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Abstract—This paper presents a new simple and robust
texture analysis feature based on Bidimensional Empirical Mode
Decomposition (BEMD) and Local Binary Pattern (LBP). BEMD
is a locally adaptive decomposition method and suitable for the
analysis of nonlinear or nonstationary signals. Texture images are
decomposed to several Bidimensional Intrinsic Mode Functions
(BIMFs) by BEMD, which present a new set multi-scale compo-
nents of images. In our approach, firstly, saddle points are added
as supporting points for interpolation to improve original BEMD,
and then images are decomposed by the new BEMD to several
components (BIMFs). After then, Local Binary Pattern (LBP) in
different sizes is used to detect features from different BIMFs.
At last, normalization and BIMFs selection method are adopted
for features selection. The proposed feature presents invariant
while preserving LBP’s simplicity. Our method has also been
evaluated in CuRet and KTH-TIPS2a texture image databases.
It is experimentally demonstrated that the proposed feature
achieves higher classification accuracy than other state-of-the-
art texture representation methods, especially in small training
samples condition.

Keyword: Texture classification, Empirical Mode Decomposi-
tion, Local Binary Pattern, Invariant feature

I. INTRODUCTION

Texture analysis is widely recognized as a difficult and
challenging computer vision problem. It provides many appli-
cations such as remote sensing image, medical image diag-
nosis, document analysis, and target detection, etc. Recently,
using texture methods to face image analysis and motion
analysis have presented many applications, which indicate
that texture methods can be adopted to many new fields of
computer vision problems.

Over the last several decades, there have been many meth-
ods proposed for texture classification, such as co-occurrence
matrix, Gabor wavelet, Local Binary Pattern [21], maximum
response 8 (VZ-MR8) [1], Basic Image Features (BIF) [2] etc.
The statistics describing the whole region is then computed
form these transformed local descriptors. The Gabor-based
filter representation has been shown to be optimal in the
sense of minimizing the joint two-dimensional uncertainty in
space and frequency, and is widely used in image analysis
[24]. LBP [21] is an operator for image description that is
based on signs of different of neighbouring pixels. Varma and
Zisserman [1] proposed the statistics VZ-MR8 classification
algorithm that uses a rotationally invariant filter bank and

clustering to estimate the full joint probability distribution of
filter responses. Basic Image Features presented by Griffin and
Lillholm [2] are defined by a partition of the filter-response
space of a set of six Gaussian derivative filters and the set of
filters describes an image locally up to second order at some
scale. Those methods are all state-of-the-art statistics algorithm
and present good classification results on many databases.

Among these descriptors, LBP is a widely used local
descriptor. It is simplicity and present excellent performance
in various texture and face recognition, which has gained
increasing attention. However, LBP describes over-local struc-
ture in image, and many improvements of original LBP have
been proposed [22], [23], [24]. LBP operator is extended to
use neighbourhoods for different sizes [21]. The sign and the
magnitude of LBP, and the binary code of the intensity of
centre pixels were combined together in CLBP [28] to improve
texture classification. However, the intensity information is
very sensitive to illumination changes; thus, CLBP needs
image normalization to remove global intensity effects before
feature extraction. Based on local phase and local surface type
extracted from Riesz transform, Zhang [35] proposed a rotation
invariant LBP feature (M-LBP) for texture classification. By
use of Gabor wavelet, the LBP encode the local information
and compress the redundancy in the Gabor filtered images
in multi-scale and multi-direction and achieve effectiveness
in texture representation [4], [3]. For variational applications,
many other descriptors based on LBP are proposed [25], [28],
[34].

Recently, Empirical Mode Decomposition (EMD), devel-
oped by Huang [5], has attracted more and more attentions
in past decade and has been used for texture analysis [9].
The EMD method is based on the direct extraction of the
energy associated with various intrinsic time scales. Expressed
in Intrinsic Mode Functions (IMFs), they are the expansion
basis which can be linear or nonlinear as dictated by data.
EMD has been used to analyse two-dimensional signals [7],
for example, images, which is known as Bidimensional EMD
(BEMD).

BEMD presents some better quality than Fourier, wavelet
and other decomposition algorithms in extracting intrinsic
components of textures because of its data driven property
[6], [7]. In this paper, we proposed an efficiency application of
saddle points added BEMD [32] combined with LBP in texture
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classification, and present the effectiveness of BEMD/BIMFs
invariant properties for texture images.

Local Binary Pattern (LBP) is used as texture descriptor
to detect the features of texture images’ BIMFs. BEMD
decomposed the original image to new multi-scale compo-
nents (Bidimensional Intrinsic Mode Functions). In those new
components, LBP histograms can achieve better efficiency
than in the original image and present more illumination
invariant features to supplement LBP to improve classification
accuracy while preserving its simplicity. Experiments show
texture image recognition rate based on our method is better
than other state-of-the-art texture representation methods.

This paper is an extension of our previous work [32].
In this paper, we further extend the LBP-BEMD feature to
variance normalization and BIMFs selection for performance
improvement. We also provide a more in-depth analysis and
more extensive evaluation.

II. REVIEW OF BEMD

Empirical mode decomposition (EMD) is a data driven
processing algorithm, which applies no predetermined filter.
EMD is based on the local characteristics scale of data, which
is able to perfectly analyse nonlinear and nonstationary signals
[5].

