
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 8, 2013

242 | P a g e
www.ijacsa.thesai.org

Software Ecosystem: Features, Benefits and

Challenges

J.V. Joshua, D.O. Alao, S.O. Okolie, O. Awodele

Department of Computer Science, School of Computing and Engineering Sciences, Babcock University, Ilishan-Remo, Ogun State,

Nigeria.

Abstract—Software Ecosystem (SECO) is a new and rapidly

evolving phenomenon in the field of software engineering. It is an

approach through which many variables can resolve complex

relationships among companies in the software industry. SECOs

are gaining importance with the advent of the Google Android,

Apple iOS, Microsoft and Salesforce.com ecosystems. It is a co-

innovation approach by developers, software organisations, and

third parties that share common interest in the development of

the software technology. There are limited researches that have

been done on SECOs hence researchers and practitioners are still
eager to elucidate this concept.

A systematic study was undertaken to present a review of

software ecosystems to address the features, benefits and
challenges of SECOs.

This paper showed that open source development model and

innovative process development were key features of SECOs and

the main challenges of SECOs were security, evolution

management and infrastructure tools for fostering interaction.

Finally SECOs fostered co-innovation, increased attractiveness
for new players and decreased costs

Keywords—Software ecosystem; Open source; closed system

I. INTRODUCTION

The notion of ecosystems originates from ecology. One
definition in Wikipedia defines an ecosystem as a natural unit
consisting of all plants, animals and micro-organisms (biotic
factors) in an area functioning together with all of the non-
living physical (abiotic factors) of the environment.

Although the above is an excellent definition, it is less
suitable here and therefore we start from the notion of human
ecosystems. A human ecosystem consists of actors, the
connections between the actors, the activities by these actors
and the transactions along these connections concerning
physical or non-physical factors.

Software ecosystems (SECO) refer to the set of businesses
and their interrelationships in a common software product or
service market [9]. A Software Ecosystem consists of the set
of software solutions that enable, support and automate the
activities and transactions by the actors in the associated social
or business ecosystem and the organizations that provide these
solutions [1].

This is an emergent field inspired in concepts from and
business and biological ecosystems [14].

Well known examples of communities that may be seen as
software ecosystems are Apples iPhone, Microsoft, Google
Android, Symbian, Ruby and Eclipse.

Ecosystem concept may refer to a wide range of
configurations. Yet, they all involve two fundamental
concepts: a network of organisations or actors, and a common
interest in the development and use of a central software
technology.

The software industry is constantly evolving and is
currently undergoing rapid changes. Not only are products and
technologies evolving quickly, many innovative companies
are experimenting with new business models, leading
occasionally to fundamental shifts in entire industry structures
and how firms and customers interrelate[17]. Recently, many
companies have adopted the strategy of using a platform to
attract a mass following of software developers as well as end-
users, building entire “software ecosystems” (SECOs) around
themselves, even as the business world and the research
community are still attempting to get a better understanding of
the phenomenon.

This paper explores the main terms under consideration
which are the meaning of SECO, identify the main features of
Software Ecosystems (SECOs) and finally establish the
benefits and challenges of SECOs

II. WHAT IS THE PROBLEM

In the past few decades, we have witnessed different types
of software development methodologies ranging from
waterfall, spiral, component, chaos, rapid application
development, rational unified process to agile models
respectively. Almost all the models mentioned encourage
development of software product entirely on the organisation
concerned.

The emergent of Software Ecosystem (SECO)
development paradigm has brought about co-innovation as a
result of different players, however research communities and
practitioners are still grasping to understand this concept.
Hence this work is aim to expose what is known about
software ecosystems (SECOs).

III. OBJECTIVES OF THE STUDY

The goal of the study is to carry out a systematic study of
software ecosystems in order to present a wider view of what
is currently known about software ecosystems

The specific objectives are to:

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 8, 2013

243 | P a g e
www.ijacsa.thesai.org

a) Identify the main features of Software Ecosystems

(SECOs).

b) Establish the benefits and challenges of SECOs

IV. SCOPE OF THE STUDY

It is not easy to study existing Software Ecosystems
(SECOs) due to the fact that many SECOs are closed
communities and it is hard to get access to information.
Therefore, we adopted free open software ecosystems as our
subject of studies.

V. SIGNIFICANT OF THE STUDY

The significance of the study is to create awareness about
the emergent fields of software ecosystems for research
communities and practitioners and to establish research
direction for software ecosystems.

