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Abstract— Database represents an essential part of software 

applications. Many organizations use database as a repository for 

large amount of current and historical information. With this 

context testing database applications is a key issue that deserves 

attention. SQL Exception handling mechanism can increase the 

reliability of the system and improve the robustness of the 

software. But the exception handling code that is used to respond 

to exceptional conditions tends to be the source of the systems 

failure. It is difficult to test the exception handling by traditional 

methods. This paper presents a new technique that combines 

mutation testing and global optimization based search algorithm 

to test exceptions code in Jordan University Hospital (JUH) 

database application. Thus, using mutation testing to speed the 

raising of exception and global optimization technique in order to 

automatically generate test cases, we used fitness function depends 

on range of data related to each query. We try to achieve the 

coverage of three types of PL/SQL exceptions, which are 

No_Data_Found (NDF), Too_Many_Rows (TMR) and Others 

exceptions. The results show that TMR exception is not always 

covered this due to existence of primary key in the query, also 

uncovered status appear in nested exceptions. 

Keywords—Database Application; Exception 

Handling;Mutation Testing; Genetic Algorithms; Select Statement. 

I. INTRODUCTION  

Dynamic test data generation methods use information 
from the execution of the program under test. A simple 
example of a dynamic method is random test data generation 
[21]. In this method, candidate test data is generated randomly 
by sampling values from the input domain. Each candidate test 
case is then executed and only those that cover a required 
program element are retained.  

The problem with this approach is clear with complex 
programs or complex adequacy criteria, where an adequate 
test input may have to satisfy very specific requirements. In 
such a case, the number of adequate inputs may be very small 
compared to the total of inputs, so probability of selecting an 
adequate input by chance can be low.   As an example, 
consider the problem of generating an input to execute the 
target branch A of the Flag program shown in Fig.1. The 
target branch A is executed when a = 1. The problem is to find 

input values, x and y such that a is set to 1. Note that f may be 
a complex and poorly understood function of x and y. 
Depending on the size of the domains of x and y and on the 
behaviour of f, it is possible that there is only a very small 
probability that a randomly generated input will set the 
variable a to 1 and thus execute the target branch A in Fig.1 In 
general, random test data generation is generally considered to 
be ineffective at covering all branches in realistic programs 
[22]. 

void Flag(int x, int y)  

{ 

a = f(x, y); 

if (a == 1) 

flag = true;  // target A 

   } 

 ... 

 if (flag) { 

  // target B 

  } 

} 

Fig.1. An example of a program (called Flag) with a "flag variable" 
problem. 

Search-based software testing is a dynamic method of test 
data generation in which search methods or optimization 
techniques are used to generate tests and have been 
successfully applied in structural testing [[24] [25[23] 
[26][27][28][29]]. As with all search methods, search based 
software testing relies crucially on an evaluation or cost 
function to compare candidate test cases. 

Database application is an important class of software that 
requires intensive testing. Usually database application is 
defined as a program that communicates with data stored in 
the database. Typically, this communication is done by using 
Structured Query Language (SQL). SQL includes Data 
Definition Language (DDL) that creates database schema or 
integrity constraints and Data Manipulation Language (DML) 
that retrieves or modifies records stored in the database, such 
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as SELECT, INSERT, DELETE, MERGE and UPDATE 
statements. 

An important part of any database application that requires 
testing is the exceptions handling part. This part of code is 
responsible for recovering system from unusual events 
(exceptions) that may occur while communicating with the 
database. It also helps in designing more modular programs 
since it can be placed separately. Therefore, it is important to 
test this code effectively. The test period is the most important 
period in the software life and its cost is the biggest. In the 
study of Sinha and Harrold [19], they observed that 23.3% and 
24.5% of the classes contained try and throw statements. If the 
efficiency of testing exception handling is improved, then it 
will improve the efficiency of the testing of the whole system. 

Although the purpose of the exception handling code is to 
improve the robustness of the software, people noticed that the 
exception handling code contains more errors than the other 
parts of the software. For example, in a case-study by Toy [2], 
more than 50% of the operational failures of a telephone 
switching system were due to faults in exception handling and 
recovery algorithms. Another example, the Ariane 5 launch 
vehicle was lost due to an un-handling exception destroying 
$400 million of scientific payload [1]. 

Generally, exceptions’ handling testing require methods 
that are different from the usual ones. For example, to test 
exceptions handling code in conventional program, a research 
by Tracey et al. [1], used a technique that is based on global 
optimization algorithm to automatically generate test cases for 
the purpose of testing the handling of runtime exceptions in 
safety critical systems. Other method by Zhang [3], presented 
a mutation technique to accelerate the raising of exceptions in 
order to save time spent for exception to occur. 

To illustrate the problem, consider the problem of 
generating test data to execute the target no_data_found 
exception in Fig.2. The PL/SQL block in Fig. 2 selects 
information about the salary and commission of employee 
whose number is 102055. If no information is found it raises 
the No_Data_Found exception and the two variables assigned 
to zero. Note that No_Data_Found is a system defined 
exception.  

Begin 

 select salary, commission into v_salary, 

v_commssion 

 from employee where  employee_number = 102055; 

Exception  

  whenNo_Data_Found then 

  v_salary = 0; 

v_commission =0; 

End; 

 

Fig.2. An example of a program exception. 

