets. If a node status 
changes, either from infrequent to frequent or vice versa, it 
must come through the boundary and result in boundary 
movements. Boundary movements may cause recursive 
updates, which will be restricted in a small sub-tree. It may 
also cause creating new nodes, which need an additional scan 
on all transactions in the sliding window to compute their 
frequencies. In order to return accurate frequent itemsets, all 
transactions in the sliding window must be maintained in a 
highly compact structure. However, the boundary is stable at 
most time, which means the update cost is very small. BFI-
tree uses the Apriori property [Agrawal R. and Srikant R., 
1994] in construction and updates to prune infrequent nodes. 
So, 1) all the children of an infrequent node should be pruned 
and consequently all infrequent nodes are leaves in BFI-tree, 
2) some children of a frequent node may be infrequent and 
should be pruned. 

In [Ren J. D. and Li K., 2008], an algorithm called MRFI-
SW is presented to mine Recent FIs with SW, which uses a 
transaction-sensitive sliding window. The transactions are 
denoted with a special representation, which can denote the 
number and the order of items that are contained in the 
transactions. Using Apriori property, frequent itemsets can be 
mined through processing the representation’s information. In 
this representation, for each itemset X which is contained in 
transactions in current sliding window is constructed as a 
sequence. The length of the sequence is w, where w is the 
number of transactions in transaction-sensitive sliding 
window. Each entry is the form of (bit, order), denoted as 
R(x). If item X is in the i-th transaction in current sliding 
window, the i-th entry of R(X)_bit is set to be 1 and the order 
of items in a transaction can get from R(X)_order, otherwise 
the R(X) is set to be 0 (R(X)_bit=R(X)_order=0). The process 
of creating this sequence of items for transaction in current 

sliding window is called bit-order transform. For example, let 
<T1, (acd)>, <T2, (bce)>, <T3, (abce)>, and <T4, (be)>, and 
the size of sliding window be 3, hence, SW1=[T1, T2, T3] and 
SW2=[T2, T3, T4]. In SW1, because item a appears in T1 and 
T3 and is the first item in both transactions, so, R(a) is <(1, 1), 
0, (1, 1)>. Similarly, R(c)=<(1, 2), (1, 2), (1, 3)>, R(d)=<(1, 
3), 0, 0>, R(b)=<0, (1, 1), (1, 2)>, and R(e)=<0, (1, 3), (1, 4)>. 

In [Naganth E.R. and Dhanaseelan F. R., 2008] a graph 
structure is proposed to capture the contents of transactions in 
a sliding window. The graph structure captures the contents of 
transactions in each batch of streaming data. Transaction items 
are arranged according to some canonical order, which can be 
specified by the user prior to the graph construction or the 
mining process. Whenever a new batch of transactions flows 
in, it appends to this list at each node its frequency count in 
the current batch. In other words, the last entry of the list at 
node X shows the frequency count of X in the current batch. 
When the next batch of transactions comes in, the list is 
shifted forward. The last entry shifts and becomes the second 
– last entry; this leaves room for the newest batch. It uses a 
pointer to indicate the last update at each node. If the pointer 
points to the previous entry in the list of frequency counts at a 
node X, then this indicates that X has just been visited at the 
update of the last batch. On the other hand, if the pointer 
points to a much earlier entry in the list at a node Y, then this 
indicates that Y has not been visited since then and that the 
frequent counts of Y for the entries in between should be 0s. 
Since this graph structure is constructed independent of the 
minimum support threshold, every transaction in the current 
window is captured. Once such a tree is constructed, we can 
mine frequent itemsets from it in a fashion similar to FP-

growth [Han J. et al, 2000] using the user supplied . Since 
items are consistently arranged according to some canonical 
order, one can guarantee the inclusion of all frequent items 
using just upward traversals, leading to exact mining results. 
There is also no worry about possible omission ordoubly 
counting of items during the mining process. So, mining is 
delayed until it is needed to avoid lots of unnecessary 
computation.  

