
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 8, 2013

189 | P a g e
www.ijacsa.thesai.org

Protein PocketViewer: A Web-Service Based

Interface for Protein Pocket Extraction and

Visualization

Xiaoyu Zhang

Department of Computer Science& Information Systems

California State University San Marcos

San Marcos, U.S.A.

Martin Gordon

Department of Computer Science& Information Systems

California State University San Marcos

San Marcos, U.S.A.

Abstract—One important problem in bioinformatics is to

study pockets or tunnels within the protein structure. These

pocket or tunnel regions are significant because they indicate

areas of ligand binding or enzymatic reactions, and tunnels are

often solvent ion conductance areas. The Protein Pocket Viewer

(PPV) is a web interface that allows the user to extract and

visualize the protein pockets in a browser, based on the

algorithm in [1]. The PPV packaged the pocket extraction

executable as a web service, and made it accessible to all users

with the Internet access and a modern java enabled browser.

The PPV employed the Model2design pattern, which led to a

loosely coupled implementation that is more robust and easier to

maintain. It consists of a client web interface for user inputs and

visualization, a middle-layer for controlling the flow, and the

backend web services performing the actual CPU-intensive

computation. The PPV web client consists of multiple window

regions, with each region providing differing views of the protein,

pockets and related information. For a more responsive user

experience, the PPV web client employs AJAX for asynchronous
execution of long running tasks, like protein pocket extraction.

Keywords—protein structure; pockets; Model 2; AJAX; web

service; visualization;

I. INTRODUCTION

Bioinformatics applies computational tools to study
problems in molecular biology. Structures are critical for
thefunctions of proteins. One important bioinformatics problem
is to determine pockets or tunnels within the protein structure.
These pocket or tunnel regions are significant because they
indicate areas of ligand binding or enzymatic reactions [2], and
tunnels are often solvent ion conductance areas [3]. Such
computation can be data dense and computationally intensive
due to the volume of data processing involved for a single
protein and the number of proteins in the database. So the
computations are more efficiently performed on powerful
computational servers. Visualization tools are also important
for bioinformatics research. A visualization tool would help
the user to better comprehend and quickly consume data of the
computed protein pockets. The visualization should be
available for the user on the less powerful client computers,
most conveniently in a web browser without installing any
special software.

In this paper, we developed a web service [4] based
visualization interface to the pocket extraction algorithm
described in [1].The algorithm employs a two-step level set

marching algorithm (Fig 1). The first step of the level set
marching algorithm marches outward from the protein surface
to some distance equal to a given threshold. At completion of
the outward marching step, an outer surface is obtained with all
indentations on original surface filled. The second step of the
algorithm marches backward from the outer surface back
toward the protein for the same distance. The second marching
step cannot infiltratethe protein surface, or reach depressions
and tunnels on the surface. The unreachable regions outside
the protein surface are considered as pockets. The bounding
envelops of the pockets are then extracted using standard level-
set methods.

(a) (b)

Fig. 1. The two-step level set marching algorithm for pocket extraction. (a)

Outward marching from the original surface S to an outer surface T; (b)
Backward marching from T to uncover the pocket as the shaded region

The visualization interface, Protein Pocket Viewer (PPV) at
http://ppv.cs.csusm.edu:8080/PPVClient/PPV.jsp,allows users
to display and manipulate data related to protein pockets in
ajava-enabled browser.The web interface consists of multiple
window regions, with each region providing differing views of
protein pocket related data (Fig 2). The display includes both
metadata about the protein and associated pockets and the three
dimensional rendering of the protein and pockets. The 3D
visualization of the pockets is displayed in the central
rendering region. The 3D rendering can be maneuveredby the
user to view of all surfaces of the protein and pockets. The 3D
display can be controlled such that individual pocket can be
shown or hidden, and rendered in different styles, such as a
filled, dot or mesh surface. The protein sequence informationis
displayed as text in the sequence region. The pocket
information region displays pocket metadata such as a pocket
ID, pocket surface area, and pocket volume for each pocket
identified using the two-step level setmarching algorithm. The

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 8, 2013

190 | P a g e
www.ijacsa.thesai.org

web interface also includes a protein information region that
provides additional information on the protein containing the
selected pockets.

Fig. 2. Protein Pocket Viewer interface.

The PPV allows the user to visualize the protein pockets
and their relationship to the protein, and is accessible to all
users with the Internet access and a modern java enabled
browser. The PPV implemented the web client, a web service
wrapper for invoking pocket generation, Jmol[5]viewer
integration, and cache management for protein and pocket
files. It has some unique features, such as

 On-the-fly generation and visualization of pockets
given a valid Protein Data Bank (PDB)[6]ID or a well-
formed PDB file using the two-step level setmarching
algorithm.

