
Privacy-Preserving Clustering Using Representatives over Arbitrarily
Partitioned Data∗

Yu Li, Sheng Zhong
Computer Science and Engineering Department

State University of New York at Buffalo
Amherst, NY 14260, U.S.A

Email: {yli32,szhong}@buffalo.edu

Abstract—The challenge in privacy-preserving data mining is
avoiding the invasion of personal data privacy. Secure computa-
tion provides a solution to this problem. With the development of
this technique, fully homomorphic encryption has been realized
after decades of research; this encryption enables the computing
and obtaining results via encrypted data without accessing any
plaintext or private key information. In this paper, we propose
a privacy-preserving clustering using representatives (CURE)
algorithm over arbitrarily partitioned data using fully homomor-
phic encryption. Our privacy-preserving CURE algorithm allows
cooperative computation without revealing users’ individual data.
The method used in our algorithm enables the data to be
arbitrarily distributed among different parties and to receive
accurate clustering result simultaneously.

I. INTRODUCTION

With the advent of the Big Data Era, people are beginning
to care more about the security of their private data. For
example, when people store their data on the cloud server,
there are always concerns that the service provider will use
their data illegally. Cryptographers provide many elegant en-
cryption schemes (e.g., RSA) to ensure the security of data
transmission, but but they are not adequate for protecting the
privacy of customers’ sensitive information. After the invention
of RSA, Rivest, Adleman, and Dertouzos introduced privacy
homomorphism in[1]. For example, RSA is a multiplicatively
homomorphic encryption scheme that can efficiently compute
a ciphertext that encrypts the product of the original plaintext.
Based on this privacy homomorphism method, people are
realizing that they can store encrypted data instead of plaintext
on the cloud. Therefore, the cloud service provider can use
these data to conduct research without compromising the
customers’ privacy.

Clustering is the most commonly used data mining method
to determine the relationship between objects. With the devel-
opment of network technology, collecting large amounts of
data about clients and customers has become much easier. In
addition, many clustering algorithms have been proposed to
solve the efficiency problem of clustering for large databases.
Clustering using representatives (CURE) is such an algorithm
that can efficiently cluster a large database in such a way that
objects in the same group are more similar to each other than
to those in other groups.

However, determining how to protect the privacy of cus-
tomers is a big challenge in this age of information explosion.
For example, in the field of customer behavior analysis and

∗This paper was supported by NSF CNS-0845149 and CCF-0915374

targeted marketing, people are more willing to communicate
with others who share the same interests, they are cautious
about revealing their private information to the public. Privacy-
preserving data mining is the only way to solve this problem
and to not invade the privacy of customers. Another example
is in the bioinformatics field when two medical researchers
want to study a certain disease caused by a gene. They cannot
share these data with each other due to the privacy rules
established by HIPAA. But privacy-preserving data mining
using homomorphic encryption can determine the relationship
between these data without revealing any information to the
other concerned parties.

Privacy-preserving data mining is usually used for hori-
zontally or vertically partitioned database. In [2], Jagannathan
introduced a stronger assumption called the“arbitrarily parti-
tioned” database, meaning that any of the different attributes
for different features can be owned by any party. In this paper,
we propose a privacy-preserving solution to a simple clustering
algorithm (“CURE”) over arbitrarily partitioned data. To be
concrete, recall the example of collaborative customer behavior
analysis and targeted marketing that we mentioned above.
We assume that the attributes involved in this research are
interests in food, job, religion, and entertainment, but all these
data are arbitrarily partitioned by two network companies (like
Facebook and LinkedIn). The two companies want to jointly
cluster the people into several different groups so that people
are can more conveniently to communicate with others who
share their interests. In addtion, what happens if the two
companies are not willing to share the real data with each
other. To solve this problem, we propose a privacy-preserving
method for clustering using representatives. We use a novel
cryptographic techniques called fully homomorphic encryp-
tion, that can enable strong privacy protection for distributed
clustering. In this paper, we present a detailed analysis of the
accuracy and privacy protection of our algorithm.

Our contributions can be summarized as follows:

• We are the first to study privacy protection in clus-
tering using representatives and to propose a privacy-
preserving algorithm.