Nonstationary signals have statistical properties that vary
as a function of time and should be analysed differently
than stationary data. Rather than assuming that a signal is
a linear combination of predetermined basis functions, in
EMD, the data are instead thought of as a superposition of
fast oscillations onto slow oscillations. EMD identifies those
oscillations that are intrinsically present in the signal and
produces a decomposition using these modes as the expansion
basis.

EMD decomposes signal into components called Intrinsic
Mode Functions (IMFs) satisfying the following two condi-
tions [5]: (a)The numbers of extrema and zero-crossings must
be either equal or differ at most by one; (b)At any point, the
mean value of the envelope defined by the local maxima and
the envelope by the local minima is zero.

Huang [5] also proposed an algorithm called ’sifting’ to
extract IMFs Jk(t) from the original signal f(t):

f(t) =
K∑

k=1

Jk(t) + rK(t) (1)

Where Jk(t), k = 1, . . . ,K is IMFs and rK is the
residue.

The EMD is originally developed for one-dimensional (1D)
data. Nunes.[9] firstly extended it to two dimensional BEMD,
and decomposed images to bidimensional IMFs (BIMFs). The
Bidimensional EMD (BEMD) process is conceptually the same
as the one dimension EMD. The main process of the BEMD
can be described as:

Step 1 Identify the local extrema (both maxima and
minima) of the image I(x, y);

Step 2 Generate the 2D envelopes by connecting maximum
points (respectively, minima points) using surface interpola-
tion. The local mean m is the mean of the two extrema en-
velopes. Follow Damerval’s work [11], Delaunay triangulation
and then cubic interpolation on triangles is used in our work;

Step 3 Subtract out the mean from the image to get a
proto-BIMF r = I −m, judge whether r is a BIMF, if it is,
go to Step 4. Otherwise, repeat Step 1 and Step 2 using the
proto-BIMF r, until the latest proto-BIMF turns to be a BIMF;

Step 4 Input the proto-BIMF r to the loop from Step 1
to Step 3 to get the next remained BIMFs until it cannot be
decomposed further.

After the BEMD, the decomposition of the image can be
rewritten as following form:

I(i, j) =
K∑

k=1

dk(i, j) + r(i, j) (2)

The dk(i, j) is the BIMFs of the images, and r(i, j) is the
residual function.

Although the discussions about EMD/BEMD lack con-
crete theoretical foundation until now [14], numerous tests
demonstrated empirically that EMD is a powerful tool for
the analysis of nonlinear and nonstationary data, especially for
time-frequency-energy representations [8], [14], [16]. For two
dimensional image, there are also some successful applications
[15], [19]. In this work, we fine down the saddle points added
BEMD combined with LBP features proposed in our previous
work [32], and provide a more in-depth analysis and more
extensive evaluation.

III. BEMD BASED ON SADDLE POINTS

One practical implementations in BEMD is the local ex-
trema points detection. Which points should be detected as
supporting points for the interpolation is an open problem.
Mathematical morphology is used to detect local maxima
and minima points in Nunes method[9]. Further, the local
neighbour location method is also proposed for extrema de-
tection [13]. However, by use of these methods, saddle points
may not be detected. Saddle points are local maximum and
local minimum points evaluated in different directions, and
they also give important supporting features about the local
variation of the original function. We added saddle points
as supporting points for interpolation, which provided more
significant components for texture classification.

In discrete condition, a point u(x, y) in a 2D matrix U is
a saddle point usaddle(x, y), if the product of the eigenvalues
of the Hessian matrix is negatives:

usaddle(x, y) = {u(x, y)|uxxuyy − u2
xy < 0} (3)

After detecting the saddle points, neighbour location
method [13], [31] is used to detect the local maxima or minima
points. In ordinary BEMD methods [6], [7], mathematical
morphology is used to detect local maxima and minima points,
but we found the numbers of extrema points reducing fast. It
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means that the component will be too smooth to detect any
signification extrema points after one or two times ’sifting’.
To improve local extrema points detection, neighbour location
method is used to detect extrema points. In this method, a
data point u(x, y) is considered as a local maximum (or. local
minimum) if its value is strictly larger (or. lower) than the
value of u at the nearest neighbours of points (x, y).

Let the window size for local extrema determination be
(2w + 1)× (2w + 1), then

u(x, y) =

{
umax if u(x, y) > u(i, j),
umin if u(x, y) < u(i, j).

(4)

Where ∀(i, j) ∈ W (x, y) and W (x, y) = {(i, j)|(x−w) ≤
i ≤ (x + w), (y − w) ≤ j ≤ (y + w), i �= x, j �= y}. From
experiment and following the method in [13], we use the 3×3
window (w = 1). We find that result is an optimum extrema
map for given images. The larger windows can be used in
some other applications, but it will lead to a smaller number
of extrema points for given texture images.

After then, the detected saddle points are added to maxima
or minima points sets. In saddle points set Usaddle, a saddle
point location (x, y)’s neighbourhood window is U(k, l) =
{u|(x− T ) ≤ k ≤ (x+ T ), (y − T ) ≤ l ≤ (y + T )}.

usaddle(x, y) ∈ Umax if Nmax > Nmin,
usaddle(x, y) ∈ Umin if Nmax < Nmin.

