
Exact Output Rate of Generalized Peres Algorithm
for Generating Random Bits from Loaded Dice

Sung-il Pae
Department of Computer Engineering

Hongik University
Seoul, Korea

Email: pae@hongik.ac.kr

Abstract—We report a computation of the exact output
rate of recently-discovered generalization of Peres algorithm for
generating random bits from loaded dice. Instead of resorting to
brute-force computation for all possible inputs, which becomes
quickly impractical as the input size increases, we compute the
total output length on equiprobable sets of inputs by dynamic
programming using a recursive formula.

Keywords—Random number generation, Peres algorithm, exact
output rate, random bits, loaded dice.

I. INTRODUCTION

Peres algorithm recursively produces unbiased coin flips
from biased coin flips, with von Neumann’s method as its
base [1]. Because it is defined by a simple recursion, Peres
algorithm is easy to implement and yet runs fast.

The output rate of a procedure that converts a biased
Bernoulli source with n-valued distribution p = (p1, . . . , pn)
to unbiased random bits is the average number of output bits
per input, and it is known to bounded by Shannon entropy
H(p) = −(log2 p1 + · · · + log2 pn) [2], [3], [4]. Since Peres
algorithm is such a procedure, consequently, its rate is bounded
by the entropy bound, h(p) = −(p log2 p+(1−p) log2(1−p)).
Interestingly, the rates of Peres algorithm approaches to the
entropy bound as the input length tends to infinity [1], and we
call such algorithms asymptotically optimal.

The exact output rate of Peres algorithm was reported [5]
and compared with another asymptotically optimal method by
Elias [2]. Recently, a generalization of Peres algorithm was
found for generating unbiased random bits from loaded dice,
that is, many-valued Bernoulli source [6]. We report, here,
a computation of the exact output rate of the three-face case,
thus the simplest, among the generalizations of Peres algorithm
given in [6].

A. 3-Face Peres Function

Assume our die has three faces with values 0, 1, and 2 with
probabilities p, q, and r, respectively, so that p + q + r = 1.
A sequence in {0, 1, 2}N is considered to be taken from a
source of Bernoulli(p, q, r). Denote by S(n0,n1,n2) the subset
of {0, 1, 2}N that consists of strings with n0 0’s, n1 1’s, and
n2 2’s. Then

{0, 1, 2}N =
⋃

n0+n1+n2=N

S(n0,n1,n2),

and each S(n0,n1,n2) is an equiprobable subset of elements
whose probability of occurrence is pn0qn1rn2 .

Consider the functions on {0, 1, 2}2 defined as follows:

x Pr(x) Ψ1(x) u(x) v(x) w(x)

00 p2 λ 0 0 λ
01 pq 0 1 λ 1
02 pr 0 1 λ 2
10 pq 1 1 λ 1
11 q2 λ 0 1 λ
12 qr 0 1 λ 0
20 pr 1 1 λ 2
21 qr 1 1 λ 0
22 r2 λ 0 2 λ

TABLE I. FUNCTIONS FOR THREE-FACE PERES METHOD

The second column of the table shows the probabilities
Pr(x) for x ∈ {0, 1, 2}2. Note that

Pr(Ψ1(x) = 0) = pq + qr + rp = Pr(Ψ1(x) = 1).

Therefore, the output of Ψ1 can be regarded as a fair coin flip.
Extend the three functions Ψ1, u, and v to {0, 1, 2}∗: for an
empty string,

Ψ1(λ) = u(λ) = v(λ) = λ,

for a nonempty even-length input, define (and the same for u
and v)

Ψ1(x1x2 . . . x2n) = Ψ1(x1x2) ∗ · · · ∗Ψ1(x2n−1x2n),

where ∗ is concatenation, and for an odd-length input, drop
the last bit and take the remaining even-length bits.

Define

Ψ(x) = Ψ1(x) ∗Ψ(u(x)) ∗Ψ(v(x)) ∗Ψ(w(x)).

This function Ψ, recursively defined, with Ψ1 as its base, is
shown to produce unbiased coin flips and is also asymptotically
optimal [6].

