
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.7, 2013

117 | P a g e
www.ijacsa.thesai.org

Mining Frequent Itemsets from Online Data Streams:

Comparative Study

HebaTallah Mohamed Nabil

Faculty of Computers and

Information Fayoum University

Fayoum, Egypt

Ahmed Sharaf Eldin
Faculty of Computers and

Information Helwan University

Cairo, Egypt

Mohamed Abd El-Fattah Belal

Faculty of Computers and

Information Helwan University

Cairo, Egypt

Abstract—Online mining of data streams poses many new

challenges more than mining static databases. In addition to the

one-scan nature, the unbounded memory requirement, the high

data arrival rate of data streams and the combinatorial explosion

of itemsets exacerbate the mining task. The high complexity of

the frequent itemsets mining problem hinders the application of

the stream mining techniques. In this review, we present a

comparative study among almost all, as we are acquainted, the

algorithms for mining frequent itemsets from online data

streams. All those techniques immolate with the accuracy of the

results due to the relatively limited storage, leading, at all times,
to approximated results.

Keywords—Data mining; frequent itemsets; data stream;

sliding window model; landmark model; fading model.

I. INTRODUCTION

Recently, the data generation rates in some data sources
become faster than ever before. Examples include network
traffic analysis, Web click stream mining, network intrusion
detection, sensor networks, web logs, and on-line transaction
analysis. This rapid generation of continuous streams of
information has challenged our storage, computation and
communication capabilities in computing systems. Systems,
models and techniques have been proposed and developed
over the past few years to address those challenges [Gaber M.
et al., 2005].

In [Babcock B. et al., 2002] and [Lin C.H. et al., 2005], the
Data Stream Model is characterized by that, some or all of the
input data that are to be operated on are not available for
random access from disk or memory, but rather arrive as one
or more continuous data streams.

Data streams differ from the conventional stored relation
model in several ways: 1) Continuity: Data continuously
arrive at a high rate. 2) Expiration: Data can be read only
once. 3) Infinity: The total amount of data is unbounded.
These characteristics lead respectively to the following
challenges [Zhu Y. and Shasha D. 2002] in mining data
streams: 1) Limited memory space. 2) Each item in a stream
could be examined only once. 3) The mining result should be
generated as fast as possible.

The infinite nature of these data sources is a serious
obstacle to the use of most of the traditional methods since
available computing resources are limited. One of the first
effects is the need to process data as they arrive. The amount
of previously happened events is usually overwhelming, so
they can be either dropped after processing or archived

separately in secondary storage. In the first case access to past
data is obviously impossible whereas in the second case the
cost for data retrieval is likely to be acceptable only for some
”ad hoc” queries, especially when several scan of past data are
needed to obtain just one single result [Silvestri C., 2006]. In
the process of mining frequent itemset, traditional methods for
static data usually read the database more than once. However
due to the consideration of performance and storage
constraints, on-line data stream mining algorithms are
restricted to make only one pass over the data. Thus,
traditional methods cannot be directly applied to data stream
mining [Pauray S. and Tsai M., 2009].

II. BACKGROUND

According to [Li H. F. et al, 2006], data streams are further
classified into: 1) offline data streams: which characterized by
discontinuity or regular bulk arrivals [Manku G. and Motwani
R., 2002], such as a bulk addition of new transactions as in a
data warehouse system, and 2) online data streams: which
characterized by real-time updated data that come one by one
in time, such as a continuously generated transaction as in a
network monitoring system.

A transaction data stream is a sequence of incoming
transactions and an excerpt of the stream is called a window. A
window,W, can be (1) either time-based or count-based, and
(2) either a landmark window or a sliding window. W is time-
based if W consists of a sequence of fixed-length time units,
where a variable number of transactions may arrive within
each time unit. W is count-based if W is composed of a
sequence of batches, where each batch consists of an equal
number of transactions. W is a landmark window if W = [T1,
T2, . . . , Tτ]; W is a sliding window if W = [Tτ−w+1, . . . , Tτ],
where each Ti is a time unit or a batch, T1 and Tτ are the
oldest and the current time unit or batch, and w is the number
of time units or batches in the sliding window, depending on
whether W is time-based or count-based. Note that a count-
based window can also be captured by a time-based window
by assuming that a uniform number of transactions arrive
within each time unit.

An itemset X is a Frequent Itemset (FI) in W, if sup(X) ≥ σ,
where σ (0 ≤ σ ≤ 1) is a user-specified minimum support
threshold. In the process of mining data streams, it is
necessary to keep not only the FIs, but also the infrequent
itemsets that are promising to be frequent later, since an
infrequent itemset may become frequent later in the stream.
Therefore, many of the existing approximate mining
algorithms used a relaxed minimum support threshold (also

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.7, 2013

118 | P a g e
www.ijacsa.thesai.org

called a user-specified error parameter), ϵ, where 0 ≤ ϵ ≤ σ ≤
1, to obtain an extra set of itemsets that are potential to
become frequent later.

There are many algorithms for mining frequent itemsets
from data streams; according to [Pauray S. and Tsai M.,
2009], all those algorithms are fallen into one of the following
data stream mining models: 1) Landmark model, 2) Fading
model and 3) Sliding window model.

III. APPROACHES OF MINING FIS FROM DATA STREAMS

A. Landmark model

Which considers all the data from a specified point of time
(usually the time the system starts), to the current time. All the
data considered are treated equally. In this model, knowledge
discovery is performed based on the values between a specific
timestamp called landmark and the present. See Figure 1.