(5)

where usaddle is saddle points set element (point), Umax

is maximum points set, Umix is minimum points set, Nmax is
the number of maxima points in window U(k, l), and Nmin

is the number of minima points in window U(k, l). It means
that if number of maxima points is more than minima points
in window U(k, l), saddle point is considered to be maxima
point, and vice verse. In experiments, the window size is 5×5
(T = 2). The recognition performance is nonsensitive to this
saddle point location windows size. Experimental result about
relationship between recognition performance and the windows
size is shown in Section V-B.

These three type points, saddle points, neighbour local
maxima and neighbour local minima points, are detected from
image and used as supporting points for BEMD’s interpolation.
As shown in Section IV-B, by use of saddle points added
BEMD, texture images are decomposed into Bidimensional
Intrinsic Mode Functions (BIMFs), which represent images’
multi-scale components. The saddle points added BEMD de-
tected more details (high local frequencies of oscillation) of
images and contributed the performance of texture images
classification.

IV. TEXTURE DESCRIPTOR BASED ON BEMD AND LBP

To analyse and classify texture images, we propose using
LBP descriptor to extract local features from decomposed
BIMFs. And then, the variance normalization and BIMFs
selection are employed for performance improvement.

Fig. 1. The LBP operator

A. Local Binary Patterns (LBP)

LBP operator is originally developed for texture descrip-
tion. The operator assigns a label to every pixel of an image
by thresholding the 3 × 3-neighbourhood of each pixel with
the centre pixel value and considering the result as a binary
number. Then histogram of the labels can be used as a texture
descriptor [21].

The form of the resulting 8-bit LBP code can be defined
as follows:

LBP (xc, yc) =

7∑
n=0

s(un − uc)2
n (6)

where uc corresponds to the gray value of the centre pixel
(xc, yc) into gray values of the 8 neighbourhood pixels, and
function s(m) is defined as:

s(m) =

{
1 if m ≥ 0,
0 if m < 0.

(7)

LBP presents that it will be not affected by any monotonic
gray-scale transformation which preserves the pixel intensity
order in a local neighbourhood. Each bit of LBP code has the
same significance level and that two successive bit values may
have a totally different meaning.

To deal with textures at different scales, LBP operator is
later extended to use neighbourhoods for different sizes [21].
The local neighbourhood is extended to as a set of sampling
points evenly spaced on a circle centred at the pixel to be
labelled allows any radius and number of sampling points [22].
If a sampling point is not in the centre of a pixel, it will be
rebuilt by bilinear interpolation. The notation (P,R) is defined
as the pixel neighbourhood which means P sampling points on
a circle of radius of R. Figure.2 shows an example of circular
neighbourhoods.

The number of patterns of original LBP grows with respect
to the neighbourhood size, to address this problem, Ojala [21]
observed that some patterns are more common than others,
which is known as uniform patterns (’u2’). The number of
transition between zero and one in uniform pattern at most
two. For example, the patterns 01111000 and 11001111 are
uniform whereas the patterns 11001001 and 01010011 are not.
It is measured by:
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Fig. 2. The circular (8,1) (16,2) neighbourhoods

U(LBPP,R) = |s(uP−1 − uc)− s(u0 − uc)|+
P−1∑
n=1

|s(un − uc)− s(un−1 − uc)| (8)

In uniform LBP, there is a separate output label for each
uniform pattern and all the non-uniform patterns are assigned
to a single label. Thus, the number of different output labels
for mapping for patterns of P bits is (P (P−1) + 3) [21].
For instance, the uniform mapping produces 59 output labels
for neighbourhoods of 8 sampling points, and 243 labels for
neighbourhoods of 16 sampling points. In the following, the
mentioned LBP patterns are all uniform patterns.

B. LBP histograms of BIMFs

In this section, the proposed LBP via BIMFs feature frame
is introduced. Figure.3 shows an example of texture image and
its components BIMFs.

BEMD decomposes an image into its BIMFs basically
on local frequency or oscillation information. The first BIMF
contains the highest local frequencies of oscillation, the final
BIMF contains the lowest local frequencies of oscillation and
the residue contains the trend of the data. Corresponding high-
frequency components are more robust to illumination changes
[30]. BIMFs of image present a set of components of image
from high-frequency to low-frequency. At the same time, the
BEMD decomposition is an adaptive decomposition method. It
is different from wavelet-based multi-scale analysis that char-
acterizes the scale of a signal event using pre-specified basis
functions. Moreover, corresponding BIMFs by saddle points
added BEMD are able to capture more representative features
of the original signal, especially more singular information in
high frequency ones.

At the same time, LBP is a nonparametric method, which
means that no prior knowledge about the distributions of
images is needed.

We use the following procedure to extract texture features:

Firstly, the original image I is decomposed into its BIMF
(BIMFs(i)) by use of the saddle points added BEMD:

I =

K∑
i=1

BIMFs(i) + rN (9)

image BIMF1 BIMF2

BIMF3 BIMF4 BIMF5

Fig. 3. Texture image and its BIMFs

Secondly, as we can find from texture images’ BIMFs
(Figure.3), the first and the second BIMF (higher BIMFs)
remain the main detail of original image, and the last BIMFs
(lower BIMFs) represent information in large scale. In our
experiment, histograms of different size LBP (LBP8,1 and
LBP16,2) for different BIMFs are mixed and the best com-
bination is selected experimentally. All LBP patterns used in
our algorithm are uniform patterns [21].