According to our knowledge, no research till now has 
focused on testing exceptions handling in database 
application. For this purpose, this research presents an 
approach that covers exceptions code in PL/SQL Oracle 10g 
database for JUH application. Our approach takes benefits 

from ideas used in conventional exceptions handling testing. 
Also, our research work rephrases the idea of mutation testing 
used by Zhang [3] and global optimization searching 
algorithm used by Tracey [1], and integrates them in testing 
exceptions that results from querying the database; i.e. from 
SELECT statements. In our research, three types of exceptions 
where studied: No_Data_Found (NDF), Too_Many_Rows 
(TMR) and others. 

The rest of the paper is organized as follows: Section 2 
discusses the background and related work. Then, in Section 
3, the implementation of our system is described. Section 4 
shows the conducted experiments. The obtained results are 
discussed and analyzed in Sections 5. Finally, Section 6 draws 
the conclusions and future research. 

II. BACKGROUND AND RELATED WORK 

A common definition of exception is the union of “error,” 
“exceptional case,” “rare situation,” and “unusual event” [17]. 
The entity that is raising an exception stops and waits for the 
completion of the exception processing. Exceptions are 
usually divided into two types: predefined and user-defined 
exceptions [18]. The predefined exceptions are declared 
implicitly and are also raised implicitly when the language 
rules are violated at run-time and in response to hardware 
errors.  The user-defined exceptions are defined and detected 
at the application level; they can be raised explicitly in the 
application via the raise statements. Exception handling is the 
immediate response and consequent action taken to handle the 
exceptions. An exception handler is the code attached to an 
entity for one or several exceptions and is executed when any 
of these exceptions occur within the entity.  

Test-data alone cannot test the raising of exceptions in 
response to hardware errors.  In this paper, we focus on testing 
exception that violates run-time SQL rules (predefined).  The 
input domain of most of programs, D, is likely to be very 
large, but the input domain which can causes an exception is 
likely to be small. It is very difficult to find the test-data that 
can raise an exception in large input domain. In this research, 
mutation is used only to give more paths to generate test cases. 

A. Mutation Testing Overview 

Mutation testing is a white-box fault-based testing 
technique originally proposed by DeMillo et al. [4]. The 
primary goal of mutation testing is to assist in developing 
adequate test suite, or it can be used to determine the 
effectiveness of a given test case by measuring its ability to 
detect faults. It operates by generating many versions 
(mutants) of the original program each has a fault that is 
injected by changing a syntactic operator (mutation operator) 
in the main program. Given the set of test cases to determine 
their effectiveness; they are initially executed against the 
original program to get the expected output [5], then they are 
executed against the mutants in the hope that they will give an 
output that is different from the original program's output. If 
this happen the mutant is said to be killed and the test case is 
an effective one, otherwise the mutant is a live and we need to 
generate more test cases to kill it. Some mutants will always 
give the same output as original program's output, which are 
called equivalent mutants. 
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One measure for this mutation process is mutation score 
which is the proportion of killed mutant over all mutants 
except equivalent ones. Mutation score supplies the tester with 
feedback about how the testing was completed and the 
adequacy of the test cases [5]. 

B. Mutation Testing for Database Applications 

Many researches in testing database used mutation testing 
as a method to evaluate the effectiveness of the automatic test 
case generation techniques. In the literature Tsai et al. [6], 
introduced mutants by changing a set of mathematical 
operators in the code to determine the fault detection ability of 
the test cases. In testing database transitions with AGENDA, 
Chays and Deng injected faults in queries as a final step to 
demonstrate the adequacy of their proposed approach [7]. 

The most related works to this research are the researches 
which concerned with generating mutation operators 
specifically related for SQL queries. Chan et al. [8] proposed a 
mutation technique based on the conceptual data model. Their 
proposed technique employed the constraints that are in the 

Enhanced Entity Relation (EER) diagram to get SQL semantic 
based mutation operators. Tuya et al. [9] proposed a large set 
of SQL mutation operators designed for SELECT statement 
with the purpose of determining the adequacy of test suite and 
as a mean for injecting faults in order to compare different 
database testing techniques. The operators covered wide range 
of SQL particularities. Originally their mutants have four 
types: mutants for main SQL clauses (SELECT, JOIN, and 
subquery predicates), mutants for operators in the conditions 
or expressions, mutants related for NULL values and finally 
mutants for replacement of identifiers, as shown in Table 1. 
These mutants are further classified into types and subtypes, 
for more details see [9] [10]. Tuya and his colleagues tested 
the proposed mutants against a set of queries drawn from the 
NIST SQL conformance. In addition they tried to improve the 
feasibility of their mutants by running different experiments 
that aim to reduce the number of mutants (selective mutation) 
or to reduce the number of test cases (by reordering mutants). 
In this research, Tuya‘s mutants were studied and reused to 
test exceptions that raised from SELECT statements. 

TABLE I.  MUTATION OPERATORS USED IN THE EXPERIMENTS. 

Category Types 

SC: SQL Clause Mutation Operators SEL: SELECT clause. 

 JOI: JOIN clause. 

SUB: Subquery predicates 

GRU: Group by clause. 

AGR: Aggregate functions 

UNI: Union, Union All. 

ORD: Order by clause. 

