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Abstract—This paper considers a limit cycle control problem
of a multi-modal and 2-dimensional piecewise affine control
system. Limit cycle control means a controller design method to
generate a limit cycle for given piecewise affine control systems.
First, we deal with a limit cycle synthesis problem and derive a
new solution of the problem. In addition, theoretical analysis on
the rotational direction and the period of a limit cycle is shown.
Next, the limit cycle control problem for piecewise affine control
system is formulated. Then, we obtain matching conditions such
that the piecewise affine control system with the state feedback
law corresponds to the reference system which generates a desired
limit cycle. Finally, in order to indicate the effectiveness of the
new method, a numerical simulation is illustrated.

I. INTRODUCTION

Limit cycles are known to be quite important concept in
various research fields [1]. We can find limit cycles in real
world, for example, stable walking or gaits of humanoid robots
in robotic engineering, oscillator circuits in electronic engi-
neering, catalytic hypercycles in chemistry, circadian rhythms
in biology, boom-bust cycles in economics and so on. Re-
searches on limit cycles have been eagerly done from both
mathematical and engineering perspectives so far [2], [3],
[4], [5], [6], [7], [8], [9], [11], [12], [13], [14]. Especially,
some conditions for nonlinear systems that generate periodic
solutions and some applications were shown in [2], and in [7],
a synthesis method of hybrid systems whose solution trajec-
tories converge to desired trajectories was proposed. In these
studies, it is guaranteed that solution trajectories of the systems
converges to a desired closed curve, and the existence of
limit cycles was confirmed by numerical simulations, However,
the mathematical guarantee of the existence of limit cycles
was not shown. On the other hand, the authors proposed a
synthesis method of multi-modal and2-dimensional piecewise
affine systems that generate desired limit cycles in [10],
[15] and showed a mathematical proof of the existence and
the uniqueness of a limit cycle for the proposed system. In
addition, some theoretical analysis on the rotational direction
and the period of a limit cycle is derived. In this study, we
assume that the whole of a system can be designed. A method
to generate a desired limit cycle for a given piecewise affine
control system with tuning some parameters of the system is
more useful for a wide variety of situations. However, such a
control method have not been proposed so far.

Hence, we consider a limit cycle control problem of multi-
modal and2-dimensional piecewise affine systems in this

paper. The outline of this paper is as follows. We first consider
a limit cycle synthesis problem and derive its new solution in
Section II. Some theoretical properties are also shown. Then,
in Section III, a formulation of limit cycle control problem
is presented, and necessary and sufficient conditions for the
problem, which are calledmatching conditions, are derived.
Finally, a numerical simulation is shown in order to confirm
the effectiveness of the new method in Section IV.

II. LIMIT CYCLE SYNTHESIS OF PIECEWISE
AFFINE SYSTEMS

A. Formulation of Limit Cycle Synthesis

In this section, we consider a synthesis problem of piece-
wise affine systems which generate desired limit cycles. First,
this subsection give the formulation of the problem. Con-
sider the 2-dimensional Euclidian space:R2, its coordinate:
x = [ x1 x2 ]T ∈ R2, and the origin ofR2: O. Let us set
N (N ≥ 3) pointsPi ̸= O (i = 1, · · · , N) in R2 and denote
the vector fromO to Pi by pi = [ p1i p2i ]

T. We also denote
the angle between the half lineOPi and thex1-axis by θi.
Now, without loss of generality, we assume that theN points
Pi (i = 1, · · · , N) are located in the counterclockwise rotation
from thex1-axis, that is,0 ≤ θ1 < θ2 < · · · < θN holds.

Next, we define the semi-infinite regionDi which is
sandwiched by the half linesOPi and OPi+1 and the line
segmentCi joining Pi and Pi+1, wherePN+1 = P1. Set a
polygon that is a union ofCi (i = 1, · · · , N) as

C :=

N∪
i=1

Ci. (1)

Fig. 1 shows an example of a Polygonal Closed Curve for
N = 5.

