
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 1, 2014

69 | P a g e
www.ijacsa.thesai.org

Reduced Complexity Divide and Conquer Algorithm

for Large Scale TSPs

Hoda A. Darwish, Ihab Talkhan

Computer Engineering Dept., Faculty of Engineering

Cairo University

Giza, Egypt

Abstract—The Traveling Salesman Problem (TSP) is the

problem of finding the shortest path passing through all given

cities while only passing by each city once and finishing at the

same starting city. This problem has NP-hard complexity making

it extremely impractical to get the most optimal path even for

problems as small as 20 cities since the number of permutations

becomes too high. Many heuristic methods have been devised to

reach “good” solutions in reasonable time. In this paper, we

present the idea of utilizing a spatial “geographical” Divide and

Conquer technique in conjunction with heuristic TSP algorithms

specifically the Nearest Neighbor 2-opt algorithm. We have found

that the proposed algorithm has lower complexity than

algorithms published in the literature. This comes at a lower

accuracy expense of around 9%. It is our belief that the

presented approach will be welcomed to the community

especially for large problems where a reasonable solution could

be reached in a fraction of the time.

Keywords—Traveling Salesman Problem; Computational

Geometry; Heuristic Algorithms; Divide and Conquer; Hashing;

Nearest Neighbor 2-opt Algorithm

I. INTRODUCTION

Divide and Conquer is an algorithm method used in search
problems. As the search problem increases this method proves
to be one of the best in reaching quick solutions; not only does
it breakdown the search problem for easier calculations, in
some cases it also allows for parallelizing the search hence
reaching faster results. It has come to our notice that not many
or not enough tries were given to the Divide and Conquer
method when it comes to the Traveling Salesman Problem
(TSP). The trend in resolving TSP is for Local Search
algorithms and Evolutionary algorithms. Most of the research
targets enhancing the constraints and fitness functions of these
2 categories of algorithms to reach a better solution. In most
cases, these enhancements affect computational complexity
making the resulting algorithms unfeasible for large scale
problems.

For TSP, eliminating the long paths between any 2
cities/points in advance enables us to find quickly a more
optimum solution. By dividing the search space or plane into
pieces, we are effectively eliminating the paths between cites at
the 2 ends of the search space thus, decreasing the number of
paths we need to search. The plane/space is divided into
“Buckets” each holding a set of points that are within a specific
distance from each other. In the most ideal situation of evenly
distributed points, the Heuristic TSP would now need to find
the path for N/b points only where b is the number of buckets.

In the case of NN 2-opt, finding the path of N/b points
requires a fewer number of iterations to reach a near optimum
path and a much shorter run time. Accordingly, it is expected
that the computational complexity of the Hashed Bucket
algorithm will be of a much lower order of magnitude as we
shall see in this paper.

The rest of this paper is organized as follows; Section ‎II
outlines the problem we are trying to address. Section III gives
a briefing on TSPs and the current algorithms used for their
resolution while Section IV presents a literature survey of
related work. Section ‎V describes our proposed solution. We
then discuss the flow of our system in Section VII. Finally, our
experimental results are presented in section ‎VIII.

II. PROBLEM DEFINITION

The traveling salesman problem asks the following
question: Given a list of cities and the distances between each
pair of cities, what is the shortest possible path that visits each
city exactly once and returns to the origin city? The complexity
of such a problem is NP-hard making it extremely unrealistic to
solve optimally.

The problem addressed here is how to improve Local
Search Algorithms specifically the Nearest Neighbor 2-opt
using a spatial Divide and Conquer method to obtain a new
hybrid faster Heuristic algorithm. This poses the challenge of
deciding the correct search space division and how these space
divisions impact the performance of the NN 2-opt.

III. BACKGROUND

TSP is a very old problem with many references in
literature as well as a long standing history. The first instance
of the traveling salesman problem was documented by Euler in
1759. Euler wanted to address the problem of moving a knight
to every position on a chess board exactly once as explained in
[1]. The constraint set by Euler was that the knight must move
according to the rules of chess and must visit each square
exactly once.