 Caching management capability where expensive
pocket generation results are cached for the later
requests.

 Asynchronous transactions via AJAX [7]relieving the
user from waiting for page refresh during long running
tasks, such as pocket generation and PDB metadata
retrieval.

In the rest of the paper, section 2 discusses background
concepts used by the PPV and related work. Section 3 presents
the design of the PPV and implementation details. We then
conclude and discuss some future directions in section 4.

II. BACKGROUND AND RELATED WORK

A. Background

The Protein Pocket Viewer employs the implementation for
protein pocket extraction algorithm described in [1], which was
implemented as a C++ program running on a computational
server.

The Protein Data Bank (PDB) is the single worldwide
repository of information about the 3D structures of large

biological molecules[6], managed by the Research
Collaboratory for Structural Bioinformatics (RCSB). Every
protein in the PDB has a unique ID and its structure is
available in PDB file format. The pocket extraction program
requires a valid PDB ID or a well-formed PDB file as input.

A web service [4]is used to initiate the pocket extraction
implementation. This web service provides the abstraction of
the pocket extraction program and enables a bridge between
the client Java classes to the pocket extraction service
implemented in C++. Protein metadata, PDB file, and pocket
files transfer between the server and the client via the web
service interface.A web service is an implementation of the
SOA design approach employing XML [8], XSD [8], and
SOAP [9] standards based technologies. The Service Oriented
Architecture (SOA) is a design consideration where its solution
is distributed, loosely coupled, standards based, reusable, and
stateless.The Web Service Description Language (WSDL)[10]
provides a way for a web service provider to describe the
public interface of the web service.

The 3D rendering of the proteins and their respective
pockets in a browser was performed with Jmol[5], which is an
open source Java viewer for 3D chemical structures. Jmol
includes features for element display selection, scheme
selection, element color assignment, surface display selection,
and measurements. Element display selection allows the user
to select the elements within the chemical structure to display.
Scheme selection allows the user to select schemes such as
CPK space-fill, ball and stick, sticks, wireframe, and cartoon
for the chemical structure. Surface display selection allows the
user to select how the surface is displayed.

The PPV utilizes Java server pages [11], cascading
stylesheets [12], and JavaScript XHTML DOM scripting [13]
for designing and displaying the website content. JavaScript
[14], AJAX [7], and Java servlets [11] provide the flow and
navigation capabilities within the viewer.

The Protein Pocket Viewer employs the Model 2 design
pattern[15], which is a variant of the Model-View-Controller
(MVC) design pattern. Model2 extends the Model-View-
Controller design pattern for use with web applications.
Model2 can employ Java server pages and cascading
stylesheets to implement the view of the pages within the
website. Java server pages (JSP) enable dynamic content
within HTML pages. Cascading stylesheets are used to
describe the look and feel of the content to display. The Java
server pages and servlets provide the controller responsibility
of the implementation. Behind the scenes, some Java classes
provide the functionality that enable retrieval of the protein, the
pockets, and the associated metadata.

There are many advantages to using the Model2 design
patterns[15]. The main advantage of the design pattern is to
separate the different levels of concerns within the
implementation. Keeping the levels of concerns separate helps
facilitate cleaner, and more loosely coupled implementation,
which lowers the dependencies between different components.
It allows the developer to break the implementation into
smaller more manageable components. Each component can
be tested separately to ensure its correctness. This makes the
implementation more maintainable.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 8, 2013

191 | P a g e
www.ijacsa.thesai.org

Asynchronous JavaScript and XML (AJAX) [7]provides
the ability to initiate functionality asynchronously. AJAX frees
up the user from busy waiting when the request is being
processed at the server end. In an interactive program like a
web interface, the user wants to continue interacting with the
interface while waiting for a long-time processing or data
retrieval. For example, a graphical user interface that performs
a long running calculation while allowing the user to navigate
through related charts, data, and documentation will give the
user the option of continuing with other tasks instead of having
to just sit and wait.

B. Related Work

Computed Atlas of Surface Topography of proteins
(CASTp)[16] is an online tool that locates and measures
pockets on 3D protein structures. The CASTpuses a program
named CAST [17]to locate and quantify pockets. The CAST
employs computational geometry of complex shapes, based on
alpha shape and discrete flow theory, for pocket calculation.
More recently, the CASTp[18] provides annotations derived
from the Protein Data Bank (PDB), Swiss-Prot, and Online
Mendelian Inheritance in Man (OMIM).