OR: Operator Replacement Mutation Operators ROR: Relational Operator Replacement 

 LCR: Logical Connector Operator 

UOI: Unary Operator Insertion 

ABS: Absolute Value Insertion 

AOR: Arithmetic Operator Replacement 

BTW: Between predicate 

LKE : Like predicate 

NL – NULL Mutation Operators NLF: Null check predicates 

 NLS: Null in select list 

NLI/NLO: Nulls in the input data 

IR: Identifier Replacement Mutation Operators IRC: Column replacement 

 IRT: Constant replacement 

IRP: Parameter replacement 

IRD: Hidden column replacement 
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C. Genetic Algorithm 

Genetic Algorithm (GA) was developed initially by 
Holland in the 1960s and 1970s [11]. It is a heuristics global 
optimization technique that attempts to find a good 
approximation to the optimal solution in a search problem. GA 
simulates the evolutionary process through the implementation 
of selection, recombination and mutation processes. 

In literature GAs were used to automate the process of test 
data generation by searching the domains of the applications 
for suitable values that meet some testing criteria. Tracey et al. 
[1] used a GA to automatically generate test cases for testing 
exception handling code in safety critical systems. The 
technique is based on a global optimization technique; a GA 
that searches for the closest test data that will cause a run time 
violation to occur.  Khor and Grogono [12] introduced genet, 
which is an Automated Test Data Generator (ATG) to 
generate test data for branch coverage. Their technique did not 
use program graphs because it was programming language 
independent and it used a GA to search for test data in the 
variables domains. 

Masud et al. [13] introduced a strategy for mutation testing 
using GA, in which they instrument mutants, divide the 
program into small unit and then try to kill each mutant unit 
using genetic algorithm with special fitness function. 
Domínguez-Jiménez J. et al.  [14] proposed a framework for 
mutant genetic generation for WS-BPEL (an XML language 
for web services). The approach defines a set of mutation 
operators for WS-BPEL. It automatically generates mutants 
using a GA that reduces the computation cost of executing by 
selecting a set of possible mutants.  Bottaci  [20] proposed  
fitness function which is defined in a way that a test case is 
able to kill a mutant if it satisfies the same three conditions 
used by Offutt in CBT [5], namely, the reachability, the 
necessary and the sufficiency conditions. 

D. Genetic algorithm fitness function 

The fitness functions in GA used for testing coverage three 
types of exceptions are as follows: Maximum and minimum 
values used as fitness to test coverage of NDF exception, if the 
value that generated by GA for column in the query or mutant 
under testing greater than the maximum value of this column 
in the database or less than the minimum value then NDF 
exception converge in this query. So, the fitness value is equal 
the min [distance between test case value and maximum 
column value, distance between test case value and minimum 
column value] +1.   

Fitness for TMR is COUNT for the value that generated to 
column for query, if the value that generated appears two 
times or greater and that depending of structure of query then 
TMR exception coverage.  So, the fitness is equal the distance 
between test case value and closed column value has count 
greater than 1. Table 2 shows an example of Testtable to 
illustrate how to calculate the fitness function to cover 
exception types. Three columns in Testtable (C1, C2 and C3) 
with number data types, these columns values have different 
values. 

TABLE II.  TESTTABLE VALUE FOR THREE COLUMNS C1, C2, AND C3. 

C1 C2 C3 

1 4 90 

-20 -890 54 

1 56 843 

2601 786 -30 

-5200 2000 1800 

-20 199 -234 

400 213 -90 

 

Begin 

… 

Select C1 into localvarible from Testtable 

Where 

C1 =Testcase; 

… 

Exception 

When no_data_found then 

//Target1 Executed 

When too_many_rows then 

//Target2 Executed 

When Others 

//Target3 Executed 

End; 

 

Fig.3. Example of exception types. 

Fig. 3 illustrated a query with 3 exceptions. To cover 
Target1 in Fig. 3, this means no_data_found exception need to 
be raised, if testcase = 700 for example, then the fitness value 
= min((2601 -700), (700 – (-5200))) +1, = min(1901, 5900) 
+1= 1902, So the cost value is 1902 to execute Target1. If we 
need to execute Target2 in Fig. 3 with the same Testcase 
(700), then the fitness value will be calculated as follows: 
Fitness value = the difference between 700 and the closed 
column value which has frequency more than 1. Which is 
equal to  abs(700 -1) =699. Table 3 shows test cases examples 
and NDF and TMR fitness values.   

TABLE III.  EXAMPLES ILLUSTRATED FITNESS FUNCTION FOR THE 

LISTED VALUES. 

Test case 

value 

NDF Fitness 

value 

TMR Fitness 

value 

700 1902 699 

100 2501 99 

1 2601 0 

3000 0 2999 

-2000 3001 2980 
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E. Jordan University Hospital Computer System 

The core of Jordan University Hospital (JUH) information 
system is bought in 1994, and then the JUH IT team 
developed the Hospital Information System (HIS) using 
Oracle forms, and upgrades it to Oracle 10g. HIS developed to 
provide best medical services for patients and physicians. 
Delivering these services require hospitals to review the way 
they manage their business processes and supply more 
efficient features to physicians, patients, and hospitals officials 
as well as other decision makers. In order to provide such 
services, the health facility must focus on developing a 
solution to connect all its resources and makes it available to 
all who needs utilizing it using latest technology. This kind of 
solution will enhance the performance and optimize the 
efficiency and will reduce the cost of ownership. 

IT department in JUH creates a solution suite that 
transforms the hospital to a community allowing the access to 
all resources and data as needed. HIS is a comprehensive 
solution developed specifically for health facilities in the 
region. It is flexible, comprehensive, multilingual, integrated 
and secured solution that supports clinical, financial, 
administration and higher management needs. 