We then consider the affine system defined inDi:

ẋ = ai +Aix, x ∈ Di (2)

where x = [ x1 x2 ]T ∈ R2 is the state variable, and
ai ∈ R2, Ai = R2×2 are the affine term and the coefficient
matrix, respectively. Consequently, we treat theN -modal and
2-dimensional piecewise affine system that consists ofN
regionsDi (i = 1, · · · , N) andN affine systems (2). In this
paper, we consider the following synthesis problem on limit
cycles called “the limit cycle synthesis problem.”
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Fig. 1 : Example of Polygonal Closed Curve (N = 5)

Problem 1 : For theN -modal and 2-dimensional piecewise
affine system (2), designai, Ai (i = 1, · · · , N) such that a
given polygonal closed curveC (1) is a unique and stable limit
cycle pf the system.

A solution of Problem 1 has been derived in the author’s
previous studies [10], [15]. However, in this paper we will
derive another solution which can be utilized to consider the
limit cycle control problem shown in Section III.

B. Proposed System and Existence/Uniqueness of Limit Cycle

Next, we shall derive a solution for Problem 1 in this
subsection. We also consider the existence and the uniqueness
of a limit cycle for the obtained system. We focus on a behavior
of a solution trajectory of (2) inDi. It is easily confirmed that
the equation ofCi is represented by

(p2i − p2i+1)x1 − (p1i − p1i+1)x2

+ p1i p
2
i+1 − p2i p

1
i+1 = 0.

(3)

Using (3), we now definea limit cycle functionVi as

Vi(x) = (p2i − p2i+1)x1 − (p1i − p1i+1)x2

+ p1i p
2
i+1 − p2i p

1
i+1.

(4)

If Vi converges to0 along a solution trajectory of (2), then
the solution trajectory of (2) also converges toCi. Hence,ai
andAi should be determined so thatVi converges to0 along a
solution trajectory of (2). Now, an important result on design
of nonlinear systems is shown as follows [2].

Theorem 1 [2] : Consider the 2-dimensional nonlinear
system:

ẋ = f(x) + g(x), (5)

wherex ∈ R2 andf, g ∈ R2 → R2 are vector fields defined
in R2. In addition, consider a radial and unbounded function
define onR2: V : R2 → R such thatV (0) = 0 andV (x) ̸=
0, ∀x ̸= 0 hold. We now definef andg as

f := Uf (x)
∂V

∂x

T

, g := −ug(V )Ug(x)
∂V

∂x

T

, (6)

wherea skew-symmetric matrixUf , a positive definite matrix
Ug, andug such thatug(V ) > 0, V ̸= 0 holds. Then, for the
system (5) with (6),

lim
t→∞

V (x(t)) = 0 (7)

holds

Applying Theorem1, we can derive an affine termai and
a coefficient matrixAi of the affine system (2) such thatVi

converges to0 along a solution trajectory of (2). As a specific
form of (5) and (6), we use

ẋ = fi + gi,

fi :=

[
0 ωi

−ωi 0

]
∂Vi

∂x

T

,

gi := −Vi(x)

[
λi 0
0 λi

]
∂Vi

∂x

T

,

(8)

whereωi andλi > 0 are design parameters. Substituting (4)
into (8) and comparing it with (2), we can obtainai andAi

of (2) as

ai =[
−λi(p

2
i − p2i+1)(p

1
i p

2
i+1 − p2i p

1
i+1)− ωi(p

1
i − p1i+1)

λi(p
1
i − p1i+1)(p

1
i p

2
i+1 − p2i p

1
i+1)− ωi(p

2
i − p2i+1)

]
,

Ai =[
−λi(p

2
i − p2i+1)

2 λi(p
2
i − p2i+1)(p

1
i − p1i+1)

λi(p
2
i − p2i+1)(p

1
i − p1i+1) −λi(p

1
i − p1i+1)

2

]
.

(9)

Compared to the piecewise affine system shown in [10], [15],
(28) contains a new parameterλi and this additional parameter
plays an important role in the limit cycle control problem in
Section III. It is noted that that the system (2) with (28) satisfies
only the convergence property (7), that is, its solution trajectory
converges toCi in Di. Hence, we will discuss the existence of
a unique and stable limit cycle of the system (2) with (28). To
prove this, we first indicate three lemmas, and then we show
the main theorem by using them. Now, we give the definition
on the clockwise and counterclockwise rotations of limit cycle
solution trajectories of the system (2) with (28) [10], [15].