VI. REVIEW OF RELATED RESEARCH

Bosch [1] proposed a Software Ecosystem (SECO)
taxonomy that identifies nine potential classes of the central
software technology as shown in Table1 below, according to
classification within two broad dimensions. The first one is the
category dimension, which ranges from operating systems to
applications, and to end-user programming. The second one is
the platform dimension, ranging from desktop to web, and to
mobile.

TABLE I. SOFTWARE ECOSYSTEM TAXONOMY

end-user

programming

MS Excel,

Mathematical,VH

DL

Yahoo!Pipes,

Microsoft PopFly,

Google’s mashup

editor

none so far

Application MS Office SalesForce, eBay,

Amazon, Ning

none so far

operating

system

MS Windows,

Linux, Apple OS

X

Google AppEngine,

Yahoo developer,

Coghead, Bungee

Labs

Nokia s60,

Palm,

Android,

iPhone

category

platform

Desktop Web Mobile

In Software Engineering (SE) community, studies of
SECOs were motivated by the software product lines (SPLs)
approach aiming at allowing external developers to contribute
to hitherto closed platforms [1].

[4], opined that a potential benefit of being a member of a
software ecosystem is the opportunity to exploit open
innovation an approach derived from open source software
(OSS) processes where actors openly collaborate to achieve
local and global benefits. External actors and the effort they
put into the ecosystem may result in innovations being
beneficial not only to themselves (and their customers) but
also to the keystone organisation, as this may be a very

efficient way of extending and improving the central software
technology as well as increasing the number of users.

According to [8] closer relationships between the
organisations in an ecosystem may enable and improve active
engagement of various stakeholders in the development of the
central software technology.

When explaining the concept of software ecosystems it is
also necessary to address how software ecosystems relate to
the development of open source software [6]. There are clear
similarities between these two concepts, but also several
differences, which justify the definition of software
ecosystems as a unique concept. The main difference between
these two relates to the underlying business model. [3],
explain the open-source business model as follows: “The
basic premise of an open-source approach is that by “giving
away” part of the Company’s intellectual property, you
receive the benefits of access to a much larger Market. These
users then become the source of additions and enhancements
to the product to increase its value, and become the target for
a range of revenue-generating products and services
associated with the product.”

Whereas in a closed software ecosystem the intellectual
property (the code) is not shared in any way.

However, different research directions indicated by
literature and industrial cases re-enforce a lot of important
perspectives to be explored, such as architecture, social
networks, modelling, business, mobile platforms and
organizational-based management [9]. Besides, SECOs
involve a multidisciplinary perspective, including Sociology,
Communication, Economy, Business and Law. These studies
are also motivated by the software vendors’ routine since they
no longer function as independent units that can deliver
separate products, but have become dependent on other
software vendors for vital software components and
infrastructures such as operating systems, libraries,
component stores, and platforms [2].

VII. ARCHITECTURE OF MAJOR SOFTWARE ECOSYSTEMS

(SECOS)

1) Symbian Software Ecosystem

In this ecosystem as shown in figure 1, the different
categories of licenses and partner relationships included are as
shown:

Fig. 1. Symbian Ecosystem [16]

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 8, 2013

244 | P a g e
www.ijacsa.thesai.org

Symbian described its network of customers and
complementors as an “ecosystem”,

In the Symbian ecosystem, the different categories of
licenses and partner relationships included are:

 System integrators or “licensees” (handset
manufacturers) that integrated externally sourced
software and internally developed hardware to create
new devices (i.e. handsets) for sale to end users.

 CPU vendors worked to ensure Symbian OS
compatibility with their latest processors.

 User Interface companies.

 Other software developers sometimes referred to as
independent software vendors (ISVs) including
developers of user applications and also middleware
components such as databases.

 Network Operators, which in most countries were the
dominant distribution channel for phones, and also
decided what software components were preloaded on
phones.

 Enterprise software developers, for cases where a
company developed Symbian compatible software for
its employees that use Symbian phones.

In many cases, members of Symbian’s ecosystem were
also members of competing mobile phone ecosystems, such as
those surrounding the Palm OS, Windows Mobile, and later
Linux based platforms such as the LiMo Foundation and
Google’s Open Handset Alliance (Android).

2) Microsoft Software Ecosystem (SECO)

Microsoft ecosystem consists of the following
components: Device manufacturers, Independent Software
Vendors (ISVs), Value Added Resellers (VARs), Office
Equipment Dealers and Systems Integrators (SI) as shown in
(Figure 2), and can all benefit from working together. But
rarely do the ecosystem pieces remain static. New software
applications are consistently being rolled out. And the VARs,
dealers and SIs that sell and support these systems change
with them.