• To the best of our knowledge, we are also the first
to study a privacy protection in clustering algorithm
using fully homomorphic encryption.

• In terms of privacy, our algorithm leaks no knowledge
about each party’s data except the clustering result
obtained.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

207 | P a g e
www.ijacsa.thesai.org

The rest of the paper is organized as follows. In Section
2, we describe the related work in privacy-preserving data
mining. In Section 3, we describe the technical preliminaries
including the CURE algorithm and the cryptographic tool
that we use in this paper. Section 4 describes our privacy-
preserving protocol for the CURE algorithm when the data
are arbitrarily partitioned between two parties. The analysis
of the computation complexity and privacy of our protocol is
giving in Section 5.

II. RELATED WORK

Privacy preserving data mining using cryptographic pro-
tocols has developed for more than 20 years since Lindell
et al. provided a privacy-preserving algorithm for ID3 in
[3]. Privacy-preserving data mining based on cryptographic
protocols can obtain more accurate results than methods based
on a randomization algorithm. Since the cryptographic protocol
is based on computation complexity, the security of the method
is also better than randomization-based algorithms.

The cryptographic protocols that are used in privacy-
preserving data mining are mainly based on secure com-
putation. The most famous one is provided by Yao[4], [5]
who first introduced secure two-party computation. After that,
a secure multi-party computation was proposed, the goal
of which is to enable several parties to jointly compute a
function without revealing their inputs to each other. Another
important work[1]is provided by Rivest, Adleman, and Der-
touzous following the invention of RSA encryption[6]. They
introduced a concept called “privacy homomorphism”. Since
this development, many homomorphic encryption schemes
have been proposed. RSA encryption[6] is a multiplicatively
homomorphic encryption scheme. ElGamal also provided an
elegant multiplicatively homomorphic encryption scheme in
[7]. Benaloh provided an additively homomorphic encryption
scheme in [8] and Paillier proposed another one [9] in 1999.
However, no fully homomorphic encryption was realized until
Gentry proposed one [10] using an ideal lattice in 2009.
Gentry’s scheme allows one to compute arbitrary functions
over ciphertext without the decryption key[11]. After Gentry
proposed his fully homomorphic encryption scheme, van Dijk
et al. proposed a simpler one using integers instead of the ideal
lattice.

Based on these cryptographic protocols, many privacy-
preserving algorithms have been proposed in the past decade.
Lindell et al. provided a privacy-preserving algorithm[3] for
ID3 using Yao’s protocol[5]. Yang et al. proposed a privacy-
preserving classification method for customer data using a
variant of ElGamal’s encryption [12]. Chen et al. proposed a
privacy-preserving backpropagation neural network learning in
[13]. All of these privacy-preserving algorithms are based on
either additively homomorphic encryption or multiplicatively
homomorphic encryption. Since Gentry developed the first
fully homomorphic encryption scheme, many researchers have
tried to provide privacy-preserving applications based on the
FHE. For example, FHE enables a person to submit queries
to a search engine (e.g., the user submits an encrypted query,
and the search engine computes a succinct encrypted answer
without ever looking at the query in plaintext). More broad-
ly, fully homomorphic encryption improves the efficiency of
secure multi-party computation. Recently, Chu et al. proposed

a privacy-preserving simrank algorithm using Gentry’s FHE
scheme.

To be more concrete, many privacy-preserving clustering
algorithms have been proposed in the past decades. Vaidya
et al. proposed a privacy-preserving K-means clustering over
vertically partitioned data in [14]. However, none of these
researchers have been able to develop a privacy-preserving
clustering algorithm using fully homomorphic encryption;
therefore, we are the first to offer this type of encryption.

III. TECHNICAL PRELIMINARY

A. Arbitrarily Partitioned Data

In two-party distributed privacy-preserving data mining,
Party A and Party B have different attributes for differen-
t features. More specifically, suppose that training dataset
D consists n samples (D = {d1, d2, d3, ..., dn}), and that
each sample di contains m attributes, which denotes di =
{xi1, xi2, ..., xim}. The arbitrarily partitioned data based on
the different attributes of the different features randomly
distributed by two parties.