Definition 1 [10], [15] : For limit cycle solution trajectories
of theN -modal and2-dimensional piecewise affine system (2)
with (28), one that rotates in the clockwise direction inR2 is
calleda limit cycle solution trajectory in the clockwise rotation.
On the contrary, one that rotates in the counterclockwise
direction in R2 is called a limit cycle solution trajectory in
the counterclockwise rotation(see Fig. 2).

Let us define a subset inDi as

Mi(εi) := { x ∈ Di | ε−i ≤ Vi(x) ≤ ε+i }, (10)

whereε−i , ε
+
i ∈ R satisfiesε−i < ε+i and we setεi = (ε−i , ε

+
i ).

We also define a sum of these subsets as

M(ε) :=
N∪
i=1

Mi(εi), (11)

where we use the notations:ε− = (ε−1 , · · · , ε
−
N ), ε+ =

(ε+1 , · · · , ε
+
N ), ε = (ε−, ε+), and the parametersε− and ε+
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are determinedsuch that

M−(ε−) =
N∪
i=1

{ x ∈ Di | Vi(x) = ε−i }

M+(ε+) =

N∪
i=1

{ x ∈ Di | Vi(x) = ε+i }

(12)

form closed polygons. IfM−(ε−) and M+(ε+) are closed
polygons, that is,M(ε) is a bounded and closed set, thenε is
said to beadmissible(see Fig. 3). We can derive the following
proposition onM(ε).

[a] Crockwise Rotation [b] Countercrockwise Rotation

Fig. 2 : Clockwise and Counterclockwise Rotations of Limit
Cycle Solution Trajectories

Fig. 3 : Example ofM−(ε−), M+(ε+) andM(ε)

Lemma 1 : For theN -modal and2-dimensional piecewise
affine system (2) with (28),M(ε) is a positively invariant,
bounded and closed set for any admissibleε.

(Proof) Calculating the time differential of1/2V 2
i along a

solution trajectory of the system (2) with (28), we have

1

2

d

dt
(V 2

i ) = ViV̇i = Vi
∂Vi

∂x
ẋ = Vi

∂Vi

∂x
(fi + gi)

= Vi
∂Vi

∂x

[
0 ωi

−ωi 0

]
∂Vi

∂x

T

−V 2
i

∂Vi

∂x

[
λi 0
0 λi

]
∂Vi

∂x

T

= −λ2
iV

2
i

∂Vi

∂x

∂Vi

∂x

T

< 0.

Hence, it turns out that the velocity vector field of the system
(2) with (28) points to the direction of the inner side of the
bounded and closed setM at any points on the boundary
M−(ε−)∪M+(ε+) of M . Consequently,M(ε) is a positively
invariant, bounded and closed set.

Next, we consider equilibrium points of the system (2)
with (28). The following lemma on equilibrium points can be
obtained.

Lemma 2 : Assumeωi ̸= 0 (i = 1, · · · , N). Then, the
N -modal and2-dimensional piecewise affine system (2) with
(28) does not have any equilibrium points inM(ε) for any
admissibleε.

(Proof) The unit vector which is on a parallel withCi in
Di and points to the counterclockwise rotation is given by
(pi − pi+1)/||pi − pi+1||. By considering the inner product of
this unit vector and the velocity vector field of the system (2)
with (28), we have the magnitude of the velocity component
to the direction ofpi − pi+1 for a solution trajectoryvi of the
system (2) with (28) inDi as

vi = (ai +Aix) ·
pi − pi+1

||pi − pi+1||
. (13)

Now, we denote a point inDi by x = αipi+βipi+1, αi, βi ≥ 0.
Hence, we can calculate (13) as

vi = {ai +Ai(αipi + βipi+1)} ·
pi − pi+1

||pi − pi+1||

= −ωi

√
(p1i − p1i+1)

2 + (p2i − p2i+1)
2.

(14)

Note thatλi does not appear in (14). From (14), we can see
that the parametersαi andβi vanish, and hencevi is constant
at any pointx ∈ Di. Sincevi does not vanish at any point
x ∈ Di, the system (2) with (28) does not have any equilibrium
points inM(ε).

Now, a definition on the concept “traversal” for the system
(2) with (28) is given as follows [11].