In general, a hospital management system can be sub-
categorized into the following groups (Fig. 4): 

 

 Medical Information System (Administrative and 
Clinical). 

 Enterprise Resource Planning (ERP) (Material, 
Financial and Human Resources). 

 Support System. 

Medical

System

Support

System

Medical

System

(Clinical)

Enterprise

Resource

Planning

(ERP)

 
Fig.4. Hospital management system sub-categorizes. 

Medical systems are developed to deliver all needed 
services to the hospital community (physicians, patients and 
administration). The systems manage all patients’ data and 

information during their treatment episode in a professional 
and efficient manner. Medical systems strategically support a 
full range of hospital functions. It contains a repository of all 
patients' clinical, billing and demographic data, reducing paper 
work, manual effort and errors. Furthermore; it allows for 
better staff utilization allowing for more time to focus on 
planning and goals achievements. This enables the hospital to 
provide better quality and more efficient services, needed by 
patients and physicians. Medical systems are integrated with 
financial, administration, human resources, and material 
management systems. It contains vast collection of data 
including patient data, treatment data, hospital visit data, 
patient transactions data, hospital data, and statistical 
information.  

HIS medical systems provide many key functions 
including: 

 Medical administrative including: 

 Patient master index 

 Admission, discharge and transfer 

 Scheduling and appointments 

 Medical records 

 Medical reports 

 Medical statistics 

 Catering 

 Order entry and results communication 

 Medical clinical including: 

 Out-patient clinics 

 Accidents and emergency 

 Operation theater 

 Maternity 

 Doctors desktop 

 Nurse station 

 Laboratory 

 Radiology 

 Pharmacy 

 Patient accounting including: 

 Pricing and package deals 

 Patient billing 

 Insurance contract management 

 Claims management. 
In order to test our system in this research we will select 

different procedures and functions, which will be described 
later in this paper. 

III. PROPOSED SYSTEM OVERVIEW 

Fig. 5 depicts the basic structure of our system. Following 
is a brief description of the system’s components: 

 SQL Mutation Tool: which is a web service tool 
designed by Tuya et al. [9]. This tool accepts as inputs 
the SQL query and DB schema file. It will generate a 
set of mutants for the given query according to 
predefined SQL mutation operators as suggested by 
Tuya, as seen in Table 1. The DB schema and queries 
in our system were related to Human Resources (HR) 
sample database in Oracle 10g. 
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 Mutant’s Pool: the required numbers of queries that 
satisfy a set of conditions are saved in the mutant pool 
waiting to be processed by the next stage. 

Extracting Parameters: the SQL mutation tool supports 
the existence of parameters in the SQL query. For example, in 
the following query,there are two parameters x and y of type 
integer, one for location_id and the other for department _id. 
The pair of question marks symbol denotes the existence of 

parameter as it supported in the SQL Mutation Tool. The letter 
just before the last question mark indicates the type of 
parameter, where Istands for integers, d for decimal, c for 
characters and strings and u for date data type. This stage will 
extract parameters information and packed it in a record called 
TC structure, in the following query it will be (integr, integr). 

SELECT manager_id from departments where 
location_id=?xi? ordepartment_id=?yi? 

 

 

Fig.5. Basic structure of our system. 

 Genetic TCs Generator: for each mutant TC 
structure, a GA will generate random population of the 
appropriate type within some specified range.  The 
initial population consists of ten individuals (test 
cases). The population in the successive generations is 
resulted from crossover and mutation processes. The 
GA used here has no fitness function, so all the initial 
random ten individuals are used to participate as 
parents. To generate the offspring, a one point cross-
over operation is performed between each pair of 
parents. The resulted offspring is then randomly 
mutated and used as the new population for the next 
generation. After performing many experiments to find 
the suitable TC, we found that running the GA for fifty 
generations will achieve the desired coverage of the 
intended exceptions. This TC called genetic test case. 

 Query Converter: the mutants generated by SQL 
mutation tool are just SELECT statements and in order 
to raise any of NDF or TMR exceptions, a modifier is 
used in this system to convert SELECT statement into 
SELECT INTO statements. This is done by performing 

the necessary steps of defining the required number of 
variables according to the SELECT list using the 
schema file to extract variables types. 

 Genetic TCs Substitution: for the mutant who is 
currently processed and modified, the parameters in the 
mutant will be substituted by the corresponding ones in 
each of the genetic TCs. The resulted query for a given 
mutant is called modified genetic query. 

 Query Executer: the executer uses the modified 
genetic queries as input. Its main operation is to replace 
them one by one in PL/SQL block that contains 
exceptions handling code for the three exceptions: 
NDF, TMR and Others as shown in Fig. 6. 

Declare 

Variable Definition List from preprocessor 

Begin 

The modified genetic query 

Exception 

whenno_data_found then 

Exception 

Results

SQL Mutation 

Tool 

Genetic TCs
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Mutation Pool

Query 

Executer

Query 

Converter
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Database

Genetic TCs
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TC Structure
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      …  

:NDFFlag:=1; 

whentoo_many_rows then  

                …   

:TMRFlag:=1; 

when others then  

                …   

:OthersFlag:=1; 

End; 

Fig.6. Exception flag setting 

The overall process of our system can be summarized in 
Fig. 7. The algorithm in Fig. 7 will iterate until the population 
has evolved to form a solution to the problem (i.e., solutions 
that achieved coverage of three intended exceptions), or until a 
maximum number of iterations have taken place (suggesting 
that a solution is not going to be found given the resources 
available). 

