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Abstract—in this paper, we study a class of methods for 

solving the management equilibrium model. We first give an 

estimate of the error bound for the model, and then, based on the 

estimate of the error bound, propose a method for solving the 

model. We prove that our algorithm is quadratically convergent 

without the requirement of existence of a non-degenerate 
solution. 
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I.  INTRODUCTION 

The management equilibrium model seeks a vector 
* *( , )x y

2nR  such that  

* * * T * * * *0, 0,( ) 0, ,x y x y Mx Ny Qz q          (1)                  

Where , ,m nM N R  m lQ R  ,
mq R ， and there 

exists 
* lz R . The model originated from equilibrium 

problems in economic management, engineering, etc. 
Applications of complementarity problems from the field of 
economics include general Walrasian equilibrium, spatial 
price equilibria, invariant capital stock, market equilibrium, 
optimal stopping, and game-theoretic models, In engineering, 
the complementarity problems also plays a significant role in 
contact mechanics problems, structural mechanics problems, 
obstacle problems mathematical physics, Elastohydrodynamic 
lubrication problems, traffic equilibrium problems(such as a 
pathbased formulation problem, a multicommodity 

formulation problem, network design problems),etc. 
[1,2]

 For 
example, the equilibrium of supply and demand in an 
economic system is often depicted as a complementary model 
between two decision variables.  As another example, the 
typical Walras’ Law of competition equilibrium in economic 
transactions can also be converted to complementary model 

between price and excess demand
[3]

. 

Recently, many effective methods have been proposed to 

solve (1)
[4 6]

. The basic idea of these methods is to convert 
(1) into an unconstrained or a simply constrained optimization 
problem. As we known, if the Jacobian matrix at a solution to 
(1) is non-singular, then it is guaranteed that the Levenberg-

Marquardt (L-M) algorithm is quadratically convergent
[5,6]

. 
Lately, Yamashita and Fukushima have proved that the 
condition for the local error bound to hold is weaker than the 

non-singularity of the Jacobian matrix
[7]

. This motivates the 
establishment of an error bound for (1). The establishment of 
LCP error bound has been extensively studied (see literature 

review [8] ）. For example, Mangasarian and Ren have given 

an error bound under the 
0R - matrix condition

[9]
. Clearly, (1) 

is a generalization of LCP, which prompts whether or not the 
LCP error bound can be generalized to (1). For this reason, we 
focus on the establishment of an error bound for (1), design a 
smooth algorithm for solving (1) using the error bound, and 
analyze the convergence of the algorithm as well as the rate of 
convergence. 

In section 2, we give primarily an equivalent conversion of 
(1). In section 3, using a new residual function, we establish an 
error bound for (1) under more general conditions. In section 
4, based on the established error bound, we propose a smooth 
algorithm for solving (1), and prove that the given algorithm is 
quadratically convergent without the requirement of existence 
of a non-degenerate solution. Compared with the convergence 
of algorithms in [5,6], the condition is weaker. 

Now we give some notations. The inner product of vectors

, nx y R is written as
Tx y . Let || || be the Euclidean norm. 

For ease of presentation, we write ( , , )x y z for column vector

T T T T( , , )x y z , and use 
*( , )dist   for the shortest distance 

from vector  to a closed convex set 
* . 

II. EQUIVALENT CONVERSION OF THE MANAGEMENT 

EQUILIBRIUM MODEL 

We give in this section an equivalent conversion of (1). 

For convenience, let
* * * *( , , ) n n lx y z R   . Then, (1) 

can be converted equivalently to the following problem ：

Find 
* such that 

* *

* *

*

0, 0,

( ) ( ) 0,

( , , ) 0,

T

A B

A B

M N Q q

 

 



  





   

     （2） 

Where ( ,0,0), (0, ,0)A I B I  . Let 
* be the set of 

solutions of（2） and assume that it is nonempty. 
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We have the following conclusion. 

Theorem 1.1 Vector 
* * 2( , ) nx y R is a solution to （1

） if and only if there exists
* lz R such that 

* * * *( , , )x y z   is a solution to (2). 

III. ESTIMATION OF THE ERROR BOUND OF THE 

MANAGEMENT EQUILIBRIUM MODEL 

This section mainly establishes the error bound for the 
management equilibrium model. First, we give some related 
results, the definition of projection operator and it related 
properties. 

Theorem 2.1 For a given positive constant  ， there 

exists a constant
1 0  such that 

*

1( , ) ( ), , ,dist r            

where ( ) || min{ , ||r A B   ， 

2{ | ( , , ) }n lR M N Q q       .                               