In [Cormode. G., 2007], an algorithm called Lossy
Counting is presented. It produces an approximate set of FIs
over the entire history of a stream. The stream is divided into a

sequence of buckets and each bucket consists of B = 1/
transactions. It processes a batch of transactions arriving on
the stream at a time, where each batch contains β buckets of
transactions. The idea of maximum possible error is used to
maintain all the possible frequent itemsets. Although the
output is approximate, the error is guaranteed not to exceed a
user-specified threshold.

According to [Cormode. G., 2007], this method attempts to
use the available space as fully as possible. As, for each new
transaction, it generates all the subsets, and stores them in a
compact trie-based structure. When the space is full, it uses a
pruning algorithm based on frequent items algorithms to
delete the least frequent itemsets, and track the error in the
estimated counts of each item.

In [Yu J. X. et al, 2004], an algorithm called FDPM is
derived from the Chernoff bound, to approximate a set of FIs
over a landmark window. Suppose that there is a sequence of
N observations and consider the first n (n << N) observations
as independent coin flips such that Pr(head) = p and Pr(tail) =
1 − p. Let r be the number of heads. Then, the expectation of r
is np. The Chernoff bound states, for any > 0 :

Pr (1)

After applying some substitutions and derivations:

Pr{ p - ϵ ≤ ≤ p + ϵ } ≥ (1-) (2)

The underlying idea of the FDPM algorithm is explained
as follows. First, a memory bound, n0 ≈ (2 + 2 ln(2/δ))/σ , is
also derived. Given a probability parameter, δ, and an integer,
k. The batch size, B, is given as k · n0. Then, for each batch of
B transactions, FDPM employs an existing non-streaming FI
mining algorithm to compute all itemsets whose support in the
current batch is no less than (σ − ϵB), where ϵB =

 . The set of itemsets computed are then

merged with the set of itemsets obtained so far for the stream.
If the total number of itemsets kept for the stream is larger
than c · n0, where c is an empirically determined float number,
then all itemsets whose support is less than (σ − ϵN) are
pruned, where N is the number of transactions received so far

in the stream and ϵN = . Finally, FDPM

outputs those itemsets whose frequency is no less than σ N.

Fig.1. The landmark model

It solves the problem of huge number of sub-FIs problem,
by first using a constant lowered minimum support threshold
to compute a set of potential FIs and then using a gradually
increasing lowered minimum support threshold to control the
total number of sub-FIs kept in memory, but with a drawback
of producing false negatives.

In [Jin R. and Agrawal. G., 2005], an algorithm called
StreamMining is proposed. It is built on the idea of [Karp
R.M. et al, 2003] to determine frequent items (or 1-itemsets).
In [Karp R.M. et al, 2003] a two pass algorithm was presented

for this purpose, which requires only (1/) memory, where is
the desired support level. Their first pass computes a superset
of frequent items, and the second pass eliminates any false
positives. StreamMining algorithm addressed three major
challenges in applying their idea for frequent itemset mining
in a streaming environment. First, it developed a method for
finding frequent k-itemsets, while still keeping the memory
requirements limited. Second, it developed a way to have a
bound on the superset computed after the first pass. Third, it
developed a data structure and a number of other
implementation optimizations to support efficient execution.
This data structure called TreeHash, which implements a
prefix tree using a hash table. It has the compactness of a
prefix tree and allows easy deletions like a hash table. It also
uses a relaxed minimum support threshold ϵ, like almost all
the mining algorithms for data streams, so the memory
requirements increase proportional to 1/ϵ. So, this algorithm
should had to compute k-itemsets approximately after the first
pass, without requiring any out-of-core or large summary
structure, and ensure a provable bound on the accuracy of the
results after the first pass on the dataset; because in streaming
environments, second pass on the dataset is usually not
feasible. Therefore, it is important that the set K computed
above does not contain many false positives. It was different
with [53]2002 in the space requirements. As, for finding

frequent items, it takes O(1/) space, while [Manku G., and

Motwani R., 2002] requires O((1/) log (N)) space. As
[Manku G., and Motwani R., 2002] requires an out-of-core
data structure, while it used an in-core data structure. It also
has deterministic bounds on the accuracy. One exception is

W1

W2

W3 S
ys

te
m

 s
ta

rt
 (

L
a

n
d

m
a

rk
)

 Data stream

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.7, 2013

119 | P a g e
www.ijacsa.thesai.org

datasets with the average length of an itemset is quite large. In
such case, some additional knowledge of maximal frequent
itemsets helps efficiency of our algorithms.

In [Liu X. et al, 2005], an algorithm called FP-DS is
presented. It uses a Frequent Pattern structure similar to the
FP-DS tree in [Han J. et al, 2000]. The user can obtain current
frequent itemsets online continuously without pattern-delay.
Compared with the existing related algorithms, the FP-DS
algorithm is especially suitable for the mining of long frequent
items. It is unnecessary to enumerate every subset on
transactions, nor produce a lot of frequent candidate items.
The FP-DS tree stores the potential frequent itemsets. It does
not need to store all subsets of itemsets independently. It
reduces the storage capacity of itemsets and moreover, the
itemsets are put in the order of the descending sequence of
support of global 1-itemset. The more frequently the items
appear the closer to the root of the tree. Such a compression
tree has a higher compression ratio.

In the Landmark model, all FIs are outputted, although
they are approximated; in other words, the data stream from
system start to the existing point is scanned for mining
(considering historical data, not only recent data). The support
count is computed from the entire data set between the
landmark and the current time. But, it isn't aware of time (time
unconscious) and therefore it cannot distinguish between new
data and old ones. In other words, it losses the time
information the itemsets mined.