Fig. 1: Data arbitrarily partitioned by two parties

B. Fully Homomorphic Encryption Scheme

Homomorphic encryption is a form of encryption that
allows specific types of computations to be carried out on
ciphertext and for an encrypted result to be obtained, the
decryption of which matches the result of the operations
performed in plaintext. For instance, one person could add
two encrypted numbers and then another person could decrypt
the result without either of them being able to determine the
value of the individual numbers.

To generalize this property, consider the constrain-
t δ(F (ϵ(m1), ϵ(m2), ...ϵ(mn))) = F (m1,m2, ...mn) for some
set of functions F on all mi in the plaintext space. We say

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

208 | P a g e
www.ijacsa.thesai.org

that an encryption scheme is partially homomorphic if F is a
(finite or infinite) proper subset of computable functions. We
can also say that an encryption scheme is fully homomorphic
if F is the set of all computable functions.

In [10], Gentry provided the first fully homomorphic en-
cryption scheme using ideal lattices. In [15], van Dijk et al.
and Gentry et al. constructed a simple fully homomorphic
encryption scheme based on Gentry’s scheme[10]. van Dijk
et al.’s scheme[15] only uses addition and multiplication over
integers instead of ideal lattices, which is much simpler
conceptually. In van Dijk et al.’s scheme, they proposed two
phases to construct a fully homomorphic encryption. The first
phase is constructing a somewhat homomorphic encryption.
The second phase is squashing the decryption circuit to make
it fully homomorphic. The following is a brief introduce of
these two phases.

1) Somewhat Homomorphic Encryption: In this phase,
there are four steps to construct a somewhat homomorphic
encryption. They are key generation, encryption, evaluate and
decryption[15].

• Key Generation.
In the key generation step, an odd η-bit integer p is
randomly chosen from (2Z + 1) ∩ [2η−1, 2η) as the
private key. The corresponding public key is pk =<
x0, x1, ..., xτ >, which xi ← Dγ,ρ(p) and Dγ,ρ(p) =
x = pq + r and q ← Z∩ [0, 2γ/p), r ← Z∩ (−2ρ, 2ρ)

• Encryption.
Then choose a random subset s ∈ 1, 2, ..., τ and a
random integer r in (−2ρ′

, 2ρ
′
), and output c← [m+

2r + 2
∑

i∈S(xi)]x0

• Evaluate
Given the binary circuit Cε with t inputs, and t cipher-
texts ci, apply the integer addition and multiplication
gates of Cε to the ciphertexts, performing all the
operations over the integers, and return the resulting
integer

• Decryption.
Output m′ ← (c mod p) mod 2.

2) Squashing the Decryption Circuit: In van Dijk et
al.’s fully homomorphic scheme, they followed Gentry’s
approach[10] to make their scheme bootstrappable in this
phase.

• Key Generation.
An odd η-bit integer p is randomly chosen from (2Z+
1) ∩ [2η−1, 2η) as the private key. The corresponding
public key is pk =< x0, x1, ..., xτ >, which xi ←
Dγ,ρ(p) and Dγ,ρ(p) = x = pq + r and q ← Z ∩
[0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ). Set xp ←
After generate the private key and public key, choose
at random a θ − bit vector with Hamming weight
θ, s =< s1, ..., sθ >, and let S = i : si = 1.
Choose at random integers ui ∈ Z ∩ [0, 2k+1), i =
1, ..., θ subject to the condition that

∑
i∈S ui =

xp(mod2k+1). Set yi = ui/2
k and y = y1, ..., yθ.

Hence each yi is a positive number smaller than 2,
with k bits of precision after the binary point. Also,
[
∑

i∈S yi]2 = (1/p) − ∆p for some |∆p| < 2−k.

TABLE I: Denotations of van Dijk et al’s scheme[15]

γ is the bit-length of the integers in the public key
η is the bit-length of the secret key
ρ is the bit-length of the noise
τ is the number of integers in the public key

Output the secret key sk = s and public key pk =
(pk⋆, y).

• Encryption and Evaluate.
Generate a ciphertext c⋆ as before (i.e., an integer).
Then for i ∈ 1, ..., θ, set zi ← [c⋆ · yi]2, keeping only
n = ⌈logθ⌉+3 bits of precision after the binary point
for each zi. Output both c⋆ and z =< z1, ..., zθ >.