In order to compute the exact output rate, consider a
decomposition of equiprobable set of inputs S(n0,n1,n2): Fix
(n0, n1, n2) such that N = 2n = n0 + n1 + n2. Let
C(l1, l2, l3;m0,m1,m2) be the subset of S(n0,n1,n2) whose
elements are the strings that are combination of l1 01’s, l2
02’s, l3 12’s, m0 00’s, m1 11’s, m2 22’s, where each pair is
allowed to be transposed. For example,

x = 01|00|10|12|00|20|00|10|02|01|00|20|02|10|20|20|11

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.7, 2013

218 | P a g e
www.ijacsa.thesai.org

is in C(5, 6, 1; 4, 1, 0), and

Ψ1(x) = 010110010111,

u(x) = 10110101110111110,

v(x) = 00001,

w(x) = 110212122122.

So,

Ψ(x) = 010110010111 ∗Ψ(10110101110111110)

∗Ψ(00001) ∗Ψ(110212122122)

= 010110010111

∗ (1000 ∗Ψ(10110100) ∗Ψ(1111) ∗Ψ(1111))

∗ (λ ∗Ψ(00) ∗Ψ(00) ∗Ψ(λ))

∗ (0001 ∗Ψ(011110) ∗Ψ(12) ∗Ψ(2000))

= 010110010111 ∗ (1000 ∗ 10111 ∗ λ ∗ λ)

∗ λ ∗ (0001 ∗ 011 ∗ 0 ∗ 11)

= 0101100101111000101110001011011.

Let l = l1 + l2 + l3 and m = m0 + m1 + m2 so that
n = m+ l. Then we have a decomposition

S(n0,n1,n2) =
⋃

n0=l1+l2+2m0
n1=l1+l3+2m1
n2=l2+l3+2m2

C(l1, l2, l3;m0,m1,m2). (1)

Call the set C(l1, l2, l3;m0,m1,m2) the (n0, n1, n2)-class of
type (l1, l2, l3;m0,m1,m2). If C = C(l1, l2, l3;m0,m1,m2),
then

Ψ1(C) = {0, 1}l

u(C) = S(m,l,0)

v(C) = S(m0,m1,m2)

w(C) = S(l1,l2,l3).

Lemma 1 (Structure of (n0, n1, n2)-class [6]). In equiproba-
ble set S(n0,n1,n2), the mapping

x 7→ Φ(x) = (Ψ1(x), u(x), v(x), w(x))

is one-to-one correspondence between the (n0, n1, n2)-class
of type (l1, l2, l3;m0,m1,m2) and {0, 1}l × S(m,l,0) ×
S(m0,m1,m2) × S(l1,l2,l3).

B. Asymptotic Optimality

Now, consider the truncated versions of Peres function,
whose recursion depth is bounded by ν, defined as follows:

Ψν(x) = Ψ1(x) ∗Ψν−1(u(x)) ∗Ψν−1(v(x)) ∗Ψν−1(w(x)),

where Ψ0(x) = λ. Since x is from Bernoulli(p, q, r), u(x),
v(x) and w(x) are of distributions

U(p, q, r) =
(
p2 + q2 + r2, 2(pq + qr + rp), 0

)
,

V (p, q, r) =

(
p2

p2 + q2 + r2
,

q2

p2 + q2 + r2
,

r2

p2 + q2 + r2

)
,

W (p, q, r) =

(
qr

pq + qr + rp
,

pq

pq + qr + rp
,

rp

pq + qr + rp

)
,

respectively. The average output length per input of u(x), v(x),
and w(x) are 1

2 , 1
2 (p2+q2+r2), and (pq+qr+rp), respectively.

So, the rate ρν of Ψν is

ρν(p, q, r) =(pq + qr + rp) +
1

2
ρν−1(U(p, q, r))

+
1

2
(p2 + q2 + r2)ρν−1(V (p, q, r))

+ (pq + qr + rp)ρν−1(W (p, q, r)),

(2)

and, of course, ρ1(p, q, r) = pq+ qr+ rp and ρ0(p, q, r) = 0.

Expanding this formula, we obtain, for example,

ρ2(p, q, r) =(pq + qr + rp) + (pq + qr + rp)(p2 + q2 + r2)

+
pqr(p+ q + r)

pq + qr + rp
+
p2q2 + q2r2 + r2p2

2(p2 + q2 + r2)
,

and the formula for ρν becomes complicated very fast as ν
increases, as we can expect from (2).