The PPV and the CASTp are similar in that both display
proteins and their respective pockets in Jmol, and both display
protein and pocket metadata information. However, there are
significant differences between the PPV and the CASTp. First,
the PPV uses a different pocket extraction algorithm from the
theCASTp. In many cases, the CASTp requires the user to
upload PDB structured files in order to generate and visualize
pockets while PPV provides on-the-fly generation and
visualization of pockets given a valid PDB Id or a well-formed
PDB file. The PPV also employs caching management to avoid
expensive computation for pocket extraction when
possible.The PPV uses AJAX for long running tasks, such as
pocket generation and PDB metadata retrieval, relieving the
user from needlessly waiting for page refresh.

III. DESIGN AND IMPLEMENTATION

The PPV project employs the Model 2 design pattern to
ensure the responsibility of a particular component does not
overreach into other components. We first describethe high
level architecture and data flows of the PPV.Subsequent
subsection takes a closer inspection of the view, controller, and
model components.

A. PPV Architecture

The PPV consists of a client web interface for user inputs
and visualization, a middle-layer for controlling the flow, and
the backend web services performing the actual
computationsuch as retrieving PDB files and pocket
extraction,as shown in Error! Reference source not found.
The web interface is implemented primarily with Java Server
Pages and a cascading style sheet; the middle-layer control is
implemented using JavaScript and Java servlets running on the
Tomcat web server[19]; the backend web services and business
logic are implemented with Java and C++ classes.

In the case of the PPV,the business logic is the preparation,
extraction, and retrieval of protein PDB files and their
associated pockets into PMESH [20] file format, and metadata

describing those files. The PPV architecture uses a web
serviceto enable the Java web client to initiate protein pocket
generation implemented in C++. The reasons for choosing this
architecture for the protein pocket viewer are threefold. First,
using Java technologies for the web client allows the developer
to capitalize on the capabilities that are robust and freely
available. Second, existing program to extract the protein
pockets was implemented in C++. A web service allows us to
bridge the capability between the Java client and the C++
server in a clean, standards based manner. Third, packaging
the pocket extraction as a web service also abstracts it as a
single purpose, loosely coupled component that can be tested
separately and used by others. The WSDL provides all the
information necessary to create a web service client to
consume the pocket extraction web service, without knowing
the implementation details of the pocket extraction algorithm.

User’s Laptop

Contains:

Web Browser
Middle Layer

Java Servlet Container

(Apache Tomcat)

Contains:

PPV JSPs

PPV Servlets

PPV Java Objects

RCSB Server

Contains:

RCSB WebService

Backend

Contains:

PPV PocketWS WebService

Pocket Extraction Implementation

Internet

Internet

Internet/

Intranet

Fig. 3. Protein Pocket Viewer Web Service Architecture Diagram

The user’s web browser connects to the PPV web client in
the middle-layer. The PPV web client resides within an Apache
Tomcat web server, containing the code for PPV JSPs, Servlets
and Java objects. The PPV web client consumes the web
services for protein pocket extraction, named “PocketWS”,
implemented in C++ and hosted on the backend computational
server together with the existing pocket extraction program.
The “PocketWS” web service generates the protein pocketsin
the PMESH file format for displaying in the user’s browser.
Besides the “PocketWS” web service,the PPV web client can
also consume other web services, e.g. the RCSB
PdbWS(www rcsb or pdb ser ices pdbws) hosted on the
remote RCSB server. The PdbWS web service is used by the
PPV to validate PDB ID entry supplied by the user.

B. PPV DataFlow

Fig 4 shows the steps and dataflow how the PPV performs
the function of extracting protein pockets and displaying them
for the user.

Step 1: The user enters the PDB ID, selects the number of
pockets to generate and clicks the submit button on the PPV
interface, which calls the CheckPDBId servlet.

Step 2: The CheckPDBId servlet checks for the validity of
the PDB ID by calling the RCSB pdbWS web service.

Step 3:TheCheckPDBId returns the validation result to the
PPV interface, which displays a visual indicator if the given ID
is invalid.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 8, 2013

192 | P a g e
www.ijacsa.thesai.org

Step 4a:If the ID is valid, the GetPDB servlet iscalled
asynchronously via AJAX.

Step 4b: The GetPocket servlet is called asynchronously via
AJAX with the validated PDB Id and the number of pockets to
be generated. Note that step 4a and 4b run currently in two
separate threads.