• Decryption.
Output m′ ← [c⋆ − ⌊

∑
i sizi⌉]2

C. Notations for CURE algorithm

CURE is an efficient data clustering algorithm for large
databases[16]. It is more robust for outliers and can identify
clusters with non-spherical shapes and wide variances in size.

The CURE algorithm uses distance to denote the rela-
tionship of each pair of points. Then it merges the closest
pair into the same cluster. It also uses a constant number of
well scattered points to represent one cluster so that it can
speed up the clustering process for large database. Here we
briefly introduce how the CURE algorithm works. First, it
calculates the distance of each pair of points and finds the
nearest neighbor of each point. It then puts the nearest neighbor
of each point alone with that point into a queue in increasing
order. When the size of the queue is bigger than k, it merges the
top two clusters and updates the distance to the new cluster. In
the merge process, it uses a constant number of well scattered
points to represent the cluster that is shrunk toward the center
of the cluster by a fraction α. Then it iteratively process above
progress until the size of the queue equals to k. Then, the
algorithm outputs these k clusters. [16] gives more details
regarding the algorithm. Figure 2 gives an example of the
CURE clustering of seven different clusters.

IV. MODEL DESCRIPTION

A. Definitions and Problem Statement

In this paper, we present a privacy-preserving CURE al-
gorithm over arbitrarily partitioned data in different parties.
The goal of our method is to protect the data privacy and to
achieve the computation of the clustering simultaneously. For
simplicity, we will mainly focus on a two-party scenario.

In a two-party scenario, data are arbitrarily partitioned
distributed between the two parties. That means for each
instance di, Party A holds data xij and Party B holds data xij′.
Without loss of generality, for each di ∈ D, di = xij ∪ xij′,
Party A and Party B want to determine clustering using
the CURE algorithm cooperatively without revealing data to
each other. For this problem, we propose a privacy-preserving
CURE algorithm using fully homomorphic encryption.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

209 | P a g e
www.ijacsa.thesai.org

Fig. 2: CURE algorithm with 7 clusters

B. Privacy-preserving CURE algorithm using fully homomor-
phic encryption

We now describe our privacy-preserving CURE algorithm
using fully homomorphic encryption. Party A and Party B
share a data set in an arbitrary partition, which we explained in
section 3.1. Since the CURE algorithm uses random sampling
to handle large data sets, in this step, we can simply use
Reservoir sampling to obtain a smaller data set. It is easy to see
that this step does not influence the user’s privacy. In addition,
the CURE algorithm also uses partitioning for increasing the
speed. The basic idea is to partition the sample space into p
partitions. Each partition contains n/p elements. In the first
pass, we partially cluster each partition until the final number
of clusters is reduced to n/pq for the constant q ≥ 1. Then,
we run a second clustering pass on n/q partial clusters for
all the partitions. For the second pass, we only store the
representative points since the merge procedure only requires
representative points of previous clusters before computing the
new representative points for the merged cluster. Obviously,
this step only reduces the execution times. Therefore, the main
challenge of the privacy-preserving CURE algorithm is how to
protect privacy when Party A and Party B jointly execute the
CURE algorithm.

In the original CURE algorithm, a k-d tree is used to store
the representative points, and it can sort the multi-dimensional
point data efficiently so that it is easy to retrieve. But since
we need to preserve the privacy of the data, and this k-d tree
which contains a sorting process will influence the efficiency
enormously, we simply use a k-d matrix to store these points
in stead of a k-d tree. In our two-party model, the k-d matrix
is arbitrarily partitioned by Party A and Party B. We propose
how to build a heap Q securely using van Dijk et al’s scheme.