5 10 15 20 25
Ν

0.2

0.4

0.6

0.8

1.0

1.2

1.4

rate

Fig. 1. Rates ρν(p, q, r) for ν = 1, . . . , 25 and (p, q, r) = (0.25, 0.25, 0.5)
and (p, q, r) = (0.1, 0.3, 0.6). The dashed lines indicate the entropy bounds
for each value of (p, q, r).

The original (2-face) Peres function [1] was defined as a
truncated version and its rate is equal to ρν(p, q, 0). Hence,
the (truncated) rate function ρν also generalizes the 2-face
case. Since the 2-face Peres function is asymptotically optimal,
the corresponding truncated version converges to the Shannon
entropy H(p) = −(p log2 p+q log2 q). We can expect the rate
ρν of our 3-face truncated Peres function also converges to
H(p, q, r) = −(p log2 p + q log2 q + r log2 r). Fig.1 shows
the plot of ρν(p, q, r) for ν = 1, . . . , 25 and (p, q, r) =
(0.25, 0.25, 0.5) and (p, q, r) = (0.1, 0.3, 0.6). Indeed, the
rates seem to converge to the corresponding entropy bounds,
H(0.25, 0.25, 0.5) = 1.5 and H(0.1, 0.3, 0.6) ≈ 1.295, re-
spectively.

The following theorem, whose proof is given in [6], implies
that Ψ is asymptotically optimal.

Theorem 2 ([6]).

lim
ν→∞

ρν(p, q, r) = H(p, q, r).

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.7, 2013

219 | P a g e
www.ijacsa.thesai.org

II. EXACT OUTPUT RATE

A. Total Output Length on Equiprobable Set S(n0,n1,n2)

Define P (n0, n1, n2) to be the total number of output bits
over S(n0,n1,n2), that is,

P (n0, n1, n2) =
∑

x∈S(n0,n1,n2)

|Ψ(x)|.

Then the rate of Ψ is

ρ(N) =
1

N

∑
x∈{0,1,2}N

|Ψ(x)|Pr(x)

=
1

N

∑
N=n0+n1+n2

P (n0, n1, n2)pn0qn1rn2 .

Note that P (n0, n1, n2) is independent on the probability
distribution (p, q, r). So, once we compute an appropriate
table of values of P (n0, n1, n2), which is computationally
the most demanding part, the exact rate ρ(p, q, r) can be
easily computed for each (p, q, r). In the following, we give a
recursive formula for P (n0, n1, n2) so that its values can be
computed, for example, by dynamic programming.

With a bit of abuse of notation, for a class
C(l1, l2, l3;m0,m1,m2), use the same symbol P and
let

P (l1, l2, l3;m0,m1,m2) =
∑

x∈C(l1,l2,l3;m0,m1,m2)

|Ψ(x)|.

Then, by the decomposition (1) we have

P (n0, n1, n2) =
∑

n0=l1+l2+2m0
n1=l1+l3+2m1
n2=l2+l3+2m2

P (l1, l2, l3;m0,m1,m2). (3)

Now, by the structure lemma, for C =
C(l1, l2, l3;m0,m1,m2), the image by Ψ1 over C is(

n

m, l

)(
m

m0,m1,m2

)(
l

l1, l2, l3

)
copies of {0, 1}l. So, we have

∑
x∈C
|Ψ1(x)| = 2l

(
n

m, l

)(
m

m0,m1,m2

)(
l

l1, l2, l3

)
· l.

Similarly, we have∑
x∈C
|Ψ(u(x))| = 2l

(
m

m0,m1,m2

)(
l

l1, l2, l3

)
P (m, l, 0),

∑
x∈C
|Ψ(v(x))| = 2l

(
n

m, l

)(
l

l1, l2, l3

)
P (m0,m1,m2),

∑
x∈C
|Ψ(w(x))| = 2l

(
n

m, l

)(
m

m0,m1,m2

)
P (l1, l2, l3).