Step 5: The GetPDB servlet retrieves the PDB XML file
and its metadata from the RCSB PDB database, and returns it
to be displayed in the PPV interface.

Step 6:The GetPocket servlet calls the “PocketWS”web
service, which extracts the pocketsas PMESH files for the
given protein. The PocketWS returns an array of PocketData,
each of which contains pocket metadata such as volume and
surface area, and the location of corresponding PMESH file.
The generated pocket PMESH files are then transferred to the
client and displayed in the Jmolviewer.

PPV

interface

CheckPDBId

servlet

RCSB

Web service

GetPocket

servlet

GetPDB

servlet
PDB

Database

PocketWS

Web service

Pocket
Cache

1

2

3

4a
5

4b

6

Fig. 4. The dataflow for pocket extraction and display.

C. Implementaion

The PPV was implemented using the Model 2 design
pattern. The Model 2 design consists of model, view, and
controller components.

1) View Related Components:
The PPV web interface was implemented using Java Server

Pages and cascading style sheets, which define the layout and
look-and-feel of the main interface.

Fig 5 shows the major components in the PPV web
interface. A user can entera PDB Id and select the number of
pockets in order to extract and visualize the protein pockets. If
the number of pockets is not selected, then no pockets will be
generated, but only the PDB file will be retrieved and rendered.
The PDB information region displays metadata including PDB
title, classification, andhyperlink to additional information on
the PDB websites. Alsothe PDB sequence region displays the
amino acid sequence of the protein.

Fig. 5. Major components of the PPV web interface.

Fig 6 displays the protein pockets in the Jmol viewer and
additional informationassociated with the pockets. Thecolor-
coded pocket display options allow the user chooses to show or
hide a pocket, or change its display as a filled surface, a dot
surface or a mesh. The color-coded pocket information region
displays metadata (volume and surface area) of the pockets. If
the protein has fewer pockets than the number selected by the
user, the maximum number of available pockets will be
generated and displayed.

Fig. 6. Displaying multiple protein pockets in the PPV window.

Extracting pockets for a large protein can be CPU-
intensive. Since the call to the server is handled
asynchronously, the user can interact with currently display
while the request is being processed. An in-progress icon is
placed within the PDB ID input box as a visual cue, indicatinga
request being processed. Atthe successful completion of the
request, a checkmark icon replaces the in-progress icon. If
there is an error in the processing, e.g. an invalid PDB ID, a red
‘X’ icon would indicate the failure of the request. Such a

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 8, 2013

193 | P a g e
www.ijacsa.thesai.org

visual indicator is very useful because of the asynchronous
nature of request processing.

2) Controller Related Components:
The controller related components were implemented using

JavaScript and Java servlet files.

There are four JavaScript files used in the current
implementation. The JavaScript functions use AJAX for
asynchronous execution. This asynchronous execution allows
the user to interact with other components in the web
application while the asynchronous calls execute. The
JavaScript functions asynchronously call the appropriate
servlets for services such as validating PDB ID, retrieving
proteins, and extracting pockets and their metadata.

The Java servlets help to provide the controller aspect of
the model-view-controller design pattern. The current PPV
implementation has three Java servlet files, as shown in the
middle layer of Fig 4 The servlets call appropriate methods
provided by the business logic classes.

3) Model Related Components:
The PPV implemented a web ser ice “PocketWS” for

pocket extraction. The interface of the web service was defined
in the “PocketWS” WSDL file, and implemented as a C++ web
service class. The C++ implementation is a thin web service
layer that calls upon the existing executable described in
[1]with the appropriate arguments. The executable may be
updated or replaced, without affecting the rest components of
the PPV. Since extracting pocket is CPU intensive, the web
service maintains a disk-resident cache of previously generated
pockets. Atthe completion of the execution, it returns the result
in XML format.

Besides the pocket extraction web service, the PPV also
makes use of external web services, e.g. the RCSB web service
“pdbWS” for PDB ID alidation, and downloads PDB XML
files using HTTP from PDB database. These business logics in
the model related components wereimplementeda number of
Java classes.

IV. CONCLUSION

The protein pocket viewer provides a web-based interface
for protein pocket extraction and visualization based on the
algorithm in [1]. It was implemented using web services and
followed the Model 2 design pattern, consisting of a client web
interface for user inputs and visualization, a middle-layer for
controlling the flow, and the backend web services performing
the actual CPU-intensive computation. Packaging the pocket
extraction as a web service makes it as a single purpose,
loosely coupled component that can be updated or replaced for
a different algorithm easily. The PPV differs from other
systems with features such as on-the-fly generation and
visualization of pockets, asynchronous transactions via AJAX,
and caching.

