
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

79 | P a g e
www.ijacsa.thesai.org

A Distributed Key Based Security Framework for

Private Clouds

Ali Shahbazi

Dept. of Computer Science

East Carolina University

Greenville, NC 27858 USA

Julian Brinkley

Dept. of Computer Science

East Carolina University

Greenville, NC 27858 USA

Ali Karahroudy

Dept. of Computer Science

East Carolina University

Greenville, NC 27858 USA

Nasseh Tabrizi

Dept. of Computer Science

East Carolina University

Greenville, NC 27858 USA

Abstract—Cloud computing in its various forms continues to

grow in popularity as organizations of all sizes seek to capitalize

on the cloud’s scalability, externalization of infrastructure and

administration and generally reduced application deployment

costs. But while the attractiveness of these public cloud services is

obvious, the ability to capitalize on these benefits is significantly

limited for those organization requiring high levels of data

security. It is often difficult if not impossible from a legal or

regulatory perspective for government agencies or health services

organizations for instance to use these cloud services given their

many documented data security issues. As a middle ground

between the benefits and security concerns of public clouds,

hybrid clouds have emerged as an attractive alternative; limiting

access, conceptually, to users within an organization or within a

specific subset of users within an organization. Private clouds

being significant options in hybrid clouds, however, are still

susceptible to security vulnerabilities, a fact which points to the

necessity of security frameworks capable of addressing these

issues. In this paper we introduce the Treasure Island Security

Framework (TISF), a conceptual security framework designed to

specifically address the security needs of private clouds. We have

based our framework on a Distributed Key and Sequentially

Addressing Distributed file system (DKASA); itself borrowing

heavily from the Google File System and Hadoop. Our approach

utilizes a distributed key methodology combined with sequential

chunk addressing and dynamic reconstruction of metadata to

produce a more secure private cloud. The goal of this work is not

to evaluate framework from an operational perspective but to

instead provide the conceptual underpinning for the TISF.

Experimental findings from our evaluation of the framework
within a pilot project will be provided in a subsequent work.

Keywords—private cloud security framework; distributed key;

dynamic metadata reconstruction; cloud security

I. INTRODUCTION

Cloud computing, in its varying incarnations, continues to
emerge as an attractive deployment option for enterprises and
organizations seeking ways to reduce and better manage the
costs associated with application deployment. Commercial
cloud services allow organizations to consume computing
resources in a manner similar to traditional utilities like
electricity or water; paying for computing resources in a matter

commensurate with their use. This Platform as a Service
(PaaS) model additionally externalizes the costs associated
with infrastructure and systems administration while providing
a potentially more scalable and reliable deployment
environment [1]. These significant benefits have created an
impression in the minds of many consumers and organizational
decision makers that ―the cloud‖ is the answer to any number
of software dilemmas.

But while the aforementioned benefits are undoubtedly
attractive, these public cloud services are not without
significant drawbacks within certain usage scenarios. In
circumstances involving highly confidential, sensitive or secret
data, security issues inherent to public clouds render their use
inadvisable, impractical or even impossible depending upon
legal and regulatory requirements. Government entities and
health care organizations for instance often face legally
mandated data security requirements that nearly all cloud
services are incapable of satisfying due to a host of real and
perceived security related issues [2-5]. The perception of the
security and confidentiality vulnerabilities of public clouds has
been reinforced by a number of data breaches reported in the
media [6]. While governmental entities, regulatory bodies and
medical organizations may benefit from the cloud given the
large volumes of data generally involved with their respective
activities, the risk of a single data breach often outweighs the
potential benefits. Although some cloud providers continue to
address these security and regulatory issues, as Microsoft has
with the addition of Health Insurance Portability and
Accountability Act (HIPAA) compliance features added to its
Window‘s Azure cloud service [7], public clouds still possess
too many security unknowns for many organizations.

As a result of these issues hybrid clouds have emerged as a
middle ground between the aforementioned benefits of cloud
computing and the identified security issues. Private clouds,
significant aspects of private clouds, are developed and
administered by an organization‘s internal IT department for
the exclusive use by specific users or user groups within the
organization [1, 8]. It is presumed that this greater degree of
control guarantees an elimination of the security and regulatory
issues posed by public clouds. But these private clouds may

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

80 | P a g e
www.ijacsa.thesai.org

also suffer from security issues, leading to a number of
proposals designed to address these issues. In this paper we
introduce the Treasure Island Security Framework (TISF)
which builds upon existing thinking to provide a scalable
security framework for private clouds.