In [Pauray S. and Tsai M., 2009], an algorithm called 
WSW Algorithm is proposed. It is a weighted SW framework 
is proposed. See preliminaries of time-sensitive sliding 
window model in the description of [Lin C.H. et al, 2005]. In 
the traditional sliding window model, only one window is 
considered for mining at each time point. WSW proposed a 
flexible framework for continuous query processing in data 
streams. The time interval for periodical queries is defined to 
be the size of a window. In traditional sliding window model, 
the size of a window is usually defined to be a given number 
of transactions, say T. Although only the latest T transactions 
are considered, the time to cover these T transactions may be 
long. If we ignore the significance of data at different time 
intervals, the effectiveness of the mining result may decrease. 
So the WSW model has the following two new features: (1) 
window size is defined by time, not the number of 
transactions, the purpose is to avoid the case where intervals 
that cover T transactions at different time points may vary 
dramatically. (2) number of windows considered for mining is 
specified by the user. Moreover, the user can assign different 
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weights to different windows according to the importance of 
data in each section. For example, the data near to the current 
moment may be more influential in the mining, and could be 
given a higher weight. The weights of windows affect the 
determination of frequent items. Even if the total support 
count of an item is large, if its support count in the window 
with a high weight is very low, it may not become a frequent 
item. Thus the consideration of weights for windows is 
reasonable and significant. So, the mining result would be 
closer to user’s requirements. 

By data characteristics, an improved algorithm, WSW-
Imp, is explored to further reduce the time of deciding 
whether a candidate itemset is frequent or not. Experimental 
results show that the performance of WSW-Imp significantly 
outperforms that of WSW over weighted sliding windows. 

In [Li H. F. and Lee S. Y., 2009], an algorithm called MFI-
Time-SW is proposed. It works in a SW environment with a 
time-sensitive SW. See preliminaries of time-sensitive sliding 
window model in the description of [Lin C.H. et al, 2005]. 
The major differences between MFI-TransSW []Li H. F. et al, 
2006] and [Li H. F. and Lee S. Y., 2009]and MFI-TimeSW 
are the following: 1) Unit of data processing: each time unit 
contains variable number of transactions. 2) Bit-sequence 
transformation of a time unit: For each item X in the current 
time-sensitive stream sliding window TimeSWN_w+1, a 
bitsequence with |TimeSWN_w+1| bits, denoted as 

            
      , is constructed. Similarly, if the item X is in 

the i-th transaction of TimeSWN_w+1, the ith bit of 

            
      , is set to be 1. Otherwise, it is set to be 0. 3) 

Number of sliding transactions:  In the window sliding phase 
of MFI-TimeSW algorithm, after the oldest time unit TUN_w+1 
is removed from the current sliding window, a new time unit 
TUN+1 is appended to the window. If the aged time unit 
TUN_w+1 contains d transactions, MFI-TimeSW performs d 
times of bitwise left shift operation on the current sliding 
window. After that, MFI-TimeSW uses that same pruning 
method Item-Prune to improve the memory usage in mining 
process. 4) Dynamic frequent threshold of itemsets: the value 
of frequent threshold is s * |TimeSW| is a dynamic value, 
where |TimeSW| = |TUN_w+1| + |TUN_w+2| + …. + |TUN|. 

The sliding window model captures recent pattern changes 
and trends, by utilizing only the latest transactions for mining. 

As in certain applications, users can only be interested in the 
data recently arriving within a fixed time period. Sliding 
window model ignores the important fact of that Itemsets are 
changing their frequencies according to certain time intervals. 
In other words the sliding window model ignores the history 
of the itemsets' frequencies.  

IV. STORAGE, TIME AND ACCURACY TRADEOFF 

TABLE 1 presents the important comparative parameters 
to distinguish among the state of the art algorithms which are 
as the following: 1) The mining model, 2) The accuracy of the 
results, 3) The processing strategy, 4) The units of processing 
and 5) The data to be processed.  

According to Table 1, the first and last parameters are 
closely related, at which the landmark and fading models 
process the whole data stream from the system start. On the 
other hand, the sliding window model processes only a recent 
portion of the data stream.   

All the algorithms of the landmark and fading models 
using the count based windows, except the algorithm of 
[Giannella, J. et al, 2003], which uses the time based window. 
In the Sliding window model, all the algorithms using the 
count base window, except the algorithms of [Lin C.H. et al, 
2005], [Cheng J.  et al, 2006], [Pauray S. and Tsai M., 2009] 

and part of [Li H. F. and Lee S. Y., 2009], which considered a 
fixed time period as the basic unit for processing (i.e time 
based window).         