First, Party A generates a secret key skA = pA and Party
B generates his secret key skB = pB based on van Dijk et al.’s
scheme. Since the whole computation process will be based
on bit manipulation. Party A and Party B need to convert their
data to a binary format. Party A generates his public key pkA
and encrypts his data and sends them to Party B. Then Party

B encrypts his data using Party A’s public key. For clarity, we
assume that parties are both using Euclidean distance as their
Dist. Therefore, the main challenge of the privacy-preserving
CURE cluster algorithm is obtaining a secure comparison of
the distance and determining how to find the closet one. Since
we use Euclidean distance, we have

dist(p, q) =
√
(q1 − p1)2 + (q2 − p2)2 + ...(qn − pn)2 (1)

Since we only need to find the two points that have
smallest distance, we can use the square of distance for easily
computation. For each pair of points, since the attributes of the
two points are arbitrarily partitioned by the two parties, the two
data sets belong to the same attribute that is either owned by
one party or distributed by the two parties. Without generality,
we assume that Party A owns api and Party B owns bpj . We can
simple get (api − bpj)

2 = (api)
2 + (bpj)

2 + 2api × bpj . (api)
2 and

(bpj)
2 can be calculated by each party itself. For 2api × bpj , we

can use the full homomorphism of van Dijk et al. scheme to
obtain the random share of the distance as shown in algorithm
1 and algorithm 2. For example, in algorithm 2, the random
share for Party A is RA + dist{i, j} + RB , and for Party
B is RB . Another random share for Party A is RA, and for
Party B is RA+dist{i′, j′}+RB . After obtaining the random
share of two distances, we can use secure compare which
is proposed in [17](algorithm 3) to compare them. Secure
compare[17] uses two binary numbers as the input. First, Party
A encrypts each bit and sends them to Party B in order. Party
B then calculates ci = EA(x

i
B − xi

A + 1 +
∑i−1

j=1 wj) for
each i. If xA > xB , then there must exist one bit that the
bits before i are the same and xi

A is 1 and xi
B is 0, therefore

making DA(ci) = 0. Since (xi
B − xi

A + 1 +
∑i−1

j=1 wj) =

xi
B − xi

A + 1 +
∑i−1

j=1(x
j
A + xj

B − 2 · xj
A · x

j
B), this can

be calculated by Party B using the full homomorphism of
van Dijk et al.’s scheme. After getting the index(i) which
indicates the instance that has the smallest distance from
instance i, we need to compare them again to get smallest
one v := index(u) using the algorithm 3 again. Next we can
merge u and v. First, we iteratively select c points. We can
use varietal algorithm 2 to calculate the distance between p

and
|u|u.mean+ |v| v.mean

|u|+ |v|
. It is easy to get this varietal

algorithm, as we can assume that
|u|u.mean+ |v| v.mean

|u|+ |v|
is

a point. When calculating it, we can split it into several parts
that contain u and v. Then we can use method in algorithm 2

to get the value RA+dist(p,
|u|u.mean+ |v| v.mean

|u|+ |v|
+RB).

Then Party A and Party B jointly apply algorithm 3 to secure
get the temSet. After that, we use variant algorithm 2 again to
choose the point that is furthest from the previously selected
points. That means we let the points shrink toward the mean
by a fraction α using a varietal algorithm 2. Then we can insert
this new merged cluster into the matrix dataset. After that, we
can use the same method (algorithm 2) to update the array
index(i). Then we iteratively process above procedure until
the size of array Z is equal k. Lastly, we can output these K
clusters.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

210 | P a g e
www.ijacsa.thesai.org

Algorithm 1 Privacy-preserving CURE cluster algorithm

Input Party A and party B with their own dataS
Output k clusters
begin

Party A generate his private key pA and public key pkA
Party B generate his private key pB and public key pkB
initialize an array Z := index(i).
for each of instances i {

for each of instancesj ̸= i do{
By applying algorithm 2, party A and party B can jointly compare

the distance of i and j and store the smaller one into index(i)
}
end for
index(i) indicates the instance that has the smallest distance from

instance i

While size(Z) > k do
{

Party A and party B jointly apply algorithm 2 to get u :=
extractmin(Z)

v := index(u) //v := u.closest//
delete(Z, u)
w := u ∪ v
temSet := ϕ
for i := 1 to c do{

maxDist := 0
for each point p in cluster w do{

if i = 1
Party A and B jointly apply algorithm 2 to get

minDist := dist(p,
|u|u.mean+ |v| v.mean

|u|+ |v|
)

else
Party A and B jointly apply algorithm 2 to get
minDist := mindist(p, q) : q ∈ tmpSet