II. RELATED WORK

There is a significant body of work which documents the
challenges and proposed solutions to the issue of cloud
security; both public and private [9-12]. Many of these works
take substantially different approaches to the issue of cloud
security given the broad topic that is cloud computing. The
approach taken within this works revolves primarily around an
overlapping use of encryption, distributed key methodology,
sequential chunk addressing and dynamic metadata
reconstruction to improve system security.

Distributed key methodology is not a new concept having
significant support with the literature albeit in significantly
different conceptualizations and implementations [13-14]. A
form of distributed key methodology serves as the backbone of
the security effort proposed within this work whereby the key
necessary to decrypt individual file chunks and reconstruct a
stored file is distributed within our proposed system. This
methodology stands in contrast to the some of the more
common methods of cloud authentication such as those based
primarily on password protection and Private Key
Infrastructure (PKI). While these techniques are relatively easy
to implement, they have a number of deficiencies which have
been documented in the scientific literature and the media.
Password protection for instance is dependent upon the user‘s
ability to maintain confidential information against social
engineering attacks wherein information enabling the
reconstruction of one or more passwords may be divulged
inadvertently by a user [15]. Password methodology is
additionally troublesome given the average user‘s penchant for
password reuse [16]. While the reuse of an existing password
minimizes the cognitive load that memorizing a number of
different passwords for different system creates, reuse
effectively means that a password compromised for one system
allows malicious users to access a host of other user accounts.

This is especially troublesome for email accounts which
often serve as key link in the user verification process for many
systems. Ticket based authentication using the Kerberos
protocol is an improvement over pure password based
protection however this methodology still possesses security
risks [17]. A breach of a system‘s authentication server will
result in the exposure of all user accounts due to the
centralization of authentication management [18]. Public Key
Infrastructure (PKI) addresses some of these issues through the
use of digital certificates for entity identity verification [19].
This approach however also has a number of flaws [20]. The
distributed key approach utilized within our proposed system
addresses many of these issues by using a decentralized form of
authentication that eliminates the single point of failure found
in password protection scheme given the use of a segmented,
dispersed key. This methodology is further bolstered by our use
of a form of dynamic metadata reconstruction, which protects
information about the stored data, and chunk encryption [21].

III. THE TREASURE ISLAND SECURITY FRAMEWORK (TISF)

While the Google File System (GFS) [22-23] and the
Hadoop Distributed File System (HDFS) [24-26], a GFS
derivative, are commonly utilized with private clouds, we have
proposed an alternative cloud architecture upon which the
Treasure Island Security Framework is based. The Distributed
Key and Sequentially Addressing Distributed file system
(DKASA), which builds upon aspects of both GFS and HDFS,
improves the security of data storage and file distribution in a
private cloud primarily through the introduction of dynamic
metadata reconstruction, sequential addressing and distributed
key methodology.

A. Distributed Key and Sequentially Addressing File System

The Distributed Key and Sequentially Addressing
Distributed file system (DKASA), as illustrated abstractly in
Fig. 1, has a number of characteristics borrowed from the GFS
including a single master configuration, use of fixed chunk
sizes and chunk replication. We provide assumptions with
respect to the configuration of DKASA within our proposed
framework to contextual the security risk model discussed in
Section 3 C.

1) Single Master Server
Both Single Master (SM) and Dual Main Server (DMS)

configurations are possible within the DKASA file system
although our proposal is based on the use of the former;
mirroring the GFS. The DMS configuration, which involves
the use of a management server and a file retrieval server, is
potentially less robust than the SM configuration given its
relatively poor performance under stress. It is likely, with
moderate to high levels of network traffic and significant
numbers of large files, that the retrieval server in the DMS
configuration becomes a bottleneck for the entire system.

2) Fixed Chunk Size and Multiple Replicas
We anticipate the use of a fixed chunk size, which enables

the use of the GFS mutation and lease method to reduce
network traffic. Unlike the GFS which uses a fixed size of
64MB we have consciously chosen to leave the size of the
chunk ambiguous as both large and small chunk sizes have
advantages and disadvantages. A large chunk size for instance
will reduce the number of chunk servers needed for each client
while also reducing the client‘s interaction with the master for
reading metadata and namespaces. This large chunk size
however is also incompatible with smaller files. A smaller
chunk size is compatible with smaller files however it may
result in greater data fragmentation. In an actual
implementation of our framework a system architect would
determine the appropriate chunk size for the specific usage
scenario.