A. Types of TSP

There are 2 main characteristics of TSPs. Depending on
these, the problem representation may use different data
structures and different calculations.

1) Symmetric vs. Asymmetric TSPs: a symmetric TSP is a

problem where the distance from point A to point B is equal the

distance from B to A. Asymmetric TSPs is when the distances

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 1, 2014

70 | P a g e
www.ijacsa.thesai.org

from A to B and vice versa are not equal. For example: if we

consider the effort needed to go up a hill higher than the effort

needed to go down then we have an Asymmetric problem.

2) Euclidean/Planer vs. 3 Dimensional: problems that

consider only 1 constraint for the distance between the TSP

points/cities can be considered planer. The most famous

example of that would be the Euclidean distance. Once we

start considering geographical distances, time or monetary

costs we find that we have more constraints and hence, more

dimensions for the TSP problem representation.

B. Complexity and Optimality

When we assess TSP algorithms, we look into optimality as
well as complexity. Complexity is key given the number of
permutations needed to calculate all possible paths; as we shall
see in for exact algorithms in the following section. Yet in
some cases, we can easily get an approximated path so it
becomes necessary to measure the optimality of that path. By
optimality, we mean how close it is to the real shortest path of
the problem.

C. Exact (Non-Heuristic) TSP Algorithm

Simply put, there is only 1 way of finding the most optimal
path for a TSP: comparing all possible paths and picking the
shortest. Unfortunately, this Brute Force seraph method is not
realistic as it means we must enumerate all possible
permutations for the points in the TSP. In other words, for a
problem with N points, we would need to look through N! – N
Factorial – possible solutions. For example, a simple problem
of 10 points would require passing through (and comparing)
3,628,800 possible paths. Such an approach would be
impractical in real world situations where we would need to
solve TSP for a huge number of points. The complexity of this
approach is O (n!) where n is the number of points. Algorithms
with such complexity are called NP-hard. In the case of NP-
Hard problems, other means of reaching a solution are required
as we shall see in the next section.

D. Heuristic TSP Algorithms

The traditional lines of attack for an NP-hard problem –
when exact optimal methods are unfeasible – are the following:

 Devising "suboptimal" or heuristic algorithms, i.e.,
algorithms that deliver either seemingly or probably
good solutions, but which may prove to be suboptimal.

 Finding special cases for the problem ("sub-problems")
for which either better or exact heuristics are possible.

The TSP problem remains NP-hard even for the case when
the cities are in the planer Symmetric Euclidean problem.
Various heuristics and approximation algorithms have been
devised specifically for TSP. Modern methods can find
solutions for extremely large problems within a reasonable time
and which are quite close to the optimal solution.

There are many types of Heuristic TSPs in the literature.
Following is an overview of the main categories:

1) Tour Construction Algorithms: these algorithms

gradually build a tour by adding a new city at each step. This

approach is always quiet simple, but often too greedy. The first

distances in the construction process are reasonably short,

whereas the distances at the end of the process usually will be

rather long. The most popular algorithm in this family is the

Nearest Neighbor (NN). NN starts at some random city and

then visits the city nearest to the starting city and then keeps

visiting the nearest city that has not been visited so far until all

cities are covered. It is a poor heuristic with the only simplicity

as an advantage so it is normally used for small size problems.

2) Iterative Local Search (ILS) Algorithms: these start out

with a complete solution at a certain optimality and iteratively

try to change the features of the solution until a more optimal

solution is found. For TSP, the initial complete solution can be

a random tour through the problem with total cost S. The

iterative changes would involve exchanging edges or paths

between 2 or more cities and comparing the resulting tour of

cost S’ to S. If S’ is a more optimal tour, we start iterating on

that. If S’ is worse than S, we discard that tour and begin

iterating on other city pairs. A stopping criteria must be set in

advance so that the algorithm doesn’t iterate endlessly on all

cases. There are many variations on the ILS, for example:

a) 2-opt Heuristic algorithm: this is the most basic of the

ILS algorithms:

 Start with a given tour.

 Replace 2 links of the tour with 2 other links in such a
way that the new tour length is shorter.