Definition 2 : Let Σ be a line segment in the positively
invariant, bounded and closed setM(ε). If the value of an
inner product of the unit normal vector toΣ: eΣ and the
velocity vector of theN -modal and2-dimensional piecewise
affine system (2) with (28) is not equal to 0 and its sign does
not change at any point inΣ, thenΣ is said to betraversal
with respect to the system (2) with (28).

In additionto Lemma 2, under the condition ofωi > 0(i =
1, · · · , N), a solution trajectory vector of the system (2) with
(28) always has a velocity component in the counterclockwise
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rotation. Onthe other hand, under the condition ofωi < 0(i =
1, · · · , N), a solution trajectory vector of (2) with (28) always
has a velocity component in the clockwise rotation. From this
fact, we can derive the following lemma.

Lemma 3 : For theN -modal and2-dimensional piecewise
affine system (2) with (28), assume thatωi > 0(i = 1, · · · , N)
or ωi < 0 (i = 1, · · · , N) holds. Then, there exists a traversal
line segmentΣ at any point inx ∈ M(ε), and it is satisfied
thatx ∈ Σ andΣ infinitely intersects with solution trajectories
of the system (2) with (28).

(Proof) We assume thatωi > 0 (i = 1, · · · , N) or ωi <
0 (i = 1, · · · , N) holds. Then, a solution trajectory of the
system (2) with (28) always circles to the counterclockwise
rotation or to the clockwise rotation. Now, for a pointx ∈ M ,
we consider a half line whose origin isO and that passes
through x, and define a subsetΣ ⊂ M as the intersection
of the half line andM . Since the velocity vector field of the
system (2) with (28) always has the velocity component of the
counterclockwise rotation or the clockwise rotation, the inner
product of a normal vector ofΣ and the vector field of the
system (2) with (28) at any point inΣ is not equal to0 and
its sign does not change, that is,Σ is traversal. Moreover, in
eachMi (i = 1, · · · , N), since the velocity vector field of the
system (2) with (28) always has the velocity component of the
clockwise rotation or the counterclockwise rotation, a solution
trajectory of the system (2) with (28)x(t) that intersectedΣ
intersectsΣ in a finite time again. Consequently, it turns out
the solution trajectory intersectsΣ infinitely.

Wehave to note that the result in Lemma 3 does not depend
on λi (i = 1, · · · , N). Using Lemmas 1–3, we can derive the
main theorem on the existence of the limit cycle of the system
(2) with (28).

Theorem 2 : For theN -modal and2-dimensional piecewise
affine system (2) with (28), assume thatωi > 0(i = 1, · · · , N)
or ωi < 0 (i = 1, · · · , N) holds. Then, the unique and stable
limit cycle of the system (2) with (28) is equivalent toC.

(Proof) By the result on the hybrid Poincare-Bendixson the-
orem derived in [3], [11], it turns out that sufficient conditions
for the existence of stable limit cycles of the system (2) with
(28) in M(ε) are the following three: (i)M(ε) is a positively
invariant, bounded and closed set, (ii) there do not exist any
equilibrium points at the boundary and in the interior ofM(ε)
(iii) there exists a traversal line segmentΣ ⊂ M(ε) such that
x ∈ Σ andΣ infinitely intersects with solution trajectories of
the system (2) with (28). Since we have confirmed these three
conditions in Lemma 1, 2, and 3, we can see that there exists
a stable limit cycle inM(ε) for the system (2) with (28) for
any admissibleε. Moreover, sinceM(ε) converges toC as the
values ofε goes to0, it can be confirmed thatC is a unique
and stable limit cycle. Hence, the proof is completed.

In this paper, we consider an additional parameterλi in the
system (2), (28). However, from the results obtained in this
subsection, we can see that the existence and the uniqueness
of a limit cycle of the system (2), (28) are independent ofλi.
This fact is quite important in the next section.

C. Theoretical Analysis

Finally, this subsection gives theoretical analysis on rota-
tional directions and periods of limit cycle solution trajectories
of the system (2) with (28). First, we consider the relationship
between rotational directions of limit cycles and the parameters
in (28). The following proposition can be derived.

Proposition 1 : For theN -modal and2-dimensional piecewise
affine system (2) with (28), its limit cycle solution trajectory
moves in the counterclockwise rotation forωi > 0 (i =
1, · · · , N), and conversely it moves in the clockwise rotation
for ωi < 0 (i = 1, · · · , N).