Thirdly, the LBP histograms of different BIMFs are nor-
malized. Variance is a measure of how far a set of numbers are
spread out from each other. Because we use variational size
of LBPs to describe the BIMFs, the distributions of different
BIMFs’ LBP histograms are incongruous. To normalize LBP
histograms, Variance-normalized LBP is defined as:

V LBP
BIMFs(i)
P,R = LBP

BIMFs(i)
P,R /V AR(LBP

BIMFs(i)
P,R )

(10)

where V AR(LBP
BIMFs(i)
P,R ) is the variance of LBPP,R

histogram of BIMFs(i):

V AR(x) =

n∑
i=1

pi(xi − μ)2 (11)

μ is the expected value μ =
∑n

i=1 pixi and pi is the
probability of xi. LBPP,R describes the local feature of
BIMFs and V AR describes the local variance.

Lastly, in EMD/BEMD literatures, there are findings that
residual show trend of the whole signal/image. Figure.4 shows
texture image samples and their BIMFs.

The higher BIMFs capture the detail information of original
image, and the lower BIMFs capture the coarse contour infor-
mation. Especially, the illumination and pose variety mainly
appears in the residue. Therefore, this indicates that the lower
BIMFs are sensitive to the variety. It is well understood that the
variety effects can be reduced or eliminated by removing these
lower BIMFs and residual. So we can just detecting the first
two BIMFs for feature detection, and their LBP histograms are
concatenated as the feature vector of image, which is Variance-
normalized Saddle points added BEMD LBP:

V SBEMDLBP = {V LBP
BIMFs(i)
P,R |i = 1, 2} (12)
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Image 1 Image 2
a

BIMF1 BIMF2 BIMF3 BIMF4 BIMF5 Residualb

BIMF1 BIMF2 BIMF3 BIMF4 BIMF5 Residualc

Fig. 4. Images and their BIMFs (a)Images from same class of KTH-TIPS2a
(b)BIMFs of Image 1 (c)BIMFs of Image 2

There are many combination choices to combine different
size LBP (P,R) with different BIMFs(i). To find the opti-
mum combination of LBP (P,R) with BIMFs(i), different
combination choices are used and their classification accuracy
are compared. Some discussion and experimental result will
be presented in Section V-B.

V. EXPERIMENT AND DISCUSSION

To validate the effectiveness of proposed VSEMDLBP
feature, we carried out a series of experiment on two
large databases compared with other methods: KTH-TIPS2a
database [36] and CUReT database [37]. Nearest neighbour-
hood classifier (NN) is used for classification.

A. Databases and dissimilarity measurement

The KTH-TIPS2a database [36] is a database widely used
for texture classification and material categorization. KTH-
TIPS2a database contains 4 samples of 11 different materials.
The sample images at 9 different scales, 12 lighting and pose
setups. It contains 11 texture classes with 4572 images. Some
examples from different classes are shown in Figure.5. It
appears small inter class variations between textures and large
intra class variations in the same class. In the top row, all
images are of the same texture while in different scales and
lighting/pose setups. In the bottom row, the images appear
similar and yet they are belonging to different classes.

The images are 200 × 200 pixels in size (as in ref.[27],
we did not include those images which are not of this size, so
the experimental data is 10 class with 396 samples pre class,
totally 3960), and all of images are transformed into 256 gray
levels.

The CUReT database [37] contains images of 61 materials
and includes many surfaces commonly seen in our environment
[24]. Each of the materials in the database has been imaged un-
der different viewing and illumination conditions. The effects
of surface normal variations such as specularities, reflections
and shadowing are evident. This database also includes some
man-made textures, and is highlighted due to abundant imaging

Fig. 5. Some examples from KTH-TIPS2a database

TABLE I. CLASSIFICATION ACCURACY OF PROPOSED METHODS WITH

DIFFERENT SIZE WINDOWS IN THE DATABASES

windows size KTH-TIPS2a CUReT
3 × 3 96.36% 97.61%
5 × 5 96.96% 98.00%
7 × 7 96.30% 97.87%
9 × 9 96.26% 97.68%

11 × 11 96.42% 97.33%

conditions. These make it far more challenging and become a
benchmark widely used to assess classification performance.

There are 118 images which have been shot from a viewing
angle of < 60o. Follow ref.[24], in these 118 images, we
selected 92 images, from which a sufficiently large region
could be cropped (200 × 200) across all texture classes. And
then they are converted all the cropped regions to gray level.

We use χ2 statistic to measure the dissimilarity of sample
and model histograms. Thus, a test sample xt will be assigned
to the class of model xm that minimizes:

D(xt, xm) =

N∑
n=1

(xt(n)− xm(n))2/(xt(n) + xm(n)) (13)

where N is the number of bins, and xt(n) and xm(n) are
the values of the sample and model histogram at the nth bin,
respectively.