B. Fading model

That is called the Fading model in [Chang J. and Lee W.,
2004], the Damped model according to [Zhu Y. and Shasha
D., 2002] or Time-titled model according to [Chen, Y. et al,
2002] and [Pauray S. and Tsai M., 2009]; which is considered
a variation of the landmark model. It also considers data from
the start of streams up to the current moment, but the time
period is divided into multiple time slots or assigned different
weights to transaction such that new ones have higher weights
than old ones. In other words time slots in recent time period
are assigned at a fine granularity, while those in ancient time
period are assigned at a coarse granularity. In this model,
recent sliding windows are more important than previous
ones. See Figure 2.

In [Chang J.H. and Lee WS., 2003], an algorithm called
estDec is proposed. It uses a decay rate, d (0 < d < 1), to
diminish the effect of old transactions on the mining result. As
a new transaction comes in, the frequency of an old itemset is
discounted by a factor of d. Thus, the set of FIs returned is
called recent FIs. estDec algorithm adopts the mechanism in
[Hidber C., 1999] to estimate the frequency of the itemsets.
For example, let the decay rate and the support count of
itemset X be d and v, respectively. As a new transaction
containing X arrives, the new support count of X is equal to
v×d+1. Obviously, when d equals 1, the time-fading model
becomes the landmark model. Assume that the stream has
received τ transactions, . The decayed total
number of transactions, Nτ, and the decayed frequency of an
itemset, freqτ (X), are defined as follows:

Nτ = d
τ−1

 + d
τ−2

 +· · ·+d
1
 + 1 =

 –

 (3)

freqτ(X) = d
τ−1

 × w1(X) + d
τ−2

 × w2(X)+· · ·+d
1
 × wτ−1(X) + 1 × wτ (X) (4)

where wi (X) =

Fig.2. a) Fading model, b) Tilted time window

In [Giannella, J. et al, 2003], an algorithm called FP-
Streaming is proposed. It proposed an FP-stream structure
[Han J. et al, 2000] based algorithm, to mine frequent itemsets
at multiple time granularities by a novel titled-time windows
technique of [Chen, Y. et al, 2002]. Frequent patterns are
maintained under a tilted-time window framework in order to
answer time-sensitive queries. The frequency of an itemset is
kept at a finer granularity for more recent time frames and at a
coarser granularity for older time frames. For example, we
may keep the frequency of an FI in the last hour, the last 2 h,
the last 4 h, and so on.

The count of each itemset is asymmetrically distributed
into multiple time slots such that the recent time period is
assigned more time slots than the past. It is suitable for people
to mine the recent data at a fine granularity while mining the
long-term data at a coarse granularity. It computes a set of
sub-FIs at the relaxed minimum support threshold, ϵ, over
each batch of incoming transactions by using the FI mining
algorithm, FP-growth [Han J. et al, 2000]. Two parameters,
the minimum support count σ and the maximum support error
ε where σ ≥ ε, are used to classify all the itemsets into three
categories: 1) Frequent: Support count is greater than and
equal to σ. 2) Sub-frequent: Support count falls in [ε, σ]. 3)
Infrequent: Support count is smaller than ε. Next, only
frequent and sub-frequent itemsets are stored and organized in
the FP-stream.

 [Cohen E. and Strauss M., 2003] and [Chang J. and Lee
W., 2004] have also provided variations of decay functions,
like in [56]2003, under the time-fading model.

The fading model was proposed to overcome the limitation
of time unconscious in the landmark model. It diminishes the
effect of the old and obsolete information of a data stream on
the mining result. In other words, it considers the effect of old

a) Weighted windows

b) Tilted- time windows

W1

W1* 0.9 W2* 1

W1* 0.8 W2* 0.9 W3* 1

S
ys

te
m

 s
ta

rt

 Data stream

12 monthes 31 days 24 hours

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.7, 2013

120 | P a g e
www.ijacsa.thesai.org

transactions in some way. It can assign different weights to
transactions such that new ones have higher weights than old
ones, these weights are decreasing as time passes by.

C. Sliding window model

In [Chang J.H and Lee WS., 2003], an algorithm called
estWin is presented. At which the itemsets generated are
maintained in a prefix tree structure, D. An itemset, X, in D

has the following three fields: freq , err(X) and tid(X),

where freq is assigned as the frequency of X in the current
window since X is inserted into D, err(X) is assigned as an
upper bound for the frequency of X in the current window
before X is inserted into D, and tid(X) is the ID of the
transaction being processed, for X is inserted into D. For each
incoming transaction Y with an ID tidτ , estWin increments
the computed frequency of each subset of Y in D. We prune
an itemset X and all X’s supersets if (1) tid(X) ≤ tid1 and

freq < , or (2) tid(X) > tid1 and freq <
 (tid(X) tid1)). For each expiring transaction of the sliding
window, those itemsets in D that are subsets of the transaction
are traversed. For each itemset, X, being visited, if tid(X) ≤

tid1, freq is decreased by 1; otherwise, no change is made
since the itemset is inserted by a transaction that comes later
than the expiring transaction. Then, pruning is performed on X
as described before. Finally, for each itemset, X, in D, estWin

outputs X as an FI if (1) tid(X) ≤ tid1 and freq ≥ σ.N, or

(2) tid(X) > tid1 and (freq + err(X)) ≥ σ N.

In [Chang JH. and Lee WS., 2004], an algorithm called
estWin Lossy-counting-based is also presented as a similar
method to [Chang J.H and Lee WS., 2003] based on the
estimation mechanism of [Manku G. and Motwani R., 2002].

In [Lin C.H. et al, 2005], the first time-sensitive sliding-
window was proposed, which regards a fixed time period as
the basic unit for mining. At which the transaction data stream
TDS = T1,T2, . . .,TN is a continuous sequence of transactions,
where N is the transaction identifier of latest incoming
transaction TN.