Fig. 2. Microsoft Software Ecosystem [7]

Microsoft sit at the centre of ecosystem. Ecosystems are an
essential ingredient in delivering customer-focused solutions.
And they help drive standards. And, they present revenue
opportunities for all the partners involved. It’s no wonder that
Microsoft spends so much money on building their ecosystem

The Microsoft ecosystem of applications, partners, and
highly skilled IT resources provides customers with the best
choice.

3) iPhone Software Ecosystem

The iPhone ecosystem which is one of the Apple’s three
sub-ecosystems consists of the following components

 Developers and Designers

 Distribution

 Devices

 Users

 Internet

 Services and Advertisers

iPhone components are shown in figure3 below.

Fig. 3. iPhone components

Developers designs and implement complex interfaces
smoothly and efficiently on limited hardware. C++ and

Objective-C are the primary languages used. Apple has
historically put very little effort into supporting developers
and designers, but has stepped up efforts for the iPhone
platform. Designers are crucial to the success of iPhone
applications. Developers simply utilise various technologies
available to give designers what they want and need to build
excellent interfaces.

4) Ruby Software Ecosystem

Ruby is a dynamic, open source programming language
with a focus on simplicity and productivity. It has an elegant
syntax that is natural to read and easy to write. It was created
by Yukihiru Matsumota in 1995 in Japan.

The Ruby Software Ecosystem consists mainly of two
elements i.e. Gems and Developers with possible relationships

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 8, 2013

245 | P a g e
www.ijacsa.thesai.org

among them. If a developer has a relationship with a gem, he
is a developer of that specific gem.

Fig. 4. Ruby Software Ecosystem [11]

The entire Ruby ecosystem consists of all developers,
gems and their relationships as shown in figure 4. Some
corporate high technology initiatives with Ruby are: Sun
Microsystems, Microsoft, Apple, IBM and SAP.

5) Google Android Ecosystem

Android is a comprehensive open source platform
designed for mobile devices. It is championed by Google and
owned by Open Handset Alliance. The open Handset Alliance
prominent members include: T-Mobile, Motorola, Samsung,
Sonny Ericsson, Toshiba, Vodafone, Google, Intel, and Texas
instrument. This list has grown multi fold with over 80 in
number [5].

Android is revolutionizing the mobile space. It is a truly
open platform that separates the hardware from the software
that runs on it. This allows for a much larger number of
devices to run the same applications and creates a much richer
ecosystem for developers and consumers.

One way in which Android is quite different from other
platforms is the distribution of its applications. On most other
platforms, such as iPhone, a single vendor holds a monopoly
over the distribution of applications. On Android, there are
many different stores, or markets. Each market has its own set
of policies with respect to what is allowed, how the revenue is
split, and so on. As such, Android is much more of a free
market space in which vendors compete for business. The
figure 5 below summarised android software stack.

Fig. 5. Android Software Stack [13]

6) Eclipse Ecosystem

Eclipse is an open source integrated development
environment (IDE) for Java. It was originally aimed to provide
a united platform for different IDE products from IBM.

The Eclipse project, which began at the end of 1998, has
an ambition to “eclipse” the leader of the IDE market. Within
few years, Eclipse has evolved from Java IDE (version 1.0) to
a universal tooling platform (version 2.0), and finally evolves
to an application framework for building rich client
application (version 3.0). Commercial software development
tools such as IBM Rational tool, web sphere studio, and
Borland JBuilder have been developed based on Eclipse.

Eclipse is currently managed by the Eclipse foundation
with over 100 members including HP, IBM, Nokia, INTEL
and Borland. The biggest challenge for the foundation is to
cope with its rapid growth from its community.

Eclipse ecosystem Architecture

The functional building blocks of the Eclipse IDE are
illustrated in Figure 6 below. The entire platform is open
source and royalty-free for other open source or commercial
products that add new building blocks.

Fig. 6. Eclipse ecosystem Architecture [12]

A. Components of the Eclipse ecosystem Architecture

1. C/C++ Development Tools (CDT)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 8, 2013

246 | P a g e
www.ijacsa.thesai.org

The C/C++ Development Tools (CDT) project is creating
a fully functional C and C++ IDE for the Eclipse platform.