 
 

 
Fig.7. Algorithm used to find test case to coverage SQL Exceptions 

IV. EXPERIMENTAL ENVIRONMENT 

A. Test Objects 

This section describes the test objects and the input 
domain sizes used. The following are source code for the test 
objects: 

 OutPricing: Determines the pricing of treatments at 

outpatient clinics. Depending on his insurance the 
patient, this function calculates the amount of money 
the patient has to pay (depending on the type of 
insurance, the patient pays different ratios for his 
treatment) and the amount of money the insurance has 
to pay for the patient’s treatment as shown in Fig. 8. 

 InPricing:This procedure calculates the invoice value 
of the patient inside the hospital based on the type of 
patient insurance and the type of medical procedure 
offered to patients (accommodation, scouting, doctors' 
fees, operations, laboratory, radiology, medicine, etc.). 
Also, this program calculates the percentage paid by 
the patient and the percentage paid by the insurance 
company, if any. Moreover, this function bills the 
patient with the amount of money he has to pay and 
bills the insurance company with the amount of the 
money it has to pay. 

 JU-Med-fees-deduction: This package used for Jordan 
University staff, where there is an allocated account 
number for each staff in the system of JUH.  It 
calculates bill value based on Jordan University 
insurance. Then deported the total amount of bill after 
deduct the hand-collect from the patients into tables to 
be used in Jordan University financial department later 
on. 

 at-info-ibr: This function calculates the invoice value 
for private patients (in patients and out patients), then 
bills the patients with the amount of money he or she 
has to pay. 

  Lab-interface: The main goal of this function is to 
transfer the results from medical machines (lab 
devices) to HIS system automatically (without user 
interaction). So, the function receives the message 
from medical devices then converts it to be entered to 
HIS system.   

 salup_new_calc_all:  This procedure calculates staff 
incentives as follows: it selects the category that owns 
the nursing, administrative, officer or a medical 
technician, by the department and qualifications. Then 
it determines the share of the incentives that the 
employee is entitled, as his career (Branch Chief, 
Chief, Division of, etc.). It discounts days leave 
without pay from the employee share incentives as 
shown in Fig. 9. 

 

  

For each SQL Query generate all possible mutations and save the required ones 
in pool P. 

For each mutant m in P and stop criteria not met do {  

Extract TC structure from m. 
Convert SQL SELECT in m to SELECT … INTO … command. 

Simple Genetic Algorithm ( ) 

    { 
Initialize TC population; 

Evaluate population; 

While termination criterion not reached  
{ 

  Select solutions for next population; 

  For each solution s in the selected population  
{ 

  Substitute s in mutant m; 

  Execute mutant m and watch the result if any 
exception appear. 

  Exit if the flags of three exceptions are set. 

 } 
Find next population by performing crossover and mutation; 

Evaluate population; 

 } 
    } 

} 
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select prc_division,prc_category into p_div,p_cat from store_pricing_groups where  [1] 

div_id=p_divn  and  grp_id=p_grp [2] 

… [3] 

select decode(p_insur_type, '1', prc_limit_out_e, '2', prc_limit_out_f) [4] 

     into p_max_cov [5] 

     from prc_limits [6] 

     where prc_group    = p_group_id [7] 

       and prc_division = p_div; [8] 

p_max_cov := nvl(p_max_cov, 99999); [9] 

 Exception [10] 

   when no_data_found then [11] 

p_error_no := 1; raise exit_proc; [12] 

   when others then [13] 

p_error_no := 11; raise exit_proc; [14] 

…. [15] 

when exit_proc then [16] 

   if p_error_no = 1 then [17] 

raise_application_error( -20001, ‘Coverage limitsdo not exist.'); [18] 

elsifp_error_no = 2 then [19] 

raise_application_error( -20003,  ‘Ratepricingdoes not existforthis materials!!'); [20] 

elsifp_error_no = 3 then [21] 

raise_application_error( -20004,  'Materialis not definedin the tableprice!!'); [22] 

elsifp_error_no = 5 then [23] 

raise_application_error( -20006,   ‘Pricing datais incompleteforthis patient!!'); [24] 

elsifp_error_no = 11 then [25] 

raise_application_error( -20001, '11'); [26] 

elsifp_error_no = 21 then [27] 

raise_application_error( -20003, '21'); [28] 

elsifp_error_no = 31 then [29] 

raise_application_error( -20004,  '31'); [30] 

   end if; [31] 

 when others then [32] 

raise_application_error( -20005,   sqlerrm); [33] 

 

Fig.8. An example of a program (exception) OutPricing. 

 

… [1] 

SELECT chng_date, old_emp_admin, old_emp_department, old_emp_job [2] 

into v_chng_date, v_old_emp_admin, v_old_emp_department, v_old_emp_job [3] 

FROM EMP_JOB_CHANGES e [4] 

 WHERE emp_id = salup_rec.emp_id [5] 

    and CHNG_DATE BETWEEN TO_DATE('02-'||TO_CHAR(P_MONTH-5, '00')||'-'|| [6] 

TO_CHAR(P_YEAR, '0000'), 'DD-MM-YYYY') [7] 
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           and salup_rec.emp_join_date<chng_date [8] 

Exception [9] 

When no_data_found then [10] 

       Begin [11] 

             select days into v_leave_days [12] 

             from salup_new_leaves_200806 [13] 

         where emp_id = salup_rec.emp_id [14] 

                    and month = p_month [15] 

                    and year = p_year; [16] 

                    and salup_rec.emp_status<> 2; [17] 

          exception [18] 

                when no_data_found then [19] 

v_leave_days:= 0; [20] 

          end; [21] 

When two_many_rows then [22] 

… [23] 

End; [24] 

 

Fig.9. Nested exceptions example (fragment of JU-med-fees-deduction program). 