We found that it is effective to use web services to make
existing programs available to users over the Internet with use
of a modern browser.Because Java provides feature rich and
widely supported graphical user interface, it was chosen to
implement the web interface of the PPV.The existing
executable of pocket extraction was written in C++. The web

service solution bridged the cross domain and cross language
solution of the existing C++ pocket executable with the Java
web interface.

Future directions for the PPV may include the integration
of related protein analysis capabilities, like a protein structure
simulation, within the same architecture. A web application
that provides multiple utilities sharing a common interface
would make it more convenient for the user and ensure the
compatibility of the analysis.

REFERENCES

[1] X Zhan and C Bajaj, “Extraction, quantification and isualization of
protein pockets ,” Computational systems bioinformatics Life Sciences

Society. Computational Systems Bioinformatics Conference, vol. 6, pp.
275–86, Jan. 2007.

[2] J D Berman, “Structural properties of acetylcholinesterase from eel
electric tissue and bo ine erythrocyte membranes ,” Biochemistry, ol

12, no. 9, pp. 1710–5, May 1973.

[3] N. Unwin, “Refined structure of the nicotinic acetylcholine receptor at
4A resolution ,” Journal of molecular biolo y, ol 346, no 4, pp 967–

89, Mar. 2005.

[4] W3C Workin Group, “Web Ser ices Architecture ” [Online]
Available: http://www.w3.org/TR/ws-arch/.

[5] “Jmol: an open-source Ja a iewer for chemical structures in 3D ”

[Online]. Available: http://jmol.sourceforge.net/.

[6] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H.
Weissi , I N Shindyalo , and P E Bourne, “The Protein Data Bank ,”

Nucleic acids research, vol. 28, no. 1, pp. 235–42, Jan. 2000.

[7] J J Garrett, “Ajax: A New Approach to Web Applications - Adaptive
Path ” [Online] A ailable: http: www adapti epath com ideas ajax-

new-approach-web-applications.

[8] W3C, “Extensible Markup Lan ua e (XML) 1 0 (Fifth Edition) ”

[Online]. Available: http://www.w3.org/TR/REC-xml/.

[9] W3C, “SOAP Version 1 2 Part 1: Messa in Framework (Second
Edition) ” [Online] A ailable: http: www w3 or TR soap12-

part1/#intro.

[10] W3C, “Web Ser ices Description Lan uage (WSDL) Version 2.0 Part
0: Primer ” [Online] A ailable: http: www w3 or TR wsdl20-primer/.

[11] B. Basham, K. Sierra, and B. Bates, Head First Servlets and JSP.

O’Reilly Media, 2004, p 888

[12] J. Zeldman, Designing With Web Standards. New Riders, 2003, p. 436.

[13] R Harris, Murach’s Ja aScript and DOM Scriptin Mike Murach &
Associates, Incorporated, 2009, p. 764.

[14] R. York, Beginning JavaScript and CSS Development with JQuery.
Wiley, 2009, p. 529.

[15] G Seshadri, “Understandin Ja aSer er Pa es Model 2 architecture -

Explorin the MVC desi n pattern,” Ja aWorld com, 1999 [Online]
Available: http://www.javaworld.com/javaworld/jw-12-1999/jw-12-ssj-

jspmvc.html.

[16] T A Binkowski, “Castp: computed atlas of surface topo raphy of
proteins,” Nucleic Acids Research, vol. 31, no. 13, pp. 3352–3355, Jul.

2003.

[17] J Lian , H Edelsbrunner, and C Woodward, “Anatomy of protein
pockets and cavities: measurement of binding site geometry and

implications for li and desi n ,” Protein science : a publication of the
Protein Society, vol. 7, no. 9, pp. 1884–97, Sep. 1998.

[18] J. Dundas, Z. Ouyang, J. Tseng, A. Binkowski, Y. Turpaz, and J. Liang,

“CASTp: computed atlas of surface topo raphy of proteins with
structural and topographical mapping of functionally annotated

residues ,” Nucleic acids research, vol. 34, no. Web Server issue, pp.
W116–8, Jul. 2006.

[19] “Apache Tomcat ” [Online] A ailable: http: tomcat apache or

[20] “Jmol Documentation ” [Online] A ailable:
http://jmol.sourceforge.net/docs/JmolUserGuide/.