2. Plug-in Development Environment

The Plug-in Development Environment (PDE) supplies
tools that automate the creation, manipulation, debugging, and
deploying of plug-ins.

3. Java Development Tools

Java Development Tools (JDT) are the only programming
language plug-ins included with the Eclipse SDK. However,
other language tools are available or under development by
Eclipse subprojects and plug-in contributors

4. Eclipse Runtime Platform

The core runtime platform provides the most basic level of
services such as Loading plug-ins and managing a registry of

available plug-ins, managing resources, update and help
facility.

5. Integrated Development Environment

The Eclipse IDE provides a common user experience
across multi-language and multi-role development activities.

6. Web Tools Platform

The mission of the Web Tools Platform (WTP) project is
to provide a generic, extensible, and standards-based tool
platform that builds on the Eclipse platform and other core
Eclipse technologies.

7. Rich Client Platform

The Eclipse Rich Client Platform (RCP) is a set of plug-ins
needed to build a rich client application.

The eclipse consortium is currently hosting eight top level
projects and over thirty sub-level open source projects. There
are also countless number of commercial and open source
Eclipse related products, plug-ins, and distributions available
from the internet. This virtual ecosystem takes care of
software development, application life cycle, data
management, and business operations

VIII. OPEN SOURCE SOFTWARE (OSS) AND CLOSED

ECOSYSTEMS - SIMILARITIES AND DIFFERENCES

TABLE II. THE SIMILARITIES AND DIFFERENCES BETWEEN OPEN

SOURCE SOFTWARE AND CLOSED SYSTEMS

Similarities

A shared interest in the development, evolution, and use of a software

product

Independent actors collaborate and contribute to development

Open innovation

New business models as compared to traditional licensed software

Differences

OSS Closed ecosystems

Open source code. Closed source code.

Ownership is shared. Ownership and control lies with

the

keystone organisation.

Free use (with options for paying

for

specializations and related

services)

Pay for use.

Extensibility through open source

code.

Extensibility through controlled

interfaces

IX. FEATURES OF SOFTWARE ECOSYSTEMS

The main features of SECOs are as follows.

1) They Inherits characteristics of natural

ecosystems like mutualism, commensalism, symbiosis

and so on

2) SECOs have architectural concepts like

interface stability, evolution management, security

and reliability

3) It is an to open source development model

4) They can be used to negotiate requirements

for aligning needs with solutions, components, and

portfolios

5) SECOs have capability for process

innovation.

X. BENEFITS OF SOFTWARE ECOSYSTEMS

1) Fosters the success of software co-evolution and

innovation inside the organization involved and increases

attractiveness for new players

2) Decreases costs involved in software development

and distribution

3) Help analyse and understand software architecture

4) Supports cooperation and knowledge sharing among

multiple and independent software vendors

5) Enables better analysis of requirements and

communication among stakeholders

6) Help to overcome the challenges during design and

maintenance of distributed applications

7) Provides help to the tasks of business identification,

product architecture design and risk identification

8) Provides information for the product line manager

regarding software dependencies

XI. CHALLENGES OF SOFTWARE ECOSYSTEMS

1) Establishing relationships between ecosystem actors

and proposing an adequate representation of people and their

knowledge in the ecosystem modelling.

2) Several key architectural challenges such as: platform

interface stability, evolution, management, security, reliability.

3) Heterogeneity of software licenses and systems

evolution in an ecosystem and how organizations must

manage these issues in order to decrease risks of dependence.

4) Companies have difficulty at establishing a set of

resources in order to differentiate from competitors.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 8, 2013

247 | P a g e
www.ijacsa.thesai.org

5) Technical and socio-organizational barriers for

coordination and communication of requirements in

geographically distributed projects.

6) Insufficient infrastructures and tools for fostering

social interaction, decision-making and development across

organizations involved in both open source and proprietary

ecosystems.

XII. CONTRIBUTIONS

This paper contributes to the field of software ecosystems
by providing

1) A necessary foundation for understanding how

Software Ecosystems are composed and further aids

understanding of this new and expanding area of software

development.

2) A number of open research questions and

challenges which should enable scholars interested in

SECOs to swiftly gain an overview of this research area

XIII. FUTURE DIRECTIONS FOR SOFTWARE ECOSYSTEMS

As with most novel approaches, this paper on SECO has
opened up possibilities for new and exciting future directions.
This following area should be investigated as future research
directions/challenges for SECOs.

1) In Open source ecosystems.

a) How can quality be measured per developer?

b) How can relationships be formed between

developers?

c) How can conflicts be resolved in open source

ecosystems?

d) How can application program interfaces (APIs) to

third-party components be used.