The count based windows are easy for programmers to 
deal with and not easy for people to specify. By contrast, in 
time based windows, it is natural for people to specify a time 
period as the basic unit, but it is more difficult to deal with 
windows with variable sizes in terms of bytes. In the 
performance perspective, no difference between using the time 
based or the count based windows [Arasu A. and Widom J., 
2003]. 

The algorithms of [Manku G., and Motwani R., 2002], [Jin 
R. and Agrawal. G., 2005], [Chang J.H. and Lee WS., 2003], 
[Chang J.H and Lee WS., 2003], [Chang JH. and Lee WS., 
2004], [Kun Li. et al, 2008], [Ren J. D. and Li K., 2008] and 
[Pauray S. and Tsai M., 2009] are using a tuple processing 
mechanism, at which processing is done transaction by 
transaction; the rest of the algorithms are 
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TABLE I.  COMPARATIVE SUMMARY AMONG THE SATE-OF-THE-ART ALGORITHMS 

Data 

Stream 

Mining 

Model 

Data Stream 

Mining 

Algorithm 

Approximate/Ex

act  

Results 

Tuple/ 

Batch 

Processing 

Time/ 

Count base 

(transactions) 

All / Recent  

Transactions 

Landmark 

Model 

Lossy Counting 

[Manku 

G.,Motwani R., 

2002] 

Approximate/ 

False Positives 

(FP) 

Tuple Count All  

 FDPM 

[Yu J. X. et 

al,2004] 

Approx./False 
Negatives (FN) 

Batch Count All  

 StreamMining 

[Jin R. ,Agrawal. 

G.,2005] 

Approx. / FP  Tuple  Count  All  

 FP-DS 

[Liu X. et 

al,2005] 

Approx. / FP Batch  Count All  

Fading 

Model 

estDec  

[Chang J.H.,Lee 

WS.,2003] 

Approx./ FP Tuple Count All  

(recent is more 
important) 

 FP-streaming 

[Giannella, J. et 

al,2003] 

Approx. / FP Batch Time All  

(recent is more 
important) 

Sliding 

Window 

Model 

(SW) 

estWin  

[Chang J.H,Lee 

WS.,2003] 
 

Approx. / FP Tuple Count Recent  

 estWin_Lossy_C

ounting based 

[Chang JH.,Lee 

WS.,2004] 

Approx. / FP Tuple Count Recent 

 [Lin C.H. et 

al,2005] 

Approx. / 

FP or FN 

Batch  Time  Recent  

 MFI-TransSW  

[Li H. F.et 

al,2006],[Li H. 

F.,Lee S. 

Y.,2009] 

Approx. / FP Batch Count  Recent 

 Mine-SW    

[Cheng J et 

al,2006] 

Approx. / FN Batch  Time  Recent  

 BFI Steam  

[Kun Li. Et 

al,2008] 

Exact  Tuple  Count  Recent 

 MRFI-SW  

[Ren J. D.,Li 

K.,2008] 

Exact  Tuple  Count Recent 

 Graph Structure 

_SW [Naganth 

E.R.,Dhanaseela

n F. R.,2008] 

Exact  Batch   Count Recent 

 WSW  

[Pauray S.,Tsai 

M.,2009] 

Approx. / FP Tuple  Time  Recent 

 MFI-Time-SW 

[Li H. F.,Lee S. 

Y.,2009] 

Approx. / FP Batch Time Recent 
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Using batch processing. Processing each transaction 
against the entire stream in most cases is less efficient than 
processing a batch of transactions against the entire stream. In 
general, batch processing is more suitable for high speed data 
streams [Cheng J. et al, 2008]. See Figure 4. 

 
 

Fig.4. Time, memory and accuracy tradeoff 

 [Chang J.H. and Lee WS., 2003] favors recent itemsets by 
diminishing exponentially the effect of old transactions; but 
estimating itemsets' frequencies from their subsets leading to a 
propagated error. And [Chang J.H. and Lee WS., 2003] 
partitions the window according to a logarithmic scale with 
the recent frequency of an itemset recorded at a finer 
granularity using a tilted-time window, which answers time-
sensitive queries at the expense of more than one record kept 
for each itemset leading to a very large structure over time 
which in turn degrade the mining process. All the variations of 
the landmark and fading models have the limitation of 
providing approximate answers for long-term data and adjust 
their storage requirement based on the available space.  