B. Parameters selection and feature combination selection in
experiment

In section III, we proposed to combine the saddle points
to maximum points set or minimum points set based on the
numbers of maximum points and minimum points in the
saddle point location neighbourhood windows. In this section,
we firstly gave some experiments to show the relationship
between the size of saddle point location windows and the
classification performance. The test data sets are KTH-TIPS2a
(40 samples per class for training and 356 samples per class for
testing) and CUReT (46 samples per class for training and 46
samples per class for testing). The used VSBEMDLBP feature
is V LBP

BIMFs(1)
8,1 V LBP

BIMFs(2)
8,1 V LBP

BIMFs(1)
16,2 .

As Table.I shows, the classification performance is non-
sensitive to the size of saddle point location windows. The
value of T don’t effect the total number of extrema points. T
just effects the distribution of number of added saddle points
between maximum set and minimum set. When T changes
from 1 to 5 (windows size changes from 3 to 11), the different
number of saddle points between maximum set and minimum
set accounts for 5-10 percent of total number of saddle points,
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TABLE II. CLASSIFICATION ACCURACY OF PROPOSED METHODS WITH

COMBINATIONS OF DIFFERENT LBPP,R WITH DIFFERENT BIMFs(i) IN

THE DATABASES

Combination KTH-TIPS2a rank CUReT rank
V 1
8,1V

2
8,1V

1
16,2 96.96% 2 98.00% 1

V 1
8,1V

2
8,1 98.27% 1 97.39% 3

V 2
8,1V

1
16,2 96.38% 3 97.92% 2

V 1
8,1V

1
16,2 93.19% 9 96.34% 5

V 1
8,1 93.17% 10 94.38% 8

V 1
16,2V

2
16,2 92.37% 11 96.91% 4

V 1
8,1V

2
8,1V

1
16,2V

2
16,2 95.62% 4 92.67% 10

V 1
8,1V

2
8,1V

2
16,2 94.41% 5 86.77% 14

thus T ’s influences on recognition result is small. For other
combination features, the same conclusion can be found. In
the following experiments, the window size is fixed to 5 × 5
(T = 2).

Further, in Section.IV-B, we proposed the VSBEMDLBP
features combining the LBPP,R and BIMFs(i). The perfor-
mance of different combination is different. Experiments to
’optimum’ the choice of combining different LBPP,R with
different BIMFs(i) is shown in Table.II. The test data sets
are KTH-TIPS2a (40 samples per class for training and 356
samples per class for testing) and CUReT (46 samples per class
for training and 46 samples per class for testing). Because there
are many different combinations, we just reported the top five
combinations result in the databases.

In order to simplify the expression, V i
P,R is short for

the V LBP
BIMFs(i)
P,R and V 1

P,RV
2
P,R means to concatenate the

V LBP
BIMFs(1)
P,R and V LBP

BIMFs(2)
P,R as the feature vector,

etc.

Form TableII, we can find that the best performances
are focus on three combinations (V 1

8,1V
2
8,1, V 1

8,1V
2
8,1V

1
16,2 and

V 2
8,1V

1
16,2) for different databases. It indicated that the high

frequency BIMFs(1) and BIMFs(2) present more represen-
tative features of the original image, and the high-frequency
components are more robust to variant of texture image.

At the same time, other combinations’ recognition perfor-
mance varied in different database, but the top five combina-
tions still can achieve good result. As we discussed before,
the lower BIMFs are sensitive to the variety. The top 5
results all don’t contain the lower BIMFs (BIMFs(4) and
BIMFs(5)), and even the BIMFs(3) (in fact, the com-
bination V 1

8,1V
3
8,1V

1
16,2 achieved rank 7 in CUReT database

(95.24%)). This indicated that these BIMFs can be removed
to reduce variety effects.

In the following experiment, V 1
8,1V

2
8,1V

1
16,2 feature is used

to compare with other methods in CUReT database. V 1
8,1V

2
8,1

feature is used to compare with other methods in KTH-
TIPS2a database. And we also reported the top three V 1

8,1V
2
8,1,

V 1
8,1V

2
8,1V

1
16,2 and V 2

8,1V
1
16,2 features classification performance

in the databases.

C. Classification result on texture database

After selecting the combination of V LBP
BIMFs(i)
P,R , we

evaluated the classification performance using our methods in
the two texture databases: KTH-TIPS2a database and CUReT
database.

The original LBP [21], improved LBP approach (CLBP
[28]) and two statistical approaches (VZ-MR8 [1], BIF [2]) are
used as comparison. At the same time, to validate the effective-
ness of proposed saddle points added BEMD decomposition,
we also carried out LBP combined with other transform
methods: Gabor filters -LBP [4], [3], M-LBP (Riesz transform)
[35], and original BEMD decomposition [11]. The VBEMD-
LBP feature is to detect LBP features by our procedure from
BIMFs by used of BEMD (no saddle points added BEMD)
proposed in [11] (Ref.[11] just proposed BEMD method rather
than the features).

1) Experiment result on KTH-TIPS2a database: For KTH-
TIPS2a database, we firstly repeated the small training samples
approach (1-7 samples per class for training, 389 samples per
class for testing) with 100 random combinations as training
and testing data and the results are reported as average value
and shown in Table.III. It means that the training data is
independent from physical, materials, illumination, pose, and
scale. This small training samples approach only supports a
few partial training samples and little knowledge about the
data.