Each chunk within the system will have a number of
replicas (k) to ensure data availability; each replica chunk
exists in isolation from the original. In the event that the
original chunk is unavailable the replica system will retrieve a
replica and use that data to reconstruct the original file.

3) Encryption
Each chunk‘s data is encrypted in the client machine and

sent via secure communication using RSA [27] and Advanced

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

81 | P a g e
www.ijacsa.thesai.org

Fig. 1. Treasure Island Security Framework Abstract Model

Encryption Standard (AES) encryption [28]. The key
differentiation between the method proposed in this work and
traditional approaches is the use of a distributed key approach
as opposed to the use of Public Key Infrastructure (PKI).

4) Distributed Key and Sequential Addressing
The use of a distributed key methodology has been driven

primarily by two factors, a desire to increase security while
introducing a level of flexibility whereby different security
levels exist within the system. In terms of the latter, this type
of security granularity facilitates varying degrees of file and
user level security as opposed to a methodology within which
the level of security within the system as whole is the only
manipulable value.

Distributed key methodology as proposed within the
DKASA system involves the distribution of a cryptographic
key into four isolated parts. The first two parts of the key are
stored in the master server and the client, the third part is stored
in each chunk (n) and the final part of the key is stored in the
previous chunk (n -1).

A file to be stored in the private cloud will be divided into a
series of sequentially addressed chunks with distinct, appended
headers and footers. The header of each encrypted chunk
contains the following information:

 128 bit local deciphering key

 128 bit remote deciphering key

 The address of the next chunk

 128 bit status code identifying the originality property
of the chunk

 1024 bits of audit data

This header data is used by the Cloud Management Server
(CMS) and the user‘s client during the file retrieval process to
locate file chunks, decipher them and rebuild the original file
using the distributed key and sequential addressing approach.

The full key necessary to decrypt each encrypted chunk is
produced as a result of the concatenation of the parts of the key
stored on the master server, the client, the current chunk server
and the previous chunk server as illustrated in Fig. 2.

Upon successful completion of this process an interim copy
of the file is available to the user on the client machine. After
the user completes file manipulation (read, update, delete, etc)
based on the mutation and lease method as employed within
the GFS the chunks are stored on new servers. The complete
file access algorithm is as follows:

procedure FileRetrieval()

1) Client machine sends authentication request to master

server

2) Master server checks and approves client

3) Master server sends SID and service lists to client

4) Client asks master server for the address of the first

chunk

5) Master server sends first chunk server address and first

chunk (n-1) code part to client

6) Client send chunk server request, 128 bits of

deciphering key, code part (n-1) and first chunk address

7) Based on internal algorithm client partition is

reinterpreted to new deciphering code

8) Client reads and deciphers first chunk from the file

server based on the reconstructed key

9) LOOP: Client refers to the next server based on the

read data from the current server

10) Client reads and deciphers chunk from the file

11) server based on the reconstructed key

12) IF: File is complete

13) END LOOP

14) END IF

15) END LOOP:
end FileRetrieval

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

82 | P a g e
www.ijacsa.thesai.org

Fig. 2. TISF Sequential Addressing and Distributed Key Methodology

B. Security Risk Model

Our approach adds security beyond that found in security
schemes using PKI and single password methodologies in that
the likelihood of system compromise from a single attack is
largely eliminated. We evaluate this claim using the previously
outlined assumptions and the presumption of a single file
broken down into many chunks (N), each possessing many
replicas (K) within a distributed key architecture. We define
the distributed key as

 DK = Di + Di-1 + DCM + DMS (1)

All four isolated parts of the key are necessary to construct
the full cryptographic key required to decipher each chunk. To
evaluate the likelihood of comprise it is thus necessary to
calculate the availability of each of the four key components
with respect to their individual locations; the master server, the
client, the original chunk and the previous chunk. Within the
working system the master server is constantly operational
therefore the availability of this component to an attacker is
equal to 100% or

PA (DMS) = 1 (2)

For the client machine the window for an attack is based on
the total time of connection. For the purpose of this analysis
we assume a client connection duration that is represented as
TCM. For the final two key components, it is necessary for an
attacker to successfully attack two different chunks, the current
chunk and the previous chunk, to assemble all of the
components necessary to reconstruct the full cryptographic key.
The probability of a successful attack in this scenario is