All the algorithms are producing approximate results, 
except [Kun Li. et al, 2008], [Ren J. D. and Li K., 2008] and 
[Naganth E.R. and Dhanaseelan F. R., 2008], which produce 
exact results but for only a recent portion of the data stream 
(i.e they are under the sliding window model). All the 
approximate algorithms adopt false-positive approaches, 
except [Yu J. X. et al, 2004] and an option in [Lin C.H. et al, 
2005], which adopts a false-negative approach. The false-
positive approach uses a relaxed minimum support threshold, 
ϵ, to reduce the number of false-positives, so obtaining a more 
accurate result.  However, to obtain a more accurate result, a 
smaller value of ϵ is to be set, leading to a larger set of sub-FIs 
to be maintained, consuming large amount of memory. The 
false-negative approach also uses a relaxed minimum support 
threshold, ϵ; however, its’ use lowers the probability of 
discarding an infrequent itemset that may become frequent 
later. The error bound in the computed support and the 
possible false mining results of most of the false-positive 
approaches are implied by the following equation according 
the derivation of [Cheng J. et al, 2008]:   

Support error bound = err (X)/Nτ   , 

False results = {X | freq(X) < σN ≤ ( freq (X) +err(X))} 

Almost all the online mining algorithms do the mining 
process during the entering of the stream, by constructing, 
filling and extracting FIs in parallel to the data stream 
entering; except [Li H. F. et al, 2006] and [Li H. F. and Lee S. 
Y., 2009] and [Naganth E.R. and Dhanaseelan F. R., 2008], 
which actually extract FIs from the filled data structure (i.e 
done during the data stream entering) only when it is 
requested by the user; which is a more effective strategy.   

     Any data stream mining algorithm aims to enforce 
correct and accurate results, minimized consumption of 
memory, fully utilized CPU and minimized time for 
processing. Correctness here refers to mining only true 
frequent itemsets (i.e no false positives, nor false negatives), 
and accuracy refers to mining exact or approximated 
frequencies for the itemsets (leading to true or nearest to true 
frequent itemsets).  

     Exact mining requires keeping track of all itemsets in 
the window and their actual frequency, because any infrequent 
itemset may become frequent later in the stream. However, the 
number of all itemsets is O(2|I|) (that is, given a set of items I, 
the possible number of itemsets can be up to 2|I| − 1) making 
exact mining computationally difficult, in terms of both CPU 
and memory. 

     Also, using a relaxed minimum support threshold, , to 
control the quality of the approximation of the mining result 
leads to a dilemma. The smaller the value of  , the more 
accurate is the approximation but the greater is the number of 
sub-FIs generated, which requires both more memory space 
and more CPU processing power. However, if   approaches σ, 
more false-positive answers will be included in the result, 
since all sub-FIs whose computed frequency is at least (σ- )N 
≈ 0 are outputted while the computed frequency of the sub-FIs 
can be less than their actual frequency by as much as σ.N.  

     Almost all the approximation algorithms produce false-
positive results, at which, the set of sub-FIs kept is often too 
large in order to obtain a highly accurate answer. Thus, 
throughput is decreased and memory consumption is increased 
due to the processing of a large number of sub-FIs. But for the 
approximation algorithms which produce false negative results 
[Yu J. X. et al, 2004], it infringes the correctness.  
Accordingly, there is a direct proportion between the accuracy 
and memory consumption; more accurate results needs more 
memory usage leading to increased processing time.  

V. CONCLUSION  

According to the continues high flow of data streams and 
the relatively limited resources of CPU and storage, the 
process of mining frequent itemsets is chained to mining 
approximated frequencies, even it has guarantee on error 
bounds. The accuracy of the resulting FIs directly proportional 
with the memory usage; high accuracy needs high memory 
usage.  

Therefore the algorithms of mining FIs from data streams 
which are using the Landmark model, Fading model (at which 
all the data stream is mined) or the Sliding Window model (at 
which only recent data is mined); leading to approximated 
results certainly. 
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VI. FUTURE WORK 

We can focus in future to get exact mining results with 
regard to the available storage. Traditional data mining 
algorithms do not produce any results that show the change of 
the results over time. Dynamics of data streams using changes 
in the knowledge structures generated would benefit many 
temporal-based analysis applications.  
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