Since |Ψ(x)| = |Ψ1(x)|+ |Ψ(u(x))|+ |Ψ(v(x))|+ |Ψ(w(x))|,
we have

P (l1, l2, l3;m0,m1,m2) =

2l
[(

n

m, l

)(
m

m0,m1,m2

)(
l

l1, l2, l3

)
· l

+

(
m

m0,m1,m2

)(
l

l1, l2, l3

)
P (m, l, 0)

+

(
n

m, l

)(
l

l1, l2, l3

)
P (m0,m1,m2)

+

(
n

m, l

)(
m

m0,m1,m2

)
P (l1, l2, l3)

]
.

(4)

1) Exploiting Symmetry: If (n′0, n
′
1, n
′
2) is a permutation of

(n0, n1, n2), then P (n′0, n
′
1, n
′
2) = P (n0, n1, n2). Therefore,

we need to compute only P (n0, n1, n2) for n0 ≥ n1 ≥ n2.

P (n′0, n
′
1, n
′
2) = P (n0, n1, n2), n0 ≥ n1 ≥ n2,

(n′0, n
′
1, n
′
2) is a permutation of (n0, n1, n2)

(5)

Symmetry in P (l1, l2, l3;m0,m1,m2) is taken care of at this
stage.

2) Odd-length Input: In the right-hand side of (4), a
recursive call to P (n0, n1, n2) can be made for an odd value of
n0 +n1 +n2. In that case, we need to reduce it to even-length,
for ni > 0, i = 0, 1, 2,

P (n0, n1, n2) = P (n0 − 1, n1, n2) + P (n0, n1 − 1, n2)

+P (n0, n1, n2 − 1), if n0 + n1 + n2 is odd,

and for n0 and n1 are positive and n2 = 0,

P (n0, n1, 0) = P (n0 − 1, n1, 0) + P (n0, n1 − 1, 0),

if n0 + n1 is odd.

3) Initial Conditions: Clearly, for n ≥ 0,

P (n, 0, 0) = 0. (6)

B. Linear Diophantine Equations

Two linear Diophantine equations are involved in the com-
putation. First, given N , we need to find all the nonnegative
solutions (n0, n1, n2) such that N = n0 + n1 + n2. This is
a partition into 3 parts and the solutions can be efficiently
generated by methods given in, for example, [7] or [8].

Now, as for the second equation, for a given (n0, n1, n2),
we need to generate all the nonnegative integer solutions
(l1, l2, l3;m0,m1,m2) of the equations

n0 = l1 + l2 + 2m0,

n1 = l1 + l3 + 2m1,

n2 = l2 + l3 + 2m2.

(7)

The solutions can be generated efficiently as follows: Since
the coefficients for m0, m1, and m2 are dominant, we first list
all the possible candidates for (m0,m1,m2) as

M = {(m0,m1,m2) | mi is nonnegative integer s.t.
0 ≤ mi ≤ ni/2, i = 0, 1, 2}.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.7, 2013

220 | P a g e
www.ijacsa.thesai.org

For example, given (n0, n1, n2) = (7, 5, 2), the corresponding
M is
{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 2, 0), (0, 2, 1),

(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (1, 2, 0), (1, 2, 1),

(2, 0, 0), (2, 0, 1), (2, 1, 0), (2, 1, 1), (2, 2, 0), (2, 2, 1),

(3, 0, 0), (3, 0, 1), (3, 1, 0), (3, 1, 1), (3, 2, 0), (3, 2, 1)}.

Then, for each of these triples (m0,m1,m2), we solve for
nonnegative solutions of the equations

l1 + l2 = n0 − 2m0,

l1 + l3 = n1 − 2m1,

l2 + l3 = n2 − 2m2.

This system is non-singular and has a unique real solution
(l1, l2, l3), and if these li’s are nonnegative integers, then we
take (l1, l2, l3,m0,m1,m2) as a solution. Therefore the num-
ber of solutions is bounded by |M | = (bn0/2c+ 1)(bn1/2c+
1)(bn2/2c+ 1) ≤ (N/3 + 1)3.

For the case (n0, n1, n2) = (7, 5, 2) given above, the
corresponding solutions are now

{(5, 2, 0, 0, 0, 0), (4, 1, 1, 1, 0, 0), (5, 0, 0, 1, 0, 1),

(3, 2, 0, 1, 1, 0), (3, 0, 2, 2, 0, 0), (2, 1, 1, 2, 1, 0),

(3, 0, 0, 2, 1, 1), (1, 2, 0, 2, 2, 0), (1, 0, 2, 3, 1, 0),

(0, 1, 1, 3, 2, 0), (1, 0, 0, 3, 2, 1)}.