(Proof) The proof of this proposition is trivial from the
discussion in the previous section.

From Proposition1, it is confirmed that the rotational
directions of limit cycles do not depend onλi. Next, we
analyze periods of limit cycles of the system (2) with (28). It
can be expected that after a solution trajectory of the system (2)
with (28) converges toC, it behaves as a periodic trajectory.
By calculating the velocity component of the vector of the
system alongC, we can derive the next proposition.

Proposition 2 : When a limit cycle solution trajectory of the
N -modal and2-dimensional piecewise affine system (2) with
(28) is sufficiently close toC, the period with which it rotates
aroundC is given by

T ≈
N∑
i=1

1

|ωi|
. (15)

(Proof) Thevelocity component of a solution trajectoryvi of
(2) with (28) in Di to the direction ofpi − pi+1 is given by
(13). The length ofCi: Li can be calculated as

Li =
√

(p1i − p1i+1)
2 + (p2i − p2i+1)

2. (16)

Therefore, we can obtain the periodT as

T ≈
N∑
i=1

Li

|vi|
=

N∑
i=1

1

|ωi|
. (17)

This completesthe proof of this proposition.

From Proposition2, we can also see that the period of a
limit cycle solution trajectory of the system (2), (28) is not
independent ofλi. So, we can freely choose the value ofλi.

III. LIMIT CYCLE CONTROL FOR PIECEWISE
AFFINE SYSTEMS

A. Formulation of Limit Cycle Control

In this section, we consider a controller design problem on
generation of limit cycles for given piecewise affine control
systems. First, this sub-section gives the problem formulation.
Consider the next piecewise affine control system defined in
Di:

ẋ = ai +Aix+ biu, x ∈ Di, (18)
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where u ∈ R is the control input andbi ∈ R2 is the
coefficient vector for the control input. We next consider the
state feedback law:

u = kix+ li, x ∈ Di, (19)

whereki ∈ R2 andli ∈ R. We assume thatpi, pi+1, ai, Ai are
given parameters. Now, we formulate a problem on generating
a desired limit cycle for the piecewise affine control system
(2) and the state feedback law (19) as follows.

Problem 2 : For theN -modal and 2-dimensional piecewise
affine control system (18) with the state feedback law (19),
design bi, ki, li, ωi, λi (i = 1, · · · , N) such that a given
polygonal closed curveC (1) is a unique and stable limit cycle
of the closed-loop system.

Throughout thispaper, we call Problem 2a limit cycle
control problem for piecewise affine control system.

B. Matching Conditions for Limit Cycle Control Problem

The purpose of this subsection is to derive a solution
method of Problem 2 for the piecewise affine control system
(18) with the state feedback law (19). To fulfill this, we shall
utilize the limit cycle synthesis method obtained in Section
2. The results in Section II show that the unique and stable
limit cycle of the system (2), (28) coincides withC. Hence, by
tuning design parametersbi, ki, li, ωi, λi (i = 1, · · · , N), we
conform the closed-loop system (18), (19) to the system (2),
(28). We here call the system (2), (28)the reference system.
Use the following notations for the system (2), (28):

ai =

[
a1i
a2i

]
, Ai =

[
A11

i A12
i

A21
i A22

i

]
,

bi =

[
b1i
b2i

]
, ki =

[
k1i k2i

]
.

(20)

Conditions such that the closed-loop system (18), (19) is
consistent with the reference system (2), (28) can be obtained
by the following theorem.

Theorem 3: TheN -modal and 2-dimensional piecewise affine
control system (18) with the state feedback control law (19) is
equivalent to the reference system (2), (28) if and only ifthe
matching conditions:

a1i + b1i li = −λi(p
2
i − p2i+1)(p

1
i p

2
i+1 − p2i p

1
i+1)

−ωi(p
1
i − p1i+1) (21)

a2i + b2i li = λi(p
1
i − p1i+1)(p

1
i p

2
i+1 − p2i p

1
i+1)

−ωi(p
2
i − p2i+1) (22)

A11
i + b1i k

1
i = −λi(p

2
i − p2i+1)

2 (23)

A12
i + b1i k

2
i = λi(p

2
i − p2i+1)(p

1
i − p1i+1) (24)

A21
i + b2i k

1
i = λi(p

2
i − p2i+1)(p

1
i − p1i+1) (25)

A22
i + b2i k

2
i = −λi(p

1
i − p1i+1)

2 (26)

hold.