Secondly, we repeated the experiment with 100 different
random selection of training and testing data (1-50 samples
per class for training, 346 samples per class for testing) and
reported the proposed and compared approaches results in a
range of training set sizes (as in Crosier[2]), which is shown in
Figure.6. In Figure.6 we just show the best result of proposed
VSBEMDLBP (V 1

8,1V
2
8,1) and VBEMD-LBP (V 1

8,1V
2
8,1). The

classifier is Nearest Neighbour classifier (NN).

The small training samples result classification accuracies
are listed in Table.III. It can be seen that VBEMD-LBP and
VSBEMDLBP have better performance than other methods.
When the number of training samples pre class is small
compared to the testing samples, in this case, 1-7 training
samples ps. 389 testing samples, the recognition rates by
other methods are dropped, especially for LBP. This is mainly
because there are different scales, lighting and pose setups in
KTH-TIPS2a and the number of samples per class is large. The
proposed methods achieve the highest recognition rates among
all the competing methods. Particularly, it is less sensitive to
the small sample size problem.

Secondly, from Figure.6, we can note that the performance
ranking of the eight representations tested remains the same
regardless of the number of images in the training set. This can
be seen as confirming the uncommitted nature of the nearest
neighbour classifier used with each of the representations.
VSBEMDLBP-columns score highest, followed by VBEMD-
LBP, BIF and CLBP representations. When the number of
training samples are relatively high such as 50 samples per
class, the difference between the recognition rates of VSBE-
MDLBP and other methods is getting smaller.

The performance of VZ-MR8 is significantly lower than
other approaches. VZ-MR8 textons are trained from 40 sam-
ples of per class with 122 textons, the totally textons number is
1220. There are 396 samples per class in KTH-TIPS2a, textons
from 40 samples per class maybe not representative enough.
More training samples and more textons pre class may improve
the result, but the training time and storage space will be very
large and the cluster result may not be ideal for classification.
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TABLE III. CLASSIFICATION ACCURACY OF VSBEMDLBP AND COMPARED APPROACHES IN THE KTH-TIPS2A DATABASE WITH DIFFERENT NUMBER

OF TRAINING SAMPLES

No.of training samples 1 2 3 4 5 6 7
LBP[21] (8,1)+(16,2) 40.14% 46.88% 52.36% 57.17% 60.47% 62.59% 64.50%
CLBP[28] (8,1)+(16,2) 45.37% 53.33% 59.19% 63.39% 67.23% 69.23% 71.08%
Gabor-LBP[4] (8,1) 42.04% 49.19% 54.81% 58.91% 62.52% 64.78% 65.88%
M-LBP [35] (8,1)+(16,2) 45.21% 52.22% 59.01% 62.38% 66.16% 68.37% 69.29%
VZ-MR8[1] 38.60% 43.41% 47.41% 50.60% 52.72% 54.52% 56.24%
BIF[2] 46.98% 56.11% 62.33% 66.77% 70.14% 72.53% 73.42%
VBEMD-LBP (V 1

8,1V
2
8,1) 59.79% 70.28% 76.04% 79.77% 82.11% 84.09% 87.48%

VBEMD-LBP (V 1
8,1V

2
8,1V

1
16,2) 55.08% 66.33% 71.78% 75.90% 78.49% 80.92% 82.17%

VBEMD-LBP (V 2
8,1V

1
16,2) 52.85% 61.93% 67.58% 71.36% 75.22% 77.15% 78.39%

VSBEMDLBP (V 1
8,1V

2
8,1 ) 66.96% 76.39% 81.89% 84.99% 86.53% 89.04% 90.23%

VSBEMDLBP (V 1
8,1V

2
8,1V

1
16,2) 62.25% 71.80% 76.56% 80.76% 83.10% 85.02% 86.46%

VSBEMDLBP (V 2
8,1V

1
16,2) 59.53% 68.36% 74.28% 78.34% 80.40% 82.03% 84.08%
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Fig. 6. The mean proportion of correctly classified images over 100 random splits of the KTH-TIPS2a database into training/test data, for a range of training
set sizes. The best result for V SBEMDLBP (V 1

8,1V
2
8,1)-columns (with 50 training images per class) is 98.83%

Thirdly, there are 396 samples per class in KTH-TIPS2a
at different scales, lighting and pose setups, which are high
intra-class scatter. Hu [18] and some other researchers have
pointed out that the BIMFs’ residual is a trend of whole
image. For KTH database texture images, the illumination and
pose of images can be viewed as trend of images. The high
oscillation information (BIMF (1) and BIMF (2)) are not
only more robust to illumination changes [30] but also more
robust to pose and scales changes. In our method, residual
and some lower BIMFs are removed in the VBEMD-LBP
and VSBEMDLBP features, which means that the variable
of samples are reduced by removing the lower BIMFs and
residual and achieves a lower intra-class scatter.