Party A and B jointly apply algorithm 3 to secure compare
if (minDist ≥ maxDist){

maxDist := minDist
maxPoint := p

}
}
tmpSet := tmpSet ∪maxPoint

}
for each point p in temSep do

Party A and B jointly apply variant algorithm 2 to get

w := w ∪ {p+ α ∗ (
|u|u.mean+ |v| v.mean

|u|+ |v|
− p)}

insert(M,w)
w.closest := x //x is an arbitrary cluster in Z//
for each x ∈ Z do{

Party A and B jointly apply algorithm 3 to secure compare
if dist(w, x) < dist(w,w.closest)

w.closest := x
ifx.closest is either u or v {

if dist(x, x.closest) < dist(x,w)
x.closest := closest cluster(T, x, dist(x,w))

else
x.closest := w

else if dist(x, x.closest) > dist(x,w){
x.c1osest := w

}
}
insert(Z,w)

}
end

Algorithm 2 Privacy-preserving find minimum distance

Input two distance patitioned by party A and B
Output the one has smaller distance
begin

Party A sends {EA(api)} to party B for all pth attribute belong to
party A and all bpj belong to party B.

Party A also sends {EA(aqj)} to party B for all qth attribute belong
to party A and all bqi belong to party B.

Party B calculates {EA((bβi − bβj)
2− (2api × bpj +2aqj × bqi)+RB)}

and sends this to party A
Party A calculates {EA((aαi − aαj)

2 + (bβi − bβj)
2 − (2api × bpj +

2aqj × bqi) +RB)} and then decrypts it to get dist{i, j}+RB .
Using same method, party B can get dist{i′, j′}+RA.
Party A calculates RA + dist{i, j}+RB

Party B calculates RA + dist{i′, j′}+RB

By applying algorithm 3, party A and party B can jointly
securecompare(RA + dist{i, j}+RB , RA + dist{i′, j′}+RB) and
store the smaller one.

Algorithm 3 Secure Compare two binary number[17]

Input Party A holds XA = {x1
A, x2

A...xn
A}. Party B holds XB =

{x1
B , x2

B ...xn
B}

Output XA >?XB

begin
Party A sends {EA(xi

A)} to party B.
Party B calculates ci = EA(xi

B − xi
A +1+

∑i−1
j=1 wj) where wj =

xj
A ⊕ xj

B = xj
A + xj

B − 2 · xj
A · xj

B
Party B permutes ci and send them to party A
Party A decrypts all ci using pA.
if exist any ci == 0

XA > XB

else
XA ≤ XB

end

V. CORRECTNESS AND SECURITY ANALYSIS

We have now described our privacy-preserving CURE
algorithm. In this section, we conduct a detailed analysis of
the correctness and security of our algorithm.

A. Correctness analysis

After using our privacy-preserving CURE algorithm, Party
A and Party B can combine their partial knowledge of the
dataset to get the finally clusters. Now we show that this
combined result is correct, that is equal to the clusters when
using the original algorithm without privacy protection.

Theorem 1. For the clustering process, our algorithm
1 (with the input arbitrarily partitioned by the two parties)
produces the clusters that are the same as the corresponding
clusters when running the original version of the CURE algo-
rithm with the whole dataset without any privacy protection

Proof. We first show the correctness of algorithm 2.
Party A and Party B can jointly compare the two numbers
RA + dist{i, j} + RB and RA + dist{i′, j′} + RB since
the correctness of the secure compare two binary number
algorithm is guaranteed in [17]. Obviously, the comparison
result is same as the comparison result between dist{i, j} and
dist{i′, j′}, so the correctness of the distance comparison is
proven. Now we show that in each iteration, our algorithm
can correctly obtain the RA + dist{i, j} + RB . We note that
the distance we used in our comparison is the square of the

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

211 | P a g e
www.ijacsa.thesai.org

Euclidian distance. The components of the dist{i, j} either
belong to Party A or Party B. Since we use van Dijk et al.’s
fully homomorphic encryption, we can directly achieve the
EA(RA+dist{i, j}+RB) through the communication of Party
A and Party B. The fully homomorphic property list below has
been guaranteed in[15].