A transaction T = (TUid, Tid, itemset), where TUid is the
identifier of the time unit, and Tid is the identifier of the
transaction. A time-sensitive sliding window (TimeSW) in the
transaction data stream is a window that slides forward for
every time unit (TU). Each time unit TUi consists of a variable
number, |TUi|, of transactions, and |TUi| is also called the size
of the time unit. Hence, the current time-sensitive sliding
window with w time units is TimeSWN_w+1 = [TU N_w+1, TU

N_w+2, . . .,TUN], where N N_w+1 is the id of time unit of current
TimeSW, and N is the TUid of latest time unit TUN. The
window at each slide has a fixed number, w, of time units. The
value w = |TUN_w+1| +|TUN_w+2| + …… + |TUN| is called the
size of the time-sensitive sliding window and denoted as
|TimeSW|.

It doesn’t use a relaxed minimum support threshold, like
almost all data stream mining algorithms; instead it
maintained a data structure named the discounting table (DT)
to retain the frequent itemsets with their support counts in the
individual basic TUs of the current window.

Fig.3. The sliding window model

Moreover, a data structure named the Potentially
Frequent-itemset Pool (PFP) is used to keep the frequent
itemsets in Wi and the frequent ones in TUi. it includes the
itemsets that are frequent in TUi but not frequent in Wi-1 in
PFP because they are possibly frequent in Wi. Only the
summary information derived from Wi-1 is provided for
mining frequent itemsets in Wi. It provides two alternatives to
determine the frequent itemsets for output, having trade-off
between accuracy and efficiency: 1) Recall-oriented and 2)
Precision-oriented.

In [Li H. F. et al, 2006] and [Li H. F. and Lee S. Y., 2009],
an algorithm called MFI-TransSW is presented. It used an
effective bit-sequence representation of items to reduce the
time and memory needed to slide the windows. For each item
X in the current SW, a bit-sequence with w bits, denoted as
Bit(X), is constructed. If an item X is in the i-th transaction of
current SW, the i-th bit of Bit(X) is set to be 1; otherwise, it is
set to be 0. It consists of three phases: 1) window initialization
phase: when the number of transactions generated so far in a
transaction data stream is less than or equal to a user-
predefined sliding window size w, each item in the new
incoming transaction is transformed into its bit-sequence
representation; 2) window sliding phase: after the sliding
window TransSW becomes full, a new incoming transaction is
appended to the sliding window, and the oldest transaction is
removed from the window. The bitwise left shift operation is
used to remove the aged transaction from the set of items in
the current sliding window. After sliding the window, an item
X in the current transaction-sensitive sliding window is
dropped if and only if sup(X)TransSW = 0.; 3) frequent
itemsets generation phase: It is performed only when the up-
to-date set of frequent itemsets is requested. a level-wise
method is used to generate the set of candidate itemsets CIk
(candidate itemsets with k items) from the pre-known frequent
itemsets FIk−1 (frequent itemsets with k-1 items) according to
the Apriori property [Agrawal R. and Srikant R., 1994]. Then,
the bitwise AND operation is used to compute the support (the
number of bit 1) of these candidates in order to find the
frequent k-itemsets FIk.

In [Cheng J. et al, 2006], an algorithm called MineSW
Algorithm is proposed. It is progressively increasing minimum
support function. See preliminaries of time-sensitive sliding
window model in the description of [Lin C.H. et al, 2005]. By

W1 T1

T2

2

T3

W2 T1 T2 T3

W3 T1 T2 T3

S
y
st

e
m

 s
ta

rt

 Data stream

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.7, 2013

121 | P a g e
www.ijacsa.thesai.org

contrast with other algorithms which uses an error parameter,
ϵ , to control the mining accuracy, which leads to a dilemma.
It tackles this problem by considering ϵ=r.σ as a relaxed MST
, where r (0 ≤ r ≤ 1) is the relaxation rate, to mine the set of
FIs over each time unit t in the sliding window, allowing to
increase ϵ at the expense of slightly degraded accuracy, but
significantly improves the mining efficiency and saves
memory usage. When an itemset is retained in the window
longer, its minimum support required to approach the
minimum support of an FI. Thus, the number of potential FIs
to be maintained is greatly reduced.

In [Kun Li. Et al, 2008], an algorithm called BFI Steam is
presented. It is a Bounded FIs algorithm, which maintains all
accurate frequent itemsets from sliding windows by
monitoring the boundary between frequent itemsets and
infrequent itemsets; it restricts the update process on a small
part of the tree. Mining all frequent itemsets with accurate
frequencies is just to traverse the tree. It has no candidate
generation and it uses a prefix-tree based structure, called BFI-
tree, to maintain all frequent itemsets in the sliding window.
The BFI-tree is a prefix-tree based data structure and is
derived from CET structure in the Moment algorithm [Chi Y.
et al, 2004]. It uses a count-based sliding window with fixed
size of N, which always contains recent N transactions. BFI-
tree monitors the boundary movements to efficiently maintain
the selected part of infrequent itemsets. If a node status
changes, either from infrequent to frequent or vice versa, it
must come through the boundary and result in boundary
movements. Boundary movements may cause recursive
updates, which will be restricted in a small sub-tree. It may
also cause creating new nodes, which need an additional scan
on all transactions in the sliding window to compute their
frequencies. In order to return accurate frequent itemsets, all
transactions in the sliding window must be maintained in a
highly compact structure. However, the boundary is stable at
most time, which means the update cost is very small. BFI-
tree uses the Apriori property [Agrawal R. and Srikant R.,
1994] in construction and updates to prune infrequent nodes.
So, 1) all the children of an infrequent node should be pruned
and consequently all infrequent nodes are leaves in BFI-tree,
2) some children of a frequent node may be infrequent and
should be pruned.