2) Experiment result on CUReT database: For CURet
database, there are three training approaches used: 46 training
samples C46, 23 training samples C23 and 3 training samples
C3. C46 means 46 samples from each class are training data,
and other 46 samples are testing data. It is the normal method
in previous works [23], [24]. C23 means 23 samples from
each class be training data, and other 69 samples are testing

data[35]. C3 means only 3 samples from each class be training
data, and other 89 samples are testing data, which is a small
training size data. Using the above three settings rather than
just one made it possible to better investigate the properties
of different operators [24]. The C46 data is to simulate the
condition that there are enough training samples. C23 data
is used to simulate the situation of small but comprehensive
training set. C3 data is to simulate the condition that there is
only a few partial training samples.

We firstly repeated the three training methods (C46, C23,
C3) with 100 random combinations as training and testing
data and the results are reported as average value and shown
in Table.IV. Secondly, we repeated the experiment with 100
different random selection of training and testing data (1-
46 samples per class for training, 46 samples per class for
testing, C46) and reported the combined features results in a
range of training set sizes (as in Crosier[2]), which is shown
in Figure.7. The small training samples part (1-7 samples
per class for training, 46 samples per class for testing, C46)
classification accuracies are listed in Table.V. The classifier is
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TABLE IV. CLASSIFICATION ACCURACY OF VSBEMDLBP AND

COMPARED APPROACHES IN THE CURET DATA

Data setting C3 C23 C46

LBP[21] (8,1)+(16,2) 60.14% 88.10% 92.99%
CLBP[28] (8,1)+(16,2) 61.00% 89.91% 94.33%
Gabor-LBP[4] (8,1) 64.82% 90.22% 94.37%
M-LBP [35] (8,1)+(16,2) 67.76% 94.39% 97.59%
VZ-MR8[1] 65.02% 92.48% 96.35%
BIF[2] 73.51% 96.49% 98.56%
VBEMD-LBP (V 1

8,1V
2
8,1V

1
16,2) 73.25% 94.76% 97.28%

VBEMD-LBP (V 2
8,1V

1
16,2) 71.03% 93.70% 96.82%

VBEMD-LBP (V 1
8,1V

2
8,1) 70.55% 93.14% 96.25%

VSBEMDLBP (V 1
8,1V

2
8,1V

1
16,2) 76.29% 95.90% 98.00%

VSBEMDLBP (V 2
8,1V

1
16,2) 75.18% 95.69% 97.92%

VSBEMDLBP (V 1
8,1V

2
8,1) 74.63% 94.98% 97.39%

Nearest Neighbour classifier (NN).

Table.IV shows classification accuracy of proposed meth-
ods and other methods in CURet database. By comparing clas-
sification rates, we can find that VBEMD-LBP achieve better
accuracy that other LBP-based methods and VSBEMDLBP
accuracy is higher than other methods except BIF. In the few
training samples condition C3, accuracies of all methods are
dropped, only the proposed features and BIF achieve classi-
fication accuracy more than 70% and VSBEMDLBP is even
better than BIF. It indicates that the proposed VSBEMDLBP
is more robust for real applications where training samples
are limited and not comprehensive. On the other hand, Crosier
[2] has proposed that the BIF feature achieves 5−10% higher
classification rate than LBP-based methods in CURet database,
the main superiority of BIF over our method comes from the
local feature detector. At the same time, BIF feature is detected
by a series of multi-scale filters’ responses, which verifies the
multi-scale representations will be more efficiency.

We repeated the experiment with 100 different random se-
lection of training and testing data and reported the results in a
range of training set sizes, which is shown in Figure.7. We can
note that the performance ranking of the eight representations
tested remains the same regardless of the number of images in
the training set. BIF-columns score highest, followed by VS-
BEMDLBP, VBEMD-LBP and VZ-MR8 representations. In
the small training samples conditions, VSBEMDLBP presents
better result than BIF, and their performances are similar after
training samples are more than 10. The detail result of the
small training samples conditions can be found in Table.V.

In CURet database, VZ-MR8 textons are trained following
the approaches in [1] (10 textons training from 13 samples
per class, totally 610 textons). The performance of VZ-MR8 is
significantly higher than in another database. VZ-MR8 feature
is sensitive to the choice of different number of textons and
the textons cluster result in different database.

As Table.III to Table.V show, transform based LBP features
present better results compared with LBP and CLBP feature. It
shows multi-scale or frequency domain representations extract
features in character level, which is proved to be more discrim-
inative feature level. Further, as we discussed before, unlike
other priori transform methods (Gabor wavelet, etc.), BIMFs
depend on an adaptive decomposition and present a different
time-frequency space and more meaningful components.

D. Discussion

In the two databases, the proposed VSBEMDLBP features
achieve higher recognition result. Especially, it is less sensitive
to the small training sample problem. When the number of
samples are relatively high such as 396 samples per class and
the number of training samples are relatively low such as 1-7
samples per class in KTH-TIPS2a database, the performance
difference between VSBEMDLBP and other methods is higher.

As shown in the Section IV-B, BIMFs of image present
adaptive multi-scale components. The higher BIMFs contain
the higher local frequencies of oscillation and are more robust
to illumination, pose, scale changes. The variety effects can be
reduced or eliminated by removing lower BIMFs and residual
as in our method. The saddle points added BEMD achieves a
better classification result than other transform-based method
included the original BEMD. To our best knowledge, the local
descriptor based on BIMFs is a new framework to validate
the BEMD’s powerful compared with other transforms in two
dimensional. At the same time, as a decomposition-based
method, this framework could be applied to different LBP
variants, such as CLBP, Dominant LBP [27], LBP histogram
fourier features [23], and other descriptors, for example, BIF.