 Repeat until no more improvements are possible.

b) 3-opt Heuristic Algorithm:this is the same as the 2-opt

but we pick 3 edges or links to replace instead of just 2 edges.

K-opt or Lin–Kernighan Heuristic Algorithm: this a
generalization on the 2-opt and 3-opt algorithms that allows k-
opt moves. It has many different constraints and modifications
in an attempt to improve optimality and complexity. As
explained in [2], ‎the original algorithm as implemented by Lin
and Kernighan in 1971, had an average running time of order
N2.2 and was able to find the optimal solutions for most
problems with fewer than 100 cities. However, this algorithm is
not simple because the number of operations to test all k-
exchanges increases rapidly as the number of cities increases.
In a naive implementation, the testing of a k-exchange has a
time complexity of O(Nk). Furthermore, there is no upper
bound of the number of exchanges. Accordingly, the usefulness
of general k-opt sub-moves usually depends on the candidate
TSP. Unless it is sparse, it will often be too time consuming to
choose k larger than 4. Another drawback is that k must be
specified in advance and it is difficult to know what k to use to
achieve the best compromise between running time and quality
of solution. To overcome the drawbacks of the traditional LK
algorithm, Lin and Kernighan introduced a powerful variable-
opt algorithm: at each iteration, the algorithm examines – for
ascending values of k – whether an interchange of k-links may
result in a shorter tour. This continues until some stopping
conditions are satisfied. Many other variantions and
enhancements can be found in [3].

3) Evolutionary Algorithms: As the name implies,

evolutionary algorithms follow nature in an attempt to reach

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 1, 2014

71 | P a g e
www.ijacsa.thesai.org

the best solution for optimization problems. Genetic

algorithms (GAs) are one of the most popular evolutionary

techniques. Taken from nature, GAs use crossover and

mutation to solve optimization problems. GAs are loosely

based on natural evolution and use a “survival of the fittest”

technique, where the best solutions survive and are varied until

we reach a good result. The incorporation of the survival of

the fittest idea provides a means of searching the problem

space without enumerating every possible solution. A GA

works by first ‘guessing’ a set of solutions and then combining

the fittest solutions to create a new generation of solutions

which should be better than the previous generation. We may

also include a random mutation element to account for the

occasional ’mishap’ in nature. As [4] explains, the main

disadvantages of GAs are premature convergence and poor

local search capability. In order to overcome these

disadvantages, evolutionary adaptation algorithms based on

the working of the immune system have been devised. The

interested reader can refer to [5], and [6] for more samples.

IV. RELATED WORK

Being able to solve large scale TSPs has been of great
interest to many. In this section, we give an overview of some
proposed solutions and their usefulness for different types of
TSP sizes.

1) Medium Scale TSPs (500 to 3000 points): In [7], the

authors look into solving TSP problems with hybrid, iterative

extended crossover operators for GA. The objective of the

hybrid algorithm is to efficiently search for the optimum

solution while maintaining the diversity of the cyclic paths

composing the population. It is a kind of hybrid method which

combines Edge Assembly Crossover (EAX) with Ant Colony

Optimization. The algorithm was verified on test data of size

up to 1173 cities. The optimal path was obtained but required

109 hours to calculate! In fact, the computational time

increases exponentially with the increase in number of cities.

2) Large Scale TSPs (5000+ points): In [8], the authors

consider a k-means partitioning algorithm to divide the initial

TSP problem into multiple partitions to be solved separately

then merging. The partitioned sub-problems are merged using

Lin Kernighan algorithm. To partition the TSP problem, the

authors represented the problem as a graph and used

multilevel graph partitioning. Multilevel k-means graph

partitioning reduces the size of the graph by collapsing

vertices and edges as explained by [9]. It divides the graph

into smaller graphs and then refines the partition during an

“un-coarsen” phase to construct a partition for the original

graph. For solving each sub-problem a greedy tour

construction heuristic is used to get a good solution of

individual small partitions. After solving each partition, step

by step recreation of graph is carried out by simply adding

each solved partition back to the graph. The algorithm was

tested on TSPLIB and provided quite optimal TSP tours but no

time complexity was clarified. It is known that the average LK

complexity is O(N2.2); by clustering and using LK in the

coarsening phases of merging the partitions, it is clear that the

complexity of this algorithm is definitely more than that of the

proposed Divide and Conquer NN 2-opt.
Many other researchers have attempted to enhance the

complexity of LK implementations and have reached O (N2)
yet the tradeoff is extra memory of O(N) making it again
impractical for large scale problems.