In [Ren J. D. and Li K., 2008], an algorithm called MRFI-
SW is presented to mine Recent FIs with SW, which uses a
transaction-sensitive sliding window. The transactions are
denoted with a special representation, which can denote the
number and the order of items that are contained in the
transactions. Using Apriori property, frequent itemsets can be
mined through processing the representation’s information. In
this representation, for each itemset X which is contained in
transactions in current sliding window is constructed as a
sequence. The length of the sequence is w, where w is the
number of transactions in transaction-sensitive sliding
window. Each entry is the form of (bit, order), denoted as
R(x). If item X is in the i-th transaction in current sliding
window, the i-th entry of R(X)_bit is set to be 1 and the order
of items in a transaction can get from R(X)_order, otherwise
the R(X) is set to be 0 (R(X)_bit=R(X)_order=0). The process
of creating this sequence of items for transaction in current

sliding window is called bit-order transform. For example, let
<T1, (acd)>, <T2, (bce)>, <T3, (abce)>, and <T4, (be)>, and
the size of sliding window be 3, hence, SW1=[T1, T2, T3] and
SW2=[T2, T3, T4]. In SW1, because item a appears in T1 and
T3 and is the first item in both transactions, so, R(a) is <(1, 1),
0, (1, 1)>. Similarly, R(c)=<(1, 2), (1, 2), (1, 3)>, R(d)=<(1,
3), 0, 0>, R(b)=<0, (1, 1), (1, 2)>, and R(e)=<0, (1, 3), (1, 4)>.

In [Naganth E.R. and Dhanaseelan F. R., 2008] a graph
structure is proposed to capture the contents of transactions in
a sliding window. The graph structure captures the contents of
transactions in each batch of streaming data. Transaction items
are arranged according to some canonical order, which can be
specified by the user prior to the graph construction or the
mining process. Whenever a new batch of transactions flows
in, it appends to this list at each node its frequency count in
the current batch. In other words, the last entry of the list at
node X shows the frequency count of X in the current batch.
When the next batch of transactions comes in, the list is
shifted forward. The last entry shifts and becomes the second
– last entry; this leaves room for the newest batch. It uses a
pointer to indicate the last update at each node. If the pointer
points to the previous entry in the list of frequency counts at a
node X, then this indicates that X has just been visited at the
update of the last batch. On the other hand, if the pointer
points to a much earlier entry in the list at a node Y, then this
indicates that Y has not been visited since then and that the
frequent counts of Y for the entries in between should be 0s.
Since this graph structure is constructed independent of the
minimum support threshold, every transaction in the current
window is captured. Once such a tree is constructed, we can
mine frequent itemsets from it in a fashion similar to FP-

growth [Han J. et al, 2000] using the user supplied . Since
items are consistently arranged according to some canonical
order, one can guarantee the inclusion of all frequent items
using just upward traversals, leading to exact mining results.
There is also no worry about possible omission ordoubly
counting of items during the mining process. So, mining is
delayed until it is needed to avoid lots of unnecessary
computation.

In [Pauray S. and Tsai M., 2009], an algorithm called
WSW Algorithm is proposed. It is a weighted SW framework
is proposed. See preliminaries of time-sensitive sliding
window model in the description of [Lin C.H. et al, 2005]. In
the traditional sliding window model, only one window is
considered for mining at each time point. WSW proposed a
flexible framework for continuous query processing in data
streams. The time interval for periodical queries is defined to
be the size of a window. In traditional sliding window model,
the size of a window is usually defined to be a given number
of transactions, say T. Although only the latest T transactions
are considered, the time to cover these T transactions may be
long. If we ignore the significance of data at different time
intervals, the effectiveness of the mining result may decrease.
So the WSW model has the following two new features: (1)
window size is defined by time, not the number of
transactions, the purpose is to avoid the case where intervals
that cover T transactions at different time points may vary
dramatically. (2) number of windows considered for mining is
specified by the user. Moreover, the user can assign different

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.7, 2013

122 | P a g e
www.ijacsa.thesai.org

weights to different windows according to the importance of
data in each section. For example, the data near to the current
moment may be more influential in the mining, and could be
given a higher weight. The weights of windows affect the
determination of frequent items. Even if the total support
count of an item is large, if its support count in the window
with a high weight is very low, it may not become a frequent
item. Thus the consideration of weights for windows is
reasonable and significant. So, the mining result would be
closer to user’s requirements.

By data characteristics, an improved algorithm, WSW-
Imp, is explored to further reduce the time of deciding
whether a candidate itemset is frequent or not. Experimental
results show that the performance of WSW-Imp significantly
outperforms that of WSW over weighted sliding windows.

In [Li H. F. and Lee S. Y., 2009], an algorithm called MFI-
Time-SW is proposed. It works in a SW environment with a
time-sensitive SW. See preliminaries of time-sensitive sliding
window model in the description of [Lin C.H. et al, 2005].
The major differences between MFI-TransSW []Li H. F. et al,
2006] and [Li H. F. and Lee S. Y., 2009]and MFI-TimeSW
are the following: 1) Unit of data processing: each time unit
contains variable number of transactions. 2) Bit-sequence
transformation of a time unit: For each item X in the current
time-sensitive stream sliding window TimeSWN_w+1, a
bitsequence with |TimeSWN_w+1| bits, denoted as

 , is constructed. Similarly, if the item X is in

the i-th transaction of TimeSWN_w+1, the ith bit of

 , is set to be 1. Otherwise, it is set to be 0. 3)

Number of sliding transactions: In the window sliding phase
of MFI-TimeSW algorithm, after the oldest time unit TUN_w+1
is removed from the current sliding window, a new time unit
TUN+1 is appended to the window. If the aged time unit
TUN_w+1 contains d transactions, MFI-TimeSW performs d
times of bitwise left shift operation on the current sliding
window. After that, MFI-TimeSW uses that same pruning
method Item-Prune to improve the memory usage in mining
process. 4) Dynamic frequent threshold of itemsets: the value
of frequent threshold is s * |TimeSW| is a dynamic value,
where |TimeSW| = |TUN_w+1| + |TUN_w+2| + …. + |TUN|.