Although the local descriptor based on BIMFs framework
is a powerful method, there are some challenges that should
be addressed in the future. The first challenge is choosing the
optimum combination of LBPP,R and BIMFs(i). Though
we have validated the performances of the three combinations
(V 1

8,1V
2
8,1, V 1

8,1V
2
8,1V

1
16,2 and V 2

8,1V
1
16,2) are better than other

combinations in the experiment databases as in section.V-B,
the performances of other combinations varied and depended
on the texture database. As a future work, more theoretically
research is needed.

The next challenge in BEMD’s applications is its time
complexity. The main time consumption of BEMD is from
the many times two dimensional interpolations (the step 2 of
Bidimensional EMD (BEMD) process), which is still known
to be a time-consuming problem. We compared the time com-
plexity experimentally. The experimental computer is Inter,
Core(TM)2, CPU, Q6600 @2.40GHz. The platform is MAT-
LAB R2011a. For a 200 × 200 pixel image, average BEMD
decomposition time was 3.7 seconds, which is more than
wavelet (0.06 seconds) and Riesz transform (0.53 seconds).
The method with higher time consumption than our method is
VZ-MR8 (154 seconds per image for KTH-TIPS2a database
and 32 seconds per image for CUReT database), which took
a lot of time to cluster textons. BIF took average 3.6 seconds
per image to detect feature. LBP and CLBP consumed smaller
than 0.05 seconds per image.

Based on the discussion and experimental result of Section
IV-B, the best combination of VSBEMDLBP just detected
LBP histograms of the first two BIMFs, so in the practice,
we can only decompose image to the first two BIMFs and
then stop the BEMD processing. Its average decomposition
time was 2.5 seconds and faster than BIF. To further reduce
computation complex of EMD/BEMD, we have developed a
fast decomposition method for one dimensional EMD [33],
which only takes 32% time consumption of original EMD
and presents more meaningful IMFs. But for two dimensional
BEMD, more research is needed to reduce the time while
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TABLE V. CLASSIFICATION ACCURACY OF VSBEMDLBP AND COMPARED APPROACHES WITH DIFFERENT NUMBER OF TRAINING SAMPLES (PART) IN

C46

No.of training samples 1 2 3 4 5 6 7
LBP[21] (8,1)+(16,2) 41.34% 52.69% 60.31% 65.02% 68.48% 71.40% 73.85%
CLBP[28] (8,1)+(16,2) 41.48% 53.27% 61.15% 66.13% 69.81% 72.91% 75.06%
Gabor-LBP[4] (8,1) 43.98% 55.49% 63.01% 67.71% 71.12% 73.91% 76.17%
M-LBP [35] (8,1)+(16,2) 46.55% 59.99% 67.70% 73.18% 76.90% 79.72% 82.03%
VZ-MR8[1] 43.42% 56.93% 64.35% 70.34% 73.80% 76.66% 78.85%
BIF[2] 50.32% 65.07% 74.44% 78.87% 82.65% 84.99% 86.87%
VBEMD-LBP (V 1

8,1V
2
8,1V

1
16,2) 52.43% 65.19% 73.56% 77.75% 80.86% 83.58% 85.38%

VBEMD-LBP (V 2
8,1V

1
16,2) 52.31% 64.24% 71.16% 76.12% 73.35% 81.56% 83.58%

VBEMD-LBP (V 1
8,1V

2
8,1) 51.76% 63.46% 70.81% 75.42% 78.38% 80.96% 82.91%

VSBEMDLBP (V 1
8,1V

2
8,1V

1
16,2) 55.54% 68.46% 76.54% 81.14% 83.83% 86.08% 87.86%

VSBEMDLBP (V 2
8,1V

1
16,2) 53.96% 67.14% 74.18% 78.90% 82.05% 84.47% 86.14%

VSBEMDLBP (V 1
8,1V

2
8,1 ) 54.82% 67.04% 74.24% 78.87% 82.13% 84.43% 86.33%
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Fig. 7. The mean proportion of correctly classified images over 100 random splits of the CURet database into training/test data, for a range of training set
sizes. The best result for BIF-columns (with 46 training images per class) is 98.56%

preserving the decomposition characteristics.

VI. CONCLUSION

Texture analysis is a difficult and challenging computer
vision problem. In this paper, a new powerful method (VSBE-
MDLBP) is proposed for texture classification. An adaptive
decomposition method (saddle points added BEMD) is used
to supply new components (BIMFs). The saddle points added
BEMD detected more details (high local frequencies of oscil-
lation) of images and contributed the performance of texture
images classification. At the same time, the higher BIMFs
capture the detail information of original image, and the lower
BIMFs capture the coarse contour information. Especially, the
illumination and pose variety mainly appears in the residue.
The higher frequency BIMFs present more invariant proper-
ties for texture classification. In these new adaptive multi-scale
components (higher frequency BIMFs), LBP descriptor can
achieve better performance than in original images and other
transform-based methods. Experiments show the texture image
recognition rate based on our method is better than other state-

of-the-art texture representation methods. Especially, it is less
sensitive to the small training sample size problem.
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