3) HW Parallelization of Large Scale TSPs: Given the

complexity of TSP algorithms, the speed up and execution

time gained from increasing HW resources cannot be expected

from normal software solutions so will not be compared with

the algorithm proposed in this paper. It does show though that

partitioning the problem still allows us to get relatively

optimal tour solutions. The authors of ‎[10] (2007) introduced

the notion of “symmetrical 2-Opt moves” which allowed them

to uncover fine-grain parallelism when executing the 2-opt

local search optimization algorithm. Once the parallelism is

apparent they use an FPGA (or FPGA simulator) to resolve

each sub problem gaining an average speed up of 600%.

V. PROPOSED APPROACH

The proposed algorithm depends on the theory that “the
addition of shortest set of paths will yield shortest total path”.
Accordingly, if we have N points getting the shortest path for
N/b points then consolidating the set of b paths will give us the
shortest path through the N points. We divide the N points
according to their proximity to each other in the search space
using x and y dimensions.

For example, a square space of area A2 will be divided into
smaller areas called Buckets of area A2 /b where b is the
number of Buckets. All points in the same bucket are
considered close in proximity and a heuristic TSP algorithm is
used to get their shortest path. Given that the number of points
in area A2/b is much less than the total area, the heuristic
algorithm has a good chance of finding the optimal path in a
much shorter execution time. Once all b paths have been
obtained, merging them into a single path for the N points
should yield the shortest total path. Fig. 1 shows a simple
example where the search space/plane has been divided into 4
buckets.

This approach was inspired by the work done in [11]‎that is
based on the Fixed-Radius Nearest-neighbor problem. The
authors of [11] ‎show that bucket hashing is very effective in the
domain of electronic design automation specifically in chips of
millions of transistors as it breaks the problem into manageable
pieces for quicker resolution.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 1, 2014

72 | P a g e
www.ijacsa.thesai.org

Fig. 1. Search Space division using Buckets

VI. SYSTEM FLOW

The system is comprised of a set of functions that interact
with each other. The flow of processing can be seen in the chart
in fig. 2. The first step of the process is to parse the input file to
get the points that make up the TSP problem. Using the input
criteria for bucket size, a decision is made regarding the
division of the search space. The following functions then
handle the creation of the buckets and hashing the TSP points
into the different buckets. Once the buckets are ready, we can
then consider each bucket as a separate TSP problem for the
regular heuristic NN 2-opt TSP algorithm and thus, the
algorithm is run for each bucket. The final step in our flow is to
merge the smaller bucket TSP solutions into 1 solution for the
original input point thus providing 1 single path and its total
cost.

The implementation explained above makes the assumption
that all points are connected (in case the TSP doesn’t fit this
constraint, setting the distance between the unconnected points
to infinity should automatically eliminate the path but this
theory has not been tested here). We also assume that the input
TSP is a Symmetric TSP and that the distance used is
Euclidean.

The algorithm depends on finding the minimum path for
each bucket and then merging the result. The sum of these local
minima may not in fact result in the global minimum. This is
one of the disadvantages of the Heuristic algorithms in general
yet given that the hashed algorithm complexity is significantly
lower we can run the hashed algorithm with different averages
or bucket sizes and choose the minimum depending on the
original problem size.

A. Bucket Size Decision

The algorithm complexity depends heavily on the number
of buckets used. Accordingly, we need a simple decider to use
for dividing our search space. Heuristic TSP algorithms
normally have an Average number of points that they can
optimally get the shortest path for. Assuming the points are
equally distributed, we use this average to divide the space
according to the following equations:

1) Get the minimum possible number of buckets by

dividing number of points on the input average.