2) Governance.

a) What are the best strategies for survival in an

ecosystem?

b) How can organisations involved achieve and

maintain a healthy position in a SECO?

3) Analysis

a) How can an ecosystem be analysed.

b) Is it possible to create models, visualizations, and

large data sets for analysis?

4) Openness

Every software platform at the centre of an ecosystem has
to have some degree of openness. The main research question
here is

How can openness in software affects and influences the
success of a business, where there appears to be a real trade-
off between the height of entry barriers and number of third
parties willing to participate in the ecosystem.

5) Quality

a) How can ecosystems deliver the highest quality

experience to customers in the ecosystem?

b) What are measures that participants can take to

increase quality?

XIV. CONCLUSION

This paper provides a review of SECOs and confirmed that
it is an emergent field that has been mainly inspired by studies
from business and natural ecosystems. We highlighted that
SECOs field needs more industrial studies to increase its body
of evidence. Also, given the current state of research and
practice in SECOs, we envisaged the need to conduct
integrative studies among research communities and industry.

Finally the paper proposes a number of open research
questions and challenges to enable scholars interested in
SECOs to swiftly gain an overview of the research area and to
help them in their own research endeavours.

REFERENCES

[1] Bosch, J. (2009). From Software Product Lines to Software Ecosystems.

In proceedings of 13th International Software Product Line Conference
(SPLC'09), San Francisco, USA, 24-28 August.111-119.

[2] Boucharas, V., Jansen, S., and Brinkkemper, S., (2009), ‘Formalizing

Software Ecosystem Modeling’. In: Proceedings of the 1st International
Workshop on Software Ecosystems, 11th International Conference on

Software Reuse, Falls Church, USA, 34-48, September.

[3] Brown, A. W. and Booch, G. (2002). Reusing Open-Source Software
and Practices: The Impact of Open-Source on Commercial Vendors. In

proceedings of 7th International Conference on Software Reuse:
Methods, Techniques, and Tools, Austin, USA, April 15-19. 123-136.

[4] Chesbrough, H. (2006). Open Innovation: A New Paradigm for

Understanding Industrial Innovation. In Open Innovation: Researching a
New Paradigm. Chesbrough, H., Vanhaverbeke, W. and West, J. (eds.).

Oxford: Oxford University Press: 1-12.

[5] Fabio Cevasco (2011) Ruby Compendium: An essential Guide to the
Ruby Ecosystem.

[6] Fitzgerald, B. (2006). The Transformation of Open Source Software.
MIS Quarterly 30(3): 587-598.

[7] Gantz J.F, Bibby D. (2011) White paper on Partner Opportunity in the

Microsoft Ecosystem.

[8] Hanssen, G.K. and T.E. Fægri,(2008) Process Fusion - Agile Product
Line Engineering: an Industrial Case Study. Journal of Systems and

Software 81: p. 843--‐854

[9] Jansen, S., Brinkkemper S., Finkelstein A. Bosch J.(2009), Introduction
to the Proceedings of the First Workshop on Software Ecosystems, in

First International Workshop on Software Ecosystems. CEUR--WS.

[10] Jansen S., Brinkkemper S., Finkelstein, A.(2009) A Sense of
community: A research agenda for software ecosystems. In: Proceedings

of the 31st International Conference on Software Engineering.

[11] Kabbedijk, J., and Jansen, S., (2011), ‘Steering Insight: An exploration
of the Ruby Software Ecosystem’. In: Proceedings of the 2nd

International Conference on Software Business, Brussels, Belgium, 44-
55, June.

[12] Lam T., Gotz A. (2005)’ Leveraging The Eclipse Ecosystem for
Scientific Community’10th ICALEPCS Int. Conf. on Accelerator &

Large Expt. Physics Control Systems. Geneva, 10 - 14 Oct 2005,
TH3A.3-5O (2005)

[13] Mark Gargenta (2011) Learning Android: O’Reilly media Inc.

[14] Moore, J. F. (1993). Predators and prey: A new ecology of competition.

Harvard Business Review 71(3): 75-86.

[15] Wirehead Labs, Inc. (2012). The iPhone Ecosystem

[16] Wood, David (2002). “Symbian Developer Expo 2002 - in context”
internal presentation,Symbian Ltd., London.

[17] Xu, L., Brinkkemper, S. (2007): Concepts of product software.

European Journal of Information systems 531-541