B. Hardware and Software Environments 

In this section, the specifications of the experimental 
environment utilized by this work are presented. These 
specifications include both the hardware and software 
modules used in implementing the simulator. More 
specifically, the hardware specifications that are used in the 
experiments include a Dual-Core Intel Processor (CPU 2.66 
GHz), 2 MB L2 Cache per CPU, and 1 GB RAM. Moreover, 
the software specifications that are used in the experiments 
include windows XP.  

Moreover, in order to assess the reliability of the cost 
functions introduced in the previous section, an empirical 
investigation was done. A number of test procedures and 
functions were assembled from JUH and an attempt was made 
to generate inputs to achieve branch coverage. These 
programs are described in Table 4. The size of each program 
is given as Lines of Code (LOC), number of select statements, 
and number of exceptions (three types of exceptions), and the 
last column represents the total number of mutations for each 
program generated by the tool in [10].  The range of number 
of mutations for each Query is from 24 to 79 mutations. 

The search was directed to generate data for one exception 
at a time. The order in which the exceptions of the program 
were targeted was arbitrary, except that no nested exception 
was targeted before the containing exception as shown in Fig. 
9. This is not; in general, a good strategy since it will become 
stuck at an infeasible exception. 

TABLE IV.  THE FUNCTIONS USED FOR EMPIRICAL INVESTIGATION. 

Program Name 

Lines 

of 

Code 

Number of 

Select 

Statements 

Number of 

Exceptions 

Total 

number 

of 

mutations 

OutPricing 295 14 6 12138 

InPricing 362 22 33 11222 

JU-Med-fees-

deduction 
307 12 18 7368 

Pat-info-ibr 259 9 9 11655 

Lab-interface 1389 45 69 38892 

Salup_new_calc_all 707 17 24 25453 

A steady-state style genetic algorithm, similar to Genitor 
[24], was used in this work. The cost function values 
computed for each candidate input were used to rank 
candidates within the population in which no duplicate 
genotypes are allowed.  

A probabilistic selection function selected parent 
candidates from the population with a probability based on 
their rank, where the highest ranking having the highest 
probability. More specifically, for a population of size n, the 
probability of selection (Ps) is shown in Equation 1.  

)1(
)1(

)1(2






nn

rankn
Ps   
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In this work, a fixed population size of 100 was used. This 
parameter was not “tuned” to suit any particular program 
under test. In a steady state update style of genetic algorithms 
(as used in this work); new individuals that are sufficiently fit 
are inserted in the population as soon as they are created.  

The criterion to stop the search was set up to terminate the 
search after 50 executions of the program under test, when 
only if full coverage was not achieved. Individuals were 
recombined using binary and real-valued (one-point and 
uniform) recombination, and mutated using real-valued 
mutation. Real-valued mutation was performed using 
“Gaussian distribution” and “number creep”. These queries 
(Select statements in program described in Table 4) contain 
109 different SELECT statements related to JUH database 
with 159 exceptions as a whole. The list of the queries 
includes conditions of types: WHERE, HAVING, and ON. In 
the case of WHERE condition, different SQL clauses were 

implemented as: [not] BETWEEN, [not] IN, [not] LIKE, IS 
[not] NULL, Logical connector AND and OR and the using of 
expressions with relational operators (=, >, <, <=, >=, <>). 

Each query along with the schema file was executed. The 
generated mutants for each one are saved, and then they are 
processed; each one in separate; by passing through the stages 
explained in our system in Section 3. In our experiments we 
executed all the resulted genetic queries for each mutant in 
order to assess the area of exceptions coverage as described in 
the algorithm in Section 3. 

Table 5 shows all possible mutants for the first query 1 
(line 1) in Fig. 8, where id: the identification numbers of each 
mutant. The same ids that are generated from sql mutation tool 
[10] are used. Mutant subtype: refers to type of mutants when 
it is applied to particular sql clause (for more information see 
table 1). 

TABLE V.  ALL MUTATIONS USED FOR (SELECT PRC_DIVISION, PRC_CATEGORY INTO P_DIV, P_CAT FROM STORE_PRICING_GROUPS WHERE 

DIV_ID=P_DIVN AND  GRP_ID=P_GRP ) QUERY. 

ID Cat Type Subtype Mutated SQL 

1 SC SEL SLCT SELECT DISTINCT prc_division ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? AND grp_id= ?xc? 

2 NL NLS NLSS SELECT COALESCE(prc_division ,'9999' ) AS prc_division , prc_category FROM store_pricing_groups WHERE div_id = 

?xc? AND grp_id= ?xc? 

3 NL NLS NLSS SELECT prc_division , COALESCE( prc_category ,'9999' ) AS prc_category FROM store_pricing_groups WHERE div_id = 

?xc? AND grp_id= ?xc? 

4 IR IRC IRCCS SELECT STORE_PRICING_GROUPS.PRC_CATEGORY ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? 

AND grp_id= ?xc? 