The sliding window model captures recent pattern changes
and trends, by utilizing only the latest transactions for mining.

As in certain applications, users can only be interested in the
data recently arriving within a fixed time period. Sliding
window model ignores the important fact of that Itemsets are
changing their frequencies according to certain time intervals.
In other words the sliding window model ignores the history
of the itemsets' frequencies.

IV. STORAGE, TIME AND ACCURACY TRADEOFF

TABLE 1 presents the important comparative parameters
to distinguish among the state of the art algorithms which are
as the following: 1) The mining model, 2) The accuracy of the
results, 3) The processing strategy, 4) The units of processing
and 5) The data to be processed.

According to Table 1, the first and last parameters are
closely related, at which the landmark and fading models
process the whole data stream from the system start. On the
other hand, the sliding window model processes only a recent
portion of the data stream.

All the algorithms of the landmark and fading models
using the count based windows, except the algorithm of
[Giannella, J. et al, 2003], which uses the time based window.
In the Sliding window model, all the algorithms using the
count base window, except the algorithms of [Lin C.H. et al,
2005], [Cheng J. et al, 2006], [Pauray S. and Tsai M., 2009]

and part of [Li H. F. and Lee S. Y., 2009], which considered a
fixed time period as the basic unit for processing (i.e time
based window).

The count based windows are easy for programmers to
deal with and not easy for people to specify. By contrast, in
time based windows, it is natural for people to specify a time
period as the basic unit, but it is more difficult to deal with
windows with variable sizes in terms of bytes. In the
performance perspective, no difference between using the time
based or the count based windows [Arasu A. and Widom J.,
2003].

The algorithms of [Manku G., and Motwani R., 2002], [Jin
R. and Agrawal. G., 2005], [Chang J.H. and Lee WS., 2003],
[Chang J.H and Lee WS., 2003], [Chang JH. and Lee WS.,
2004], [Kun Li. et al, 2008], [Ren J. D. and Li K., 2008] and
[Pauray S. and Tsai M., 2009] are using a tuple processing
mechanism, at which processing is done transaction by
transaction; the rest of the algorithms are

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.7, 2013

123 | P a g e
www.ijacsa.thesai.org

TABLE I. COMPARATIVE SUMMARY AMONG THE SATE-OF-THE-ART ALGORITHMS

Data

Stream

Mining

Model

Data Stream

Mining

Algorithm

Approximate/Ex

act

Results

Tuple/

Batch

Processing

Time/

Count base

(transactions)

All / Recent

Transactions

Landmark

Model

Lossy Counting

[Manku

G.,Motwani R.,

2002]

Approximate/

False Positives

(FP)

Tuple Count All

 FDPM

[Yu J. X. et

al,2004]

Approx./False
Negatives (FN)

Batch Count All

 StreamMining

[Jin R. ,Agrawal.

G.,2005]

Approx. / FP Tuple Count All

 FP-DS

[Liu X. et

al,2005]

Approx. / FP Batch Count All

Fading

Model

estDec

[Chang J.H.,Lee

WS.,2003]

Approx./ FP Tuple Count All

(recent is more
important)

 FP-streaming

[Giannella, J. et

al,2003]

Approx. / FP Batch Time All

(recent is more
important)

Sliding

Window

Model

(SW)

estWin

[Chang J.H,Lee

WS.,2003]

Approx. / FP Tuple Count Recent

 estWin_Lossy_C

ounting based

[Chang JH.,Lee

WS.,2004]

Approx. / FP Tuple Count Recent

 [Lin C.H. et

al,2005]

Approx. /

FP or FN

Batch Time Recent

 MFI-TransSW

[Li H. F.et

al,2006],[Li H.

F.,Lee S.

Y.,2009]

Approx. / FP Batch Count Recent

 Mine-SW

[Cheng J et

al,2006]

Approx. / FN Batch Time Recent

 BFI Steam

[Kun Li. Et

al,2008]

Exact Tuple Count Recent

 MRFI-SW

[Ren J. D.,Li

K.,2008]

Exact Tuple Count Recent

 Graph Structure

_SW [Naganth

E.R.,Dhanaseela

n F. R.,2008]

Exact Batch Count Recent

 WSW

[Pauray S.,Tsai

M.,2009]

Approx. / FP Tuple Time Recent

 MFI-Time-SW

[Li H. F.,Lee S.

Y.,2009]

Approx. / FP Batch Time Recent

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.7, 2013

124 | P a g e
www.ijacsa.thesai.org

Using batch processing. Processing each transaction
against the entire stream in most cases is less efficient than
processing a batch of transactions against the entire stream. In
general, batch processing is more suitable for high speed data
streams [Cheng J. et al, 2008]. See Figure 4.

Fig.4. Time, memory and accuracy tradeoff

 [Chang J.H. and Lee WS., 2003] favors recent itemsets by
diminishing exponentially the effect of old transactions; but
estimating itemsets' frequencies from their subsets leading to a
propagated error. And [Chang J.H. and Lee WS., 2003]
partitions the window according to a logarithmic scale with
the recent frequency of an itemset recorded at a finer
granularity using a tilted-time window, which answers time-
sensitive queries at the expense of more than one record kept
for each itemset leading to a very large structure over time
which in turn degrade the mining process. All the variations of
the landmark and fading models have the limitation of
providing approximate answers for long-term data and adjust
their storage requirement based on the available space.