Proof. Assume that the theorem does not hold. Then there 

exists a sequence { }k ，such that for any positive integer k

，we have 

*( , ) ( ) 0k kdist kr    . 
That is, 

*

( )
0,

( , )

k

k

r
k

dist



 
 ，    （3） 

where
,k 

and 
k  . Since sequence 

{ }k
is 

bounded，and 
( )r 

is continuous， together with（3），we 

have
( ) 0,kr k  

. In addition, sequence 
{ }k

has a 

convergent subsequence
{ }ik

. Let ( ),ik

ik    

where
* 
. We have the following conclusion.  

( )
( ).

|| ||

i

i

k

ik

r
k




 
 


     （4） 

Where,   is a positive constant. 

On the other hand，from （3）we have 

*

( ) ( )
0( ).

( , )|| ||

i i

ii

k k

ikk

r r
k

dist

 

  
  


 

This contradicts with (4)，hence the theorem is proved.      

We give in the following the error bound established by 

Hoffman
[10]

. 

Lemma 2.1 For a polyhedral cone 

1 1 2 2{ | , }nP x R D x d D x d     

, where
1 2, ,l n m nD R D R   1 ,ld R  

2

md R ， there 

exists a constant 0,c  such that 

1 1 2 2( , ) [|| || || ( ) ||], .ndist x P c D x d D x d x R       

Now, we also give the definition of projection operator and 

its related properties
[11]

. For a nonempty closed convex set 
nS R ，the orthogonal projection from vector

nx R onto 

S is 

( ) : arg min{|| ||| },SP x y x y S    

and it has the following property. 

Lemma 2.2 For any vectors , nu v R , we have 

|| ( ) ( ) || || || .s sP u P v u v    

Using Theorem 2.1, Lemma 2.1 and Lemma 2.2, we have 
the main result. 

Theorem 2.2 For any positive constant  ，there exists a 

constant 
2 0  such that 

*

2( , ) (|| ( , , ) || ( )),   ,dist M N Q q r           

Where ( ) || min{ , ||r A B   . 

Proof. For any vector
2n lR  , there exists ,   

such that || || ( , )dist     . From Lemma 2.1, there 

exists a constant
1 0c  , such that 

1( , ) || ( , , ) ||dist c M N Q q      . 

Furthermore, 

|| ( ) ( ) ||

|| min{ , } min{ , } ||

|| ( ( )) [ ( )] ||

|| ( ) || || ( ( ) ( )) ||

|| ( ) || || ( ) ( ) ||

2 || ( ) || || ||

(2 || || || ||) ( , ),

R R

R R

r r

A B A B

A P A B A P A B

A P A B P A B

A A B A B

A B B

A B dist

 

   

     

     

     

   

 

 

 



 

     

     

     

   

 

 

Where the second inequality is based on Lemma 2.2. 
Combined with the above formula, we have 

|| ( ) || || ( ) || (2|| || || ||) ( , )r r A B dist          (5) 

From (5) and Theorem 2.1, we have 
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*

1

1

1 1

1 1 1

2

( , )

( , ) ( , ) ( , ) ( )

( , ) [ ( ) (2 || || || ||) ( , )]

[ (2 || || || ||) 1] ( , ) ( )

[ (2 || || || ||) 1] || ( , , ) ||) ( )

[|| ( , , ) ||) (

dist

dist dist dist r

dist r A B dist

A B dist r

A B c M N Q q r

M N Q q r

 

       

     

    

   

 

   

   

   

      

     )],

Where          
2 1 1 1max{[ (2 || || || ||) 1] , }.A B c      

In the following we using Fischer function ([12]) to 

establish another error bound. Define 
2 1: R R   and 

2 2( , ) , ,a b a b a b a b R       . 

It has the following property： 

( , ) 0 0, 0, 0,a b a b ab       

In addition， Tseng
[13]

 gives the following conclusion. 

Lemma 2.3 

[2 2)] | min( , ) | | ( , ) |

( 2 2) | min( , ) | .

a b a b

a b

 

 
    

For any vectors , na b R , define a vector-valued function

1 1 2 2
( , ) ( ( , ), ( , ),..., ( , ))

n n
a b a b a b a b    . Based on this 

mapping, (2) can be converted into the following equation 

( , )
( ) : 0,

( , , )

A B

M N Q q

 




 
   

   
    

Clearly，using Lemma 2.3 and Theorem 2.2，it is easy to 
have the following result. 

Theorem 2.3 For any given positive constant  ，there 

exists a constant 
3 0  such that 

*

3( , ) || ( ) ||,| |dist         . 