5 IR IRC IRCCS SELECT STORE_PRICING_GROUPS.DIV_ID ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? AND 

grp_id= ?xc? 

6 IR IRC IRCCS SELECT STORE_PRICING_GROUPS.GRP_ID ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? AND 
grp_id= ?xc? 

7 IR IRC IRCPS SELECT ?xc? , prc_category FROM store_pricing_groups WHERE div_id= ?xc? AND grp_id= ?xc? 

8 IR IRD IRDDS SELECT STORE_PRICING_GROUPS.INV_ITEM ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? AND 

grp_id= ?xc? 

9 IR IRC IRCCS SELECT prc_division , STORE_PRICING_GROUPS.PRC_DIVISION FROM store_pricing_groups WHERE div_id = ?xc? 
AND grp_id= ?xc? 

10 IR IRC IRCCS SELECT prc_division , STORE_PRICING_GROUPS.DIV_ID FROM store_pricing_groups WHERE div_id = ?xc? AND 

grp_id= ?xc? 

11 IR IRC IRCCS SELECT prc_division , STORE_PRICING_GROUPS.GRP_ID FROM store_pricing_groups WHERE div_id = ?xc? AND 
grp_id= ?xc? 

12 IR IRC IRCPS SELECT prc_division , ?xc? FROM store_pricing_groups WHERE div_id= ?xc? AND grp_id= ?xc? 

13 IR IRD IRDDS SELECT prc_division , STORE_PRICING_GROUPS.INV_ITEM FROM store_pricing_groups WHERE div_id = ?xc? AND 

grp_id= ?xc? 

14 NL NLI NLIW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE (STORE_PRICING_GROUPS.DIV_ID IS NULL 

OR div_id = ?xc? ) AND grp_id= ?xc? 

15 NL NLO NLIW1 SELECT prc_division ,prc_category FROM store_pricing_groups WHERE (STORE_PRICING_GROUPS.DIV_ID IS NULL 

OR NOT div_id = ?xc? ) AND grp_id= ?xc? 

16 NL NLO NLIW2 SELECT prc_division ,prc_category FROM store_pricing_groups WHERE (STORE_PRICING_GROUPS.DIV_ID IS NULL) 

AND grp_id = ?xc? 

17 NL NLO NLIW3 SELECT prc_division ,prc_category FROM store_pricing_groups WHERE (STORE_PRICING_GROUPS.DIV_ID IS NOT 

NULL) AND grp_id = ?xc? 

18 NL NLI NLIW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? AND 

(STORE_PRICING_GROUPS.GRP_ID IS NULL OR grp_id= ?xc? ) 

19 NL NLO NLIW1 SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? AND 
(STORE_PRICING_GROUPS.GRP_ID IS NULL OR NOT grp_id= ?xc? ) 

20 NL NLO NLIW2 SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? AND 

(STORE_PRICING_GROUPS.GRP_ID IS NULL) 

21 NL NLO NLIW3 SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? AND 
(STORE_PRICING_GROUPS.GRP_ID IS NOT NULL) 

22 IR IRC IRCCW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE STORE_PRICING_GROUPS.PRC_DIVISION = 

?xc? AND grp_id= ?xc? 

23 IR IRC IRCCW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE STORE_PRICING_GROUPS.PRC_CATEGORY 
= ?xc? AND grp_id= ?xc? 

24 IR IRC IRCCW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE STORE_PRICING_GROUPS.GRP_ID = ?xc? 

AND grp_id= ?xc? 
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25 IR IRD IRDDW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE STORE_PRICING_GROUPS.INV_ITEM = ?xc? 

AND grp_id= ?xc? 

26 OR ROR RORW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id<> ?xc? AND grp_id= ?xc? 

27 OR ROR RORW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id> ?xc? AND grp_id= ?xc? 

28 OR ROR RORW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id< ?xc? AND grp_id= ?xc? 

29 OR ROR RORW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id>= ?xc? AND grp_id= ?xc? 

30 OR ROR RORW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id<= ?xc? AND grp_id= ?xc? 

31 OR ROR RORW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE (1=1) AND grp_id = ?xc? 

32 OR ROR RORW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE (1=0) AND grp_id = ?xc? 

33 IR IRP IRPCW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id = 

STORE_PRICING_GROUPS.PRC_DIVISION AND grp_id = ?xc? 

34 IR IRP IRPCW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id = 

STORE_PRICING_GROUPS.PRC_CATEGORY AND grp_id = ?xc? 

35 IR IRP IRPCW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id = STORE_PRICING_GROUPS.GRP_ID 

AND grp_id = ?xc? 

36 OR LCR LCRW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? OR grp_id= ?xc? 

37 OR LCR LCRW SELECT prc_division , prc_category FROM store_pricing_groups WHERE (1=1) 

38 OR LCR LCRW SELECT prc_division , prc_category FROM store_pricing_groups WHERE (1=0) 

39 OR LCR LCRW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? 

40 OR LCR LCRW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE grp_id = ?xc? 

41 IR IRC IRCCW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? AND 

STORE_PRICING_GROUPS.PRC_DIVISION = ?xc? 

42 IR IRC IRCCW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? AND 
STORE_PRICING_GROUPS.PRC_CATEGORY = ?xc? 

43 IR IRC IRCCW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? AND 

STORE_PRICING_GROUPS.DIV_ID = ?xc? 

44 IR IRD IRDDW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? AND 

STORE_PRICING_GROUPS.INV_ITEM = ?xc? 