All the algorithms are producing approximate results,
except [Kun Li. et al, 2008], [Ren J. D. and Li K., 2008] and
[Naganth E.R. and Dhanaseelan F. R., 2008], which produce
exact results but for only a recent portion of the data stream
(i.e they are under the sliding window model). All the
approximate algorithms adopt false-positive approaches,
except [Yu J. X. et al, 2004] and an option in [Lin C.H. et al,
2005], which adopts a false-negative approach. The false-
positive approach uses a relaxed minimum support threshold,
ϵ, to reduce the number of false-positives, so obtaining a more
accurate result. However, to obtain a more accurate result, a
smaller value of ϵ is to be set, leading to a larger set of sub-FIs
to be maintained, consuming large amount of memory. The
false-negative approach also uses a relaxed minimum support
threshold, ϵ; however, its’ use lowers the probability of
discarding an infrequent itemset that may become frequent
later. The error bound in the computed support and the
possible false mining results of most of the false-positive
approaches are implied by the following equation according
the derivation of [Cheng J. et al, 2008]:

Support error bound = err (X)/Nτ ,

False results = {X | freq(X) < σN ≤ (freq (X) +err(X))}

Almost all the online mining algorithms do the mining
process during the entering of the stream, by constructing,
filling and extracting FIs in parallel to the data stream
entering; except [Li H. F. et al, 2006] and [Li H. F. and Lee S.
Y., 2009] and [Naganth E.R. and Dhanaseelan F. R., 2008],
which actually extract FIs from the filled data structure (i.e
done during the data stream entering) only when it is
requested by the user; which is a more effective strategy.

 Any data stream mining algorithm aims to enforce
correct and accurate results, minimized consumption of
memory, fully utilized CPU and minimized time for
processing. Correctness here refers to mining only true
frequent itemsets (i.e no false positives, nor false negatives),
and accuracy refers to mining exact or approximated
frequencies for the itemsets (leading to true or nearest to true
frequent itemsets).

 Exact mining requires keeping track of all itemsets in
the window and their actual frequency, because any infrequent
itemset may become frequent later in the stream. However, the
number of all itemsets is O(2|I|) (that is, given a set of items I,
the possible number of itemsets can be up to 2|I| − 1) making
exact mining computationally difficult, in terms of both CPU
and memory.

 Also, using a relaxed minimum support threshold, , to
control the quality of the approximation of the mining result
leads to a dilemma. The smaller the value of , the more
accurate is the approximation but the greater is the number of
sub-FIs generated, which requires both more memory space
and more CPU processing power. However, if approaches σ,
more false-positive answers will be included in the result,
since all sub-FIs whose computed frequency is at least (σ-)N
≈ 0 are outputted while the computed frequency of the sub-FIs
can be less than their actual frequency by as much as σ.N.

 Almost all the approximation algorithms produce false-
positive results, at which, the set of sub-FIs kept is often too
large in order to obtain a highly accurate answer. Thus,
throughput is decreased and memory consumption is increased
due to the processing of a large number of sub-FIs. But for the
approximation algorithms which produce false negative results
[Yu J. X. et al, 2004], it infringes the correctness.
Accordingly, there is a direct proportion between the accuracy
and memory consumption; more accurate results needs more
memory usage leading to increased processing time.

V. CONCLUSION

According to the continues high flow of data streams and
the relatively limited resources of CPU and storage, the
process of mining frequent itemsets is chained to mining
approximated frequencies, even it has guarantee on error
bounds. The accuracy of the resulting FIs directly proportional
with the memory usage; high accuracy needs high memory
usage.

Therefore the algorithms of mining FIs from data streams
which are using the Landmark model, Fading model (at which
all the data stream is mined) or the Sliding Window model (at
which only recent data is mined); leading to approximated
results certainly.

Tuple Processing

Batch Processing

All Data

(Landmark & Fading)

 Recent Data

(Sliding Window)

T
im

e
,

M
e

m
o

ry
,

A
c
c
u

ra
c
y

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.7, 2013

125 | P a g e
www.ijacsa.thesai.org

VI. FUTURE WORK

We can focus in future to get exact mining results with
regard to the available storage. Traditional data mining
algorithms do not produce any results that show the change of
the results over time. Dynamics of data streams using changes
in the knowledge structures generated would benefit many
temporal-based analysis applications.

REFERENCES

[1] Agrawal R. and Srikant R. (1994). Fast Algorithms for Mining
Association Rules. In Proceedings of the 20th International Conference

on Very Large Data Bases, pp. 487-499.

[2] Arasu A. and Widom J. (2003). Resource Sharing in Continuous
Sliding-Window Aggregates. ACM SIGMOD Record, Volume 32 Issue

2.

[3] Babcock B., Babu S., Datar M., Motwani R., and Widom J. (June 2002)
Models and issues in data stream systems. In PODS’02, Madison, WI.

[4] Cormode. G. (2007). Fundamentals of Analyzing and Mining Data

Streams. WORKSHOP ON DATA STREAM ANALYSIS – San
Leucio, Italy - March, 15-16.

[5] Chang J. and Lee W.(2004). Decaying Obsolete Information in Finding

Recent Frequent Itemsets over Data Stream. IEICE Transaction on
Information and Systems, Vol. E87-D, No. 6.

[6] Chen, Y., Dong, G.; Han, J.; Wah, B.W.; and Wang, J.(2002).

Multidimensional regression analysis of time-series data streams. In
Proc. 2002 Int. Conf. Very Large Data Bases (VLDB'02), 323.334.