(Proof) Substituting (19) into (18), we get the closed-loop

system:

ẋ = ai +Aix+ bi(kix+ li)

= ai + bili + (Ai + biki)x

=

[
a1i + b1i li
a2i + b2i li

]
+

[
A11

i + b1i k
1
i A12

i + b1i k
2
i

A21
i + b2i k

1
i A22

i + b2i k
2
i

]
x.

(27)

Comparing the components of the reference system (2), (28)
to the closed-loop system (27), we can obtain the matching
conditions (21)–(26).

The matchingconditions (21)–(26) consists of 6 algebraic
equations, and 7 unknown variables:b1i , b

2
i , k

1
i , k

2
i , li, ωi, λi.

Hence, by solving them under the conditionλi > 0, we can
obtain these unknown variables, that is, a solution of Problem
2.

IV. SIMULATIONS

This section presents a numerical example in order to
confirm the effectiveness of the results derived in the previous
sections. We now give data of a polygon withN = 4 as
P1 = (1, 0), P2 = (0, 1), P3 = (−1, 0), P4 = (0, −1).0
The polygon is shown in Fig. 4.

Fig. 4 : Polygonal Closed Curve of Example

The coefficients of the piecewise affine system are given
by

a1 =

[
−3
2

]
, A1 =

[
0 1
1 3

]
,

a2 =

[
−1
−3

]
, A2 =

[
−1 0
0 2

]
,

a3 =

[
1
−1

]
, A3 =

[
−2 1
1 1

]
,

a4 =

[
9
1

]
, A4 =

[
−8 0
0 −8

]
.

(28)

By solving the matching conditions for Problem 2 (21)–
(26) in terms of the problem formulation, we can calculate
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design parametersas follows:

b1 =

[
1
2

]
, k1 = [ −1 −2 ] ,

l1 = 1, ω1 = 3, λ1 = 1,

b2 =

[
−1
2

]
, k2 = [ 1 −2 ] ,

l2 = 2, ω2 = 1, λ2 = 2,

b3 =

[
−1
2

]
, k3 = [ 1 −2 ] ,

l3 = 2, ω3 = 2, λ3 = 3,

b4 =

[
1
1

]
, k4 = [ 4 4 ] ,

l4 = −4, ω4 = 1, λ4 = 4.

(29)

Note that λi > 0 (i = 1, 2, 3, 4) holds in (29). It can
be confirmed that from Proposition 1, a limit cycle solution
trajectory moves in the counterclockwise rotation sinceωi >
0 (i = 1, 2, 3, 4) holds. In addition, from Proposition 2 we can
estimate the period of a limit cycle solution trajectory as

T ≈
4∑

i=1

1

|ωi|
=

17

6
. (30)

We set the initial state asx0 = [ 1, 1 ]T for the numerical
simulation. The simulation results are illustrated in Figs. 5–7.
Fig. 5 shows the solution trajectory on thex1x2-plane. In Figs.
6 and 7, the time series ofx1 andx2 are shown, respectively.
From these simulation results, we can see that the solution
trajectory that starts fromx0 behaves as a limit cycle for the
desired polygonal closed curveC, and hence Theorem 1 holds.
As we expected above, the solution trajectory moves in the
counterclockwise rotation, and this result is coincident with
Proposition 1. Moreover, the estimated periodT ≈ 17/6 is
mostly agree about the simulation result from Figs. 6 and 7.
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Fig. 5 : Solution Trajectory onx1x2-Plane
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Fig. 7 : Time Series ofx2

V. CONCLUSION

In this paper, we have considered a limit cycle control prob-
lem for a multi-modal and 2-dimensional piecewise control
affine system. We have derive the matching conditions such
that the piecewise control affine system with the state feedback
law corresponds with the reference system which generates a
unique and stable limit cycle. It has been confirmed by solving
the matching conditions we can obtain the values of design
parameters. A numerical simulations show the availability and
the application potentiality of the proposed method.

Our future work includes applications of the proposed
control method to real systems and extensions to multi-
dimensional piecewise affine systems.
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