 Cn = {(Ns -b) 2-2}/ {Ns! / (Ns -2)! 2!} (3)

Where the denominator is the number of all choices and the
numerator is the likelihood that an attacker successfully selects
the server containing the first chunk. Thus the chance of

gaining access to all the necessary items for deciphering a
chunk will be:

PFA = {(Ns -b) 2-2}/{Ns!/(Ns -2)!2!} X {TCM/86400} (4)

The availability of a file for a user, in the event of a server
failure or malware attack, depends upon the number of replica
chunks that exist for each original. When there are K < n
replica chunks a high risk situation exists for the integrity of
the user data in that file chunks exist without a backup. Where
K = n all chunks have a backup therefore a full copy of the
entire file exists. The total number of full file backups may be
determined by (K/ (n+K)). The chance of successful file
retrieval after any malware attack server failure is thus:

AI = K Pp / (n+K) (5)

where Pp equals availability of a server in the system, K the
quantity of replica control chunks, and n the number of chunks
per file.

IV. CONCLUSION AND FUTURE WORK

In this paper we have introduced a security framework for
private clouds called the Treasure Island Security Framework
(TISF) which is based upon a Distributed Key and Sequentially
Addressing Distributed file system. We have introduced
DKASA and the methodology behind its proposed
implementation while evaluating the security risks inherent in
our approach. We believe that our proposed approach
enhances both data availability and integrity while providing a
higher degree of security and backup control at both the user
and file level. Perhaps the most significant advantage of the
DKASA cloud as proposed is the avoidance of the most
common public cloud security and data availability issues;
issues which have been chronicled exhaustively in both the
press and the related scientific literature. Our subsequent work
will seek to evaluate our claims within a pilot project which
will be documented in a future paper.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

83 | P a g e
www.ijacsa.thesai.org

REFERENCES

[1] R. Prodan and S. Ostermann, "A survey and taxonomy of infrastructure
as a service and web hosting cloud providers", in 10th IEEE/ACM

International Conference on Grid Computing, Alberta, Canada, 2009,
pp. 17-25.

[2] K. Ren, C. Wang and Q. Wang, ―Security Challenges for the Public

Cloud,‖ IEEE Internet Computing, vol. 16, pp. 69–73, Jan. 2012.

[3] R. Iglesias, R. Nicholls, A. Travis and W. Henderson, ―Private Clouds
with No Silver Lining: Legal Risk in Private Cloud Services,‖ Digiworld

Economic Journal, no. 85, pp. 125–140, 1
st
 Q. 2012.

[4] L. Kaufman, ―Data Security in the World of Cloud Computing,‖ IEEE
Security and Privacy Journal IEEE, vol. 7, pp. 61-64, Jul. 2009.

[5] S. Subashini and V. Kavitha, ―A Survey on Security Issues in Service

Delivery Models of Cloud Computing,‖ Journal of Network and
Computer Aplications, vol. 34, no. 1, pp. 1-11, Jan. 2011.

[6] J. Galante, O. Kharif and P. Alpeyev, ―PlayStation security breach

shows Amazon‘s cloud appeal for hackers,‖ The Seattle Times, May,
16, 2011. [Online], Available:

http://seattletimes.com/html/businesstechnology/2015071863_amazoncl
oudhackers17.html, [Accessed Jun. 29, 2013].

[7] B. T. Horowitz, ―Microsoft Adds HIPAA Compliance Features to Azure
for Cloud Health Data,‖ eweek.com, para. 1, Jul. 27, 2012. [Online].

Available: http://www.eweek.com/c/a/Health-Care-IT/Microsoft-Adds-
HIPAA-Compliance-in-Windows-Azure-for-Cloud-Health-Data-

446671/. [Accessed Jun. 29, 2013]

[8] C. Babcock, ―Time to Believe in ‗Private Clouds‘,‖ Information Week,
vol. 28, no. 12, pp. 27-30, Apr. 2009.

[9] K. W. Nafi, T. S. Kar, S. A. Hoque and M. M. A. Hashem, ‖A Newer

User Authentication, File encryption and Distributed Server Based
Cloud Computing security architecture,‖ International Journal of

Advanced Computer Science and Applications, vol. 3, no. 10, pp. 181-
186, Oct. 2012.