C. Maximum Output Rate

For any given procedure that converts a length-n input of
biased Bernoulli source to unbiased random bits, the maximum
average output rate can be obtained, like the rate of Peres
algorithm discussed above, by computing the total output
lengths on equiprobable sets [4]. In fact, the maximum output
rate is obtained by Elias method. For example, for three-
face case, let E3

n : {0, 1, 2}n → {0, 1}∗ be the function
corresponding to the Elias method. Then, for (n0, n1, n2) such
that n = n0 +n1 +n2, the total output length over S(n0,n1,n2)

Q(n0, n1, n2) =
∑

x∈S(n0,n1,n2)

|E3
n(x)|

can be computed, from the definition of Elias method, as
follows [4]: let the standard binary expansion of |S(n0,n1,n2)|
be
∑
i ai2

i, where ai is either zero or one. Then

Q(n0, n1, n2) =
∑
i

i · ai · 2i,

and the n-maximal output rate for input length n can be
computed.

III. COMPUTATION RESULTS

Using the recursive definitions for P (n0, n1, n2) and
P (l1, l2, l3;m0,m1,m2) given above, we can compute the
values of them efficiently using dynamic programming. For
example,

P (10, 20, 30) = 19 38905 30631 82778 17752 73600.

In comparison,

Q(10, 20, 30) = 28 46922 13778 64604 61389 79776.

Fig. 2 shows plots of the exact rates of three-face Peres
algorithm ρ(p, q, r), for (p, q, r) = (0.25, 0.25, 0.5) and
(p, q, r) = (0.1, 0.3, 0.6), where the input lengths range from
2 to 160. Also shown is the maximal rates of Elias methods
in comparison, for the same distributions (p, q, r) and for the
same input lenghts.

50 100 150

0.2

0.4

0.6

0.8

1.0

1.2

1.4

rate

Fig. 2. Exact rates ρ(p, q, r) for (p, q, r) = (0.25, 0.25, 0.5) (shown in blue)
and (p, q, r) = (0.1, 0.3, 0.6) (in red), for input lengths n = 2, . . . , 160.
Dashed lines are the maximal rates (Elias) for the respective distbutions (again,
shown in blue and red).

IV. REMARKS

Although the method described here is much more efficient
than brute-force calculation over all possible inputs, it still
takes a considerable time. For example, it took several hours
to obtain the data for Fig. 2 with a decently fast personal
computer from the standard of the time when this paper was
written.

ACKNOWLEDGEMENT

This work was supported in part by the National Research
Foundation of Korea (NRF) grant funded by Korean govern-
ment (No. 2009-0077288).

REFERENCES

[1] Y. Peres, “Iterating von Neumann’s procedure for extracting random
bits,” Annals of Statistics, vol. 20, no. 1, pp. 590–597, 1992.

[2] P. Elias, “The efficient construction of an unbiased random sequence,”
The Annals of Mathematical Statistics, vol. 43, no. 3, pp. 865–870, 1972.

[3] S. Pae and M. C. Loui, “Optimal random number generation from
a biased coin,” in Proceedings of the Sixteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, January 2005, pp. 1079–1088.

[4] ——, “Randomizing functions: Simulation of discrete probability distri-
bution using a source of unknown distribution,” IEEE Transactions on
Information Theory, vol. 52, no. 11, pp. 4965–4976, November 2006.

[5] S. Pae, “Exact output rate of Peres’s algorithm for random number
generation,” Inf. Process. Lett., vol. 113, no. 5-6, pp. 160–164, 2013.

[6] ——, “A generalization of Peres’s algorithm for generating random bits
from loaded dice,” 2013, submitted.

[7] D. E. Knuth, The Art of Computer Programming, Combinatorial Algo-
rithms, Part 1. Addison-Wesley, 2011, vol. 4A.

[8] A. Nijenhuis and H. S. Wilf, Combinatorial Algorithms: For Computers
and Calculators. Academic Press, 1978.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.7, 2013

221 | P a g e
www.ijacsa.thesai.org