As function ( )x is not smooth, let 
2:t R R   denote 

smooth Fisher-Burmeister function  

2 2 2( , ) 2t a b a b t a b      ， 

Where 0t   is a smooth parameter. For ease of 
presentation, let  

1 1( , , ) ( ( , ),..., ( , ))T

t t n nx y t x y x y   ， 

Where 1 1( ,..., ) , ( ,..., )T T

n nx x x y y y  , 

And ( , , ) ( , )tp a b t a b . We define mapping 

2: (0, ) (0, )n l n mF R R      , 

That is,  

( , , )

( , ) ( , , )

             

A B t

F t M N Q q

t

 

 

 
 

    
 
 

. 

Let
2

( , ) ( , ) ( , ) ( , )Tf t F t F t F t     . 

Obviously,
* * *( ,0)     is a solution to

( , ) 0F t  . 

Therefore we construct a smooth method to solve

( , ) 0F t  , and assume that the set of solutions to 

( , ) 0F t   is 
*

t .  

First we give the following properties of ( , , )p a b t
[14,15]

. 

Lemma 2.4 Function ( , , )p a b t has the following 

properties： 

a) On
2 (0, )R   ， function ( , , )p a b t is 

continuously differentiable, and strongly semi-smooth, that is,  

2

2

( , , ) ( , , )

( , , ) ( , , ) ,

( , , ) [0, ),

T

p a a b b t t p a b t

V a b t O a b t

a b t R

    

       

   

 

Where ( , , )V p a a b b t t    ，and p is the 

Clarke generalized gradient of p . 

b) 
2( , , ) (0, )a b t R    ，we have 

| ( , ) ( , , ) |

| ( , ) ( , ) | 2  .t

a b p a b t

a b a b t

 

   
 

Based on Lemma 2.4, we have the following result. 

Theorem 2.4 Function ( , )F t  has the following 

properties： 

a) On
2 (0, )n lR    ， function ( , )F t is 

continuously differentiable, locally Lipschitz continuous, and 

strongly semi-smooth, that is, there exist constants 1 0,L 

2 0,L  1 0b  such that 

1|| ( , ) ( , ) || ( , ) ,F t t F t L t              (6) 

2 2

2

|| ( , ) ( , ) ( , ) ||

( , ) , ( , ) (0, ),

( , ),  

T

n l

F t t F t H t

L t t R

H F t t

   

 

 



      

      

  

  (7) 
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1

1

( , ) (0, )

{( , ) ||| ( , ) || , 0},

t N b

t t b t t



 

   

       
 

Where ( , )F t is the Clarke generalized gradient of 

( , )F t . 

b) For 
* *( ,0) t  , there exists a neighbourhood 

* *

2 2(( 0), ) {( , ) ||| ( , ) ( 0) || , 0},N b t t b t        

 And a constant 
1 0c  ，for any 

*

2( , ) (( ,0), ),t N b   

We have   

*

1(( , ), ) || ( , ) ||tdist t c F t   .                       (8) 

    Proof. The result of (i) follows from Lemma 2.1 
directly.  

(ii)  For any| |  , there exists a constant 
3 0,b   such 

that 

*

2

*

2 2

( , )) || ( ) ||,

( , ) { ||| || },

dist

N b b

   

    

 

    
 

Let 
*( , )) || ||,dist       where

*  .  

From Lemma 2.4(ii), we have 

|||| ( ) || || ( ) |||| || ( ) ( ) ||

2  ,

t t

n t

        


 

Where 
( , )

( ) : ,
( , , )

t

t

A B

M N Q q

 




 
   

   
 for any 

* *

2 2( , ) (( ,0), ) {( , ) ||| ( , ) ( ,0) || }t N b t t b       

, 

We have 

*

2 2 2

(( , ), )) ( , ) ( ,0)

|| ( ) || || ( ) || ( 2 1)t

dist t t t

t n t

     

    

    

      
 

2

2 2

2

 ( 2 1)(|| ( ) || )

   2( 2 1)( || ( ) || )

t

t

n t

n t

 

 

   

   
 

2   2( 2 1) ( , ) ,    n F t    

where 1 22( 2 1).c n             

IV. ALGORITHM AND CONVERGENCE 

In this section ， we give a smooth and convergent 
algorithm for solving (1), and using the error bound 
established in section 2, prove the quadratic convergence of 
the given smooth algorithm without the condition of existence 
of a non-degenerate solution. 

Algorithm 3.1 

Step 1:  Choose parameters (0,1),   0  and 0 

, initial value 
0 2 1( , ) n lt R   , and 

0| ( , ) |t  . Let 

0k  . 

Step 2:  Stop if || ( , ) ||k kf t   ；otherwise, turn to 

Step 3. 