[7] Chang J.H. and Lee WS. (2003). Finding recent frequent itemsets
adaptively over online data streams. In:Getoor L, Senator T, Domingos

P, Faloutsos C (eds) Proceedings of the Ninth ACM SIGKDD
international conference on knowledge discovery and data mining,

Washington, DC, pp 487–492.

[8] Cohen E. and Strauss M. (2003). Maintaining Time Decaying Stream
Aggregates. Proc. of ACM PODS Symp.

[9] Chang J.H and Lee WS. (2003). estWin: adaptively monitoring the

recent change of frequent itemsets over online data streams. In:
Proceedings of the 2003 ACM CIKM international conference on

information and knowledge management, New Orleans, Louisiana,
USA, November 2003, pp 536–539.

[10] Chang JH. and Lee WS. (2004). A sliding window method for finding

recently frequent itemsets over online data streams. J Inf Sci Eng
20(4):753–762.

[11] Cheng J, Ke Y. and Ng W. (2006). Maintaining frequent itemsets over

high-speed data streams. In: Ng WK, Kitsuregawa M, Li J, Chang K
(eds) Proceedings of the 10th Pacific-asia Conference on knowledge

discovery and data mining, Singapore, April pp 462–467.

[12] Chi Y, Wang H, Yu P, Muntz R (2004). Moment: maintaining closed
frequent itemsets over a stream sliding window. In: Proceedings of the

4th IEEE international conference on data mining, Brighton, UK, , pp
59–66.

[13] Cheng J, Ke Y and Ng W. (2008). A survey on algorithms for mining
frequent itemsets over data streams. Knowl Inf Syst, 16:1–27 DOI

10.1007/s10115-007-0092-4.

[14] Gaber M., Zaslavsky A. and Krishnaswamy Sh. (June 2005). Mining
Data Streams: A Review. SIGMOD Record, Vol. 34, No. 2.

[15] Giannella, J. Han, J. Pei, X. Yan, and P.S. Yu. (2003). Mining Frequent

Patterns in Data Streams at Multiple Time Granularities. in H. Kargupta,
A. Joshi, K. Sivakumar, and Y. Yesha (eds.), Next Generation Data

Mining, AAAI/MIT.

[16] Han J., Pei J. and Yin Y. (2000). Mining frequent patterns without
candidate generation. In Proceedings of ACM SIGMOD, 1–12.

[17] Hidber C. (1999). Online association rule mining. In: Delis A, Faloutsos

C, Ghandeharizadeh S (eds) Proceedings of the ACM SIGMOD
international conference on management of data, Philadelphia,

Pennsylvania, pp 145–156.

[18] Jin R. and Agrawal. G. (2005). An algorithm for in-core frequent itemset
mining on streaming data. To appear in ICDM’05.

[19] [19] Karp R.M., Shenker S., and Papadimitriou C.H. (2003). A simple

algorithm for finding frequent elements in streams and bags. ACM
Transactions on Database Systems (TODS), 28(1):51–55.

[20] Kun Li., Yong-yan Wang, Manzoor Ellahi, Hong-an Wang. (2008).
Mining Recent Frequent Itemsets in Data Streams. IEEE 2008.

[21] Li H. F., Chin-Chuan Ho, Man-Kwan Shan, and Suh-Yin Lee (2006).

Efficient Maintenance and Mining of Frequent Itemsets over Online
Data Streams with a Sliding Window. In IEEE SMC.

[22] Li H. F. and Lee S. Y. (2009). Mining frequent itemsets over data

streams using efficient window sliding techniques. Sceince Direct,
Expert Systems with Applications 36 (2009) 1466–1477.

[23] Lin C.H., Chiu D.Y., Wu Y.H. and Chen A.L.P. (2005). Mining

Frequent Itemsets from Data Streams with a Time-Sensitive Sliding
Window. In Proceedings of 2005 SIAM International Conference on

Data Mining.

[24] Liu X., Xu H., Dong Y., Wang Y. and Qian J.(2005). Dynamically
Mining Frequent Patterns over Online Data Streams. Springer-Verlag

Berlin Heidelberg. Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 645
– 654.

[25] Manku G., and Motwani R(2002). Approximate frequency counts over

data streams. In Proc. 2002 Int. Conf. Very Large Data Bases
(VLDB'02), 346.357.

[26] Naganth E.R. and Dhanaseelan F. R.(2008). Efficient Graph Structure
for the Mining of Frequent Itemsets from data Streams. IJCSES

International Journal of Computer Sciences and Engineering Systems,
Vol.1, No.4.

[27] Pauray S. and Tsai M. (2009). Mining frequent itemsets in data streams

using the weighted sliding window model. Elsevier, Expert Systems
with Applications.

[28] Ren J. D. and Li K. (2008). Online data Stream mining of recent

frequent Itemsets Based On Sliding Window Model. Proceedings of the
Seventh International Conference on Machine Learning and Cybernetics,

Kunming, 12-15.

[29] Silvestri C. (2006). Distributed and Stream Data Mining Algorithms for
Frequent Pattern Discovery. Universit`a Ca’ Foscari di Venezia,

Dipartimento di Informatica, Dottorato di Ricerca in Informatica. Ph.D.
Thesis: TD-2006-4.

[30] Yu J. X., Chong Z., Lu H., and Zhou A.(2004). False Positive or False

Negative: Mining Frequent Itemsets from High Speed Transactional
Data Streams. In Proceedings of the 30th International Conference on

Very Large Data Bases, pp. 204-215.Zhu Y. and Shasha D. (2002).
StatStream: Statistical Monitoring of Thousands of Data Streams in Real

Time. In Proceedings of the 28th International Conference on Very
Large Data Bases, pp. 358-369.