45 OR ROR RORW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? AND grp_id<> ?xc? 

46 OR ROR RORW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? AND grp_id> ?xc? 

47 OR ROR RORW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? AND grp_id< ?xc? 

48 OR ROR RORW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? AND grp_id>= ?xc? 

49 OR ROR RORW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? AND grp_id<= ?xc? 

50 OR ROR RORW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? AND (1=1) 

51 OR ROR RORW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? AND (1=0) 

52 IR IRP IRPCW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? AND grp_id = 

STORE_PRICING_GROUPS.PRC_DIVISION 

53 IR IRP IRPCW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? AND grp_id = 

STORE_PRICING_GROUPS.PRC_CATEGORY 

54 IR IRP IRPCW SELECT prc_division ,prc_category FROM store_pricing_groups WHERE div_id = ?xc? AND grp_id = 
STORE_PRICING_GROUPS.DIV_ID 

V. RESULTS AND EVALUATION 

GA search strategy was investigated empirically by 
generating test data for the functions and procedures shown in 
Table 4.  What is not clear, however, is how long such a 
search would take. In addition, the empirical investigation will 
provide information about the GA search. 

The results in Table 6 show the average number of 
executions required to find exception coverage test data. Table 
6 shows the total number of exception ineach program, the 
number of exceptions successfully converge by GA, the total 
mutations used to coverage these exceptions, and the number 
of executions required to find test data. From this table, we 
notice that not all exceptions are covered by GA, 
(OutPricing, JU-med-fees-deduction, and 
Salup_new_calc_all),the type of exceptions that are not cover 

is like line 17 in Fig. 8, which represent branch condition in 
the exception, and line 19 in Fig. 9 which represents nested 
exceptions. 

Table 7 shows the types of exceptions that are not covered 
by GA from Table 6. From Table 7 we notice that most type 
of mutations that are not covered is TMR mutation type.  The   
reason that, the uncovered of TMR (the invisibly in TMR) is 
due to: the existence of primary keys in the query, or columns 
with unique values where it is impossible to get TMR in the 
result. 

Table 8 shows the number of program executions to find 
test data for exception after excluding the exceptions that are 
not covered in Table 6. The number of program executions 
ranged from 10475 used 213 mutations in OutPricing   
program down to 1493 used only 49 mutations in 
InPricingprogram
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TABLE VI.  EXCEPTIONS COVERAGE RESULTS. 

Program Name 

Total 

Number of  

Exceptions 

Number of  

Exceptions 

Successfully 

Coverage 

Total Number of  

Mutations Used 

to Coverage 

Exceptions 

Total Number of  

GA Generations 

OutPricing 6 5 290 14325 

InPricing 33 33 49 1493 

JU-Med-fees-deduction 18 14 368 18134 

Pat-info-ibr 9 9 123 3492 

Lab-interface 69 69 181 7946 

Salup_new_calc_all 24 21 545 16914 

 

TABLE VII.  TYPES OF NOT COVERAGE EXCEPTIONS. 

Program Name 

 

Total Number 

of  Exceptions 

 

Number of  

Exceptions 

Successfully 

Coverage 

Types of  Not Coverage 

Exceptions 

NDF TMR Others 

OutPricing 6 5 - 1 - 

InPricing 33 33 - - - 

JU-med-fees-deduction 18 14 1 3 - 

Pat-info-ibr 9 9 - - - 

Lab-interface 69 69 - - - 

Salup_new_calc_all 24 21 - 3 - 

 

TABLE VIII.   EXCEPTIONS COVERAGE AFTER EXCLUDING NOT COVERAGE EXCEPTION IN TABLE VI. 

Program Name 
Number of  

Exceptions 

Total 

number of  

mutations 

used to 

coverage 

Exceptions 

Total 

number of  

GA 

generations 

OutPricing 5 213 10475 

InPricing 33 49 1493 

JU-med-fees-

deduction 
14 164 7934 

Pat-info-ibr 9 123 3492 

Lab-interface 69 181 7946 

Salup_new_calc_all 21 159 7614 
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Although the discussion and conclusions of our results 
were related to JUH  database, it is applicable to any other 
database, since the presence of  database constraints such as 
primary keys and the effects of mutation operators on the 
conditions will be the same regardless the contents of the 
database. 

VI. CONCLUSIONS AND FUTURE WORKS 

In this paper, we have designed a system to generate 
automatically TCs that cover three known exceptions (which 
are No_Data_Found (NDF), Too_Many_Rows (TMR) and 
Others exceptions)  in PL/SQL Oracle database. This system 
combines the mutation testing in order to speed the raising of 
exceptions, with a genetic algorithm that will automatically 
generate TCs. Experiments have been done to evaluate the 
system on JUH database application. The obtained results 

were subject to analytical studies. The studies illustrate that 
not all exceptions are covered. 

It is concluded that this system achieved the desired 
coverage of the intended exceptions. The TMR was the most 
difficult one to cover since it has a lot of reasons that make it 
an invisible path, such as: the existence of primary keys or 
unique values, the nature of the query and existence of 
different categories of mutants.  

It is still believed that the interpretation of the obtained 
results needs more improvement in complicated exceptions or 
branch inside exceptions. The future works are based on 
extending this research work to solve these problems. 
However, ongoing researches have been established to 
improve the system in different areas, such as including other 
types of Oracle exceptions to cover.  
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