Step 3:  Choose the Jacobian matrix 
kH  of ( , )k kF t , 

and let ( , )k k kd t    be the solution to the following 

strict quadratic programming 

min      ( )

1
. .   ( , )  ,  | |

1+

k

k k

k

d

s t t d t t



 


   
        (9) 

Where 

2 2
( ) || ( , ) || || || ,k k k k k
d F t H d d    

2|| ( , ) || .k k kF t    

Step 4:  Let 
1 : ,k k k      

1 : ,k k kt t t    : 1k k  ，turn to  Step 2. 

In the following convergence analysis, assume that 
Algorithm 3.1 generates an infinite sequence. We have the 
following result. 

Theorem 3.1 Assume that Algorithm 3.1 generates a 

sequence{( , )}k kt . If the initial value is close sufficiently to 

*{( ,0)} , which is a solution to ( , ) 0F t  , then 

*{dist(( , ), )}k kt   converges quadratically to 0, i.e., 

sequence  { }k converges quadratically to 
*   . 

Proof. Let : ( , )t  ，
* *: ( ,0)  . For any tiny 

0  ，define 

2

*

*

( , ) (0, ),
( ) : ,

( , ) ( ,0)

n lt R
B

t





  

    
  

   

 

In the following we prove the theorem in three steps. 

First we prove the following result. 

If 
*

/ 2( )k B  ，then 
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*

2 ( , )k k

td c dist   ,     (10) 

* 2

3( ) ( , )k k k k

tF H d c dist    , (11) 

Where 
2 30, 0c c   are constants. 

Let the closest point in 
*

t to 
k  be 

k

 ，that is， 

             
*|| || ( , )

kk k

tdist                         （12） 

Let 
k k

kd    . As 
k

d is the globally optimal solution 

to（9），we have 

( ) ( ) ( )
k

k k k k
k

k
d d       .                         （13） 

Since
*

/ 2( )k B  ，we have 

* *

* *

|| |||| || || ||

|| || || || .

k k k k

k k

     

    

    

    

 

Hence, 
*( )

k

B  . From the definition of
k , (8） and（

12），we have 

2

2 2 * 2

1

2

1 || ||

|| ( ) || ( , )

     =

k k k

t

kk

F c dist

c 

     

 





 


      （14） 

Using（ 12） -（ 14）  and（ 7）， together with the 

definition of ( )
k
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Where  2 2

2 2 1/ 1c L c     . Then （10） holds. 

   From the definition of ( )
k

d , we know  
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From （6），we also have 
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Together with（15） and（16），we have 
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Where
2 2

3 2 1c L L . 

   Next ， for any natural number k ， if ,k  
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4 0c  ，such that 

  
* 1 * 2

4( , ) ( , )k k

t tdist c dist           （17） 

In fact ， since ,k 1 *

/ 2( )k B   ， and 

1 1k k kd     ，together with（8），we have 

 

1 1 1 1 1

1 1 1 1 1

1 2

2

|| ( ) || || ( ||

|| ( ) ( ||

)

)

|| ||

k k k k k

k k k k k

k

F F H

F F H d

d d

d

L d

 

 

    

    



 

   







 

That is, 
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Last, we prove that the condition of（17）holds. That is, 
for a positive constant 

 2 4min /[2(1 2 )],1/(2 )c c   ，when initial value 

0 *( )B  ， for any natural number k ， we have

*

/ 2( )k B  . 

We prove the above result by mathematical induction. 
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where, from (10), the last inequality holds. In addition, since

*
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we have 

* 1 * 2

4( , ) ( , ) , 0,1,2, ,m m

t tdist c dist m k      

Hence 

2

1

* 1 * 2

4

2 2 * 2

4 4

2 2 0 * 2

4 4 4

2 1 0 * 2 2 1 2

4 4

( , ) ( , )

( , )

( , )

|| ||

m m

m m m m

m m

t t

m

t

t

dist c dist

c c dist

c c c dist

c c

   

 

 

  







 







  

  

From the above formula, and the way   is chosen, we 

know that 41/(2 )c  ， 2/[2(1 2 )]c   ， 
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Now Theorem 3.1 is proved.  

NOTE: Theorem 3.1shows that the given smooth 
algorithm has the property of quadratic convergence without 
the condition of existence of a non-degenerate solution. This is 
a new result. 

V. CONCLUSIONS 

In this paper, we propose an algorithm for solving the 
management equilibrium model. Under without the 
requirement of nondegenerate solution, we also show that the 
algorithm is quadratic convergence based on error bound 
estimation instead of the nonsingular assumption just as was 
done in [5,6]. This conclusion can be viewed as extension of 
previously known result in [5, 6]. How to use the algorithm to 
solve the practical management based on the computer, this is 
a topic for future research. 
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