[10] T. Wood, A. Gerber, K. K. Ramakrishnan, P. Shenoy and J. Van der

Merwe, ―The case for enterprise-ready virtual private clouds,‖ in Proc.
of the 2009 Conference on Hot Topics in Cloud Computing, San Diego,

CA, 2009, pp. 4-9.

[11] D. W. Chadwick, M. Casenove and K. Siu, ―My private cloud—granting
federated access to cloud resources,‖ Journal of Cloud Computing:

Advances, Systems and Applications, vol. 2, no. 1, pp. 1-16, Feb. 2013.

[12] A. A. Karahroudy. ―Security Analysis and Framework of Cloud
Computing with Parity-Based Partially Distributed File System.‖ M.S.

thesis, East Carolina University, Greenville, USA, 2011.

[13] R. Geambasu, A. A. Levy, T. Kohno, A. Krishnamurthy and H. M.

Levy, ―Comet: An active distributed key –value store,‖ in 9
th

 USENIX
Symposium on Operating Systems Design and Implementation - OSDI,

British Columbia, Canada, 2010 pp. 323-336.

[14] J. Resch. ―Authenticating Cloud Storage with Distributed Keys,‖

presented at the Storage Developer Conference (SNIA), Santa Clara,
CA, 2011.

[15] S. P. Maan and M. Sharma, ―Social Engineering: A Partial Technical
Attack,‖ International Journal of Computer Science Issues (IJCSI), vol.

9, no. 2, pp. 557-559, Mar. 2012 ----MAYBE FIND A SOURCE THAT
IS BETTER WRITTEN

[16] B. Ives, K. R. Walsh and H. Schneider, ―The domino effect of password

reuse,‖ Communications of the ACM, vol. 47, no. 4, pp. 75-78, Apr..
2004.

[17] S. P. Miller, B. C. Neuman, J. I. Schiller and J. H. Saltzer, ‖Kerberos

authentication and authorizatio system‖ in In Project Ahtna Technical
Plan. 1987 -----FIX FORMAT OF CITATION

[18] S. M. Bellovin, M. Merritt, ―Limitation of the Kerberos authentication

system,‖ ACM SIGCOMM Computer Communication Review, vol. 20,
no. 5, p. 119-132, Oct. 1990.

[19] D. Solo, R. Housley and W. Ford, ―X. 509 public key infrastructure

certificate and CRL profile,‖ Jan. 1999 [Online]

[20] C. Ellison and B. Schneier, ―Ten risks of PKI: What you‘re not being
told about public key infrastructure,‖ Computer Security Journal , vol.

16, no. 1, pp. 1-7, Nov. 2000.

[21] A. Waqar, A. Raza, H. Abbas and M. Khurram Khan, ‖A Framework for

Preservation of Cloud Users‘ Data Privacy using Dynamic
Reconstruction of Metadata,‖ Journal of Network and Computer

Applications, vol. 36, no. 1, pp. 235-248, Jan. 2013.

[22] S.E. Arnold, "MapReduce, Chubby and Hadoop", KM World, vol. 19,
no. 10, pp. 1-18, Nov. 2010.

[23] S. Ghemawat, H. Gobioff and S. Leung, ―The Google File System,‖ in

Proc. ACM SIGOPS Operating Systems Review, Bolton Landing, NY,
USA, 2003, pp. 29-43.

[24] M. Bhandarkar, "MapReduce programming with Apache Hadoop",

IEEE International Symposium on Parallel & Distributed Processing,
Taipei, Taiwan, 2010, p. 1.

[25] K. Shvachko, Hairong Kuang, S. Radia and R. Chansler, "The Hadoop

Distributed File System",in IEEE 26th Symposium on Mass Storage
Systems and Technologies, Reno, USA, 2010, pp. 1-10.

[26] T. White, Hadoop: The Definitive Guide, Sebastopol, CA: O‘Reilly

Media, 2009.

[27] R. L. Rivest, A. Shamir and L. Adleman, ―A Method for Obtaining

Ditial Signature and Public-Key Cryptosystems,‖ Laboratory for
Computer Science, Massuchesetts Institute of Technology, Cambridge,

MA, Nov. 1977.

[28] J. Daemen, V. Rijmen, ―Announcing the Advanced Encryption Standard
(AES),‖ Federal Information Processing Standards OPublication 197,

Nov. 2001.