• Multiplication homomorphic property δ(ϵ(m1) ×
ϵ(m2)× ϵ(m3)...× ϵ(mn)) = m1×m2×m3...×mn

• Addition homomorphic property δ(ϵ(m1) + ϵ(m2) +
ϵ(m3)...+ ϵ(mn)) = m1 +m2 +m3...+mn

Since we let the distance hide behind the two random numbers
RA and RB , neither of the parties can obtain the intermediate
result. This completes the proof of the theorem.

B. Security analysis

In this subsection, we explain why our algorithm is secure
in the semi-honest model. In the semi-honest model, we say
an algorithm is secure if neither party can learn anything
beyond its output from the information obtained throughout
the algorithm. In our algorithm, they can only get information
from others when they communicate with each other. There
are two parts that communicate with each other. In exchanging
EA(RA + dist{i, j}+RB), since RB is randomly chosen by
Party B, Party A can not learn the value of dist{i, j} from
dist{i, j} + RB). This is also applied to Party B. In secure
compare two binary numbers algorithm, the security also has
been guaranteed in [17]. Therefore, our algorithm is secure in
the semi-honest model.

VI. CONCLUSIONS

In this paper, we have proposed a privacy-preserving algo-
rithm for clustering using representatives when the input data
are arbitrarily partitioned between two parties. Our algorithm
is correct and provides strong privacy guarantees.

REFERENCES

[1] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data
banks and privacy homomorphisms. Foundations of secure computation,
4(11):169–180, 1978.

[2] Geetha Jagannathan and Rebecca N Wright. Privacy-preserving dis-
tributed k-means clustering over arbitrarily partitioned data. In Pro-
ceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining, pages 593–599. ACM, 2005.

[3] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In
Advances in Cryptology CRYPTO 2000, pages 36–54. Springer, 2000.

[4] Andrew C Yao. Protocols for secure computations. In Proceedings
of the 23rd Annual Symposium on Foundations of Computer Science,
pages 160–164, 1982.

[5] Andrew Chi-Chih Yao. How to generate and exchange secrets. In
Foundations of Computer Science, 1986., 27th Annual Symposium on,
pages 162–167. IEEE, 1986.

[6] Ronald L Rivest, Adi Shamir, and Len Adleman. A method for obtain-
ing digital signatures and public-key cryptosystems. Communications
of the ACM, 21(2):120–126, 1978.

[7] Taher ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. In Advances in Cryptology, pages 10–18.
Springer, 1985.

[8] Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections.
In Proceedings of the twenty-sixth annual ACM symposium on Theory
of computing, pages 544–553. ACM, 1994.

[9] Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Advances in cryptology–EUROCRYPT 1999,
pages 223–238. Springer, 1999.

[10] Craig Gentry. Fully homomorphic encryption using ideal lattices.
In Proceedings of the 41st annual ACM symposium on Theory of
computing, STOC ’09, pages 169–178, New York, NY, USA, 2009.
ACM.

[11] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis,
Stanford University, 2009.

[12] Martin Hirt and Kazue Sako. Efficient receipt-free voting based on
homomorphic encryption. In Advances in Cryptology–EUROCRYPT
2000, pages 539–556. Springer, 2000.

[13] Tingting Chen and Sheng Zhong. Privacy-preserving backpropagation
neural network learning. Neural Networks, IEEE Transactions on,
20(10):1554–1564, 2009.

[14] Jaideep Vaidya and Chris Clifton. Privacy-preserving k-means cluster-
ing over vertically partitioned data. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 206–215. ACM, 2003.

[15] Marten Van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.
Fully homomorphic encryption over the integers. In Advances in
Cryptology–EUROCRYPT 2010, pages 24–43. Springer, 2010.

[16] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Cure: an efficient
clustering algorithm for large databases. In ACM SIGMOD Record,
volume 27, pages 73–84. ACM, 1998.

[17] Ivan Damgard, Martin Geisler, and Mikkel Kroigard. Homomorphic
encryption and secure comparison. International Journal of Applied
Cryptography, 1(1):22–31, 2008.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

212 | P a g e
www.ijacsa.thesai.org