2) Calculate the search space area A (maximum of x *

maximum of y).

3) Get bucket width using eq. 1:

 (1)

4) Get bucket length using eq. 2:

 (2)

B. Path Merging

The other important step in the algorithm is the merging of
the separate bucket solutions to form a single final path. An
example of the bucket path merging is shown in fig. 3.

We have Start point “S” for the bucket and a Transition
Forward point “TF” for moving to the next bucket in each
individual bucket path. When we merge, we remove the path
between the TF and the point following it in the bucket; instead
we merge it with the start point of the successor bucket. On the
way back, we remove the last leg of the path back to the bucket

Start

Read a set of
points from

text file

Decide on Bucket Size

Create Buckets

Hash Points into Buckets

Run the Heuristic TSP
Algorithm for Each Bucket

Merge the separate bucket
solutions to create 1 single

path

Return Path Cost

Fig. 2. System Workflow

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 1, 2014

73 | P a g e
www.ijacsa.thesai.org

Fig. 3. Path Merging

start point and instead move to the point following the TF
in the previous bucket. In other words, we delete the “dashed”
red lines and add the solid black lines.

VII. RESULTS AND ANALYSIS

The complexity of the simple NN 2-opt algorithm is O (N2)
where N is the input number of points of the TSP problem. In
the hashed approach, we divide the space into buckets.
Assuming that we have “b” buckets and that the points are
evenly distributed on the buckets as “N/b” then the complexity
of a single bucket is O((N/b)2). To get the complexity of the
entire Hashed algorithm we consider that we need to calculate
the NN 2-opt for b buckets i.e. a complexity of O (b*(N/b)2)
which is equal O ((N/√b)2). As we shall see in the results, the
above complexity is tangible numerically in the following
example. If N = 493 and b = 9, the normal NN 2-opt would
require 4932 = 243,049 calculations/computations while the
Hashed technique would provide (442)2/9 = 27,005
computations which is 11% of the simple algorithm
computations.

To show the effectiveness of the proposed algorithm and its
ability to solve all general cases, some test cases from TSPLIB
were used with focus on large samples. The results obtained are
from running the system under Windows 7 and using Matlab
7.0. The system specifications are: Intel Core CPU (1.6GHz)
and a 4GB RAM.

We show the test results for 3 different test samples. For
each sample, we list the results of the normal NN 2-opt
algorithm as well as the Hashed algorithm with the different
values of the bucket decider. We can conclude that using 20%
of the problem size as the bucket decider tends to give the least
error %.

The error is calculated using the eq. 3.

 (3)

For the results the execution time is provided in seconds.

This documented execution time does not include the time
spent in parsing the input file because this is the same function
in both hashed and un-hashed algorithms. It is important to
note that the NN 2-opt requires an input of the number of
iterations to be used. We have kept this at a constant of 4 for
both the NN 2-opt and the hashed buckets algorithm. More
iterations should theoretically decrease the error but after some

test runs we found that 4 iterations are a suitable average as the
added optimality is not proportional to the increase in time.

A. Sample 1: File d493.txt

 Number of Points: 493 with optimal path cost as per
TSPLIB: 35,002.

 NN 2-opt without hashing has path cost = 36,099 and
execution of 1.476s thus an Error % of 3.13%

 Results for the Hashed algorithm are in Table 1.

B. Sample 2: File rl5915.txt

 Number of Points: 5,915 with optimal path cost as per
TSPLIB: 565,530.

 NN 2-opt without hashing (average results of 2 runs)
has path cost = 591,715 giving an Error % of 4.63%. Its
execution was 2004.5s which is equal to 33.5 minutes!

 Results for Hashing algorithm are in Table 2.

C. Sample 3: File rl11849.txt

 Number of Points: 11,849 with optimal path as per
TSPLIB: 923,288.

TABLE I. D493 RESULTS (AVERAGE OF 100 RUNS)

Decider
Hashed

Time

Hashed

Cost
Hashed Error

10% = 50 (15 buckets) 0.168s 44,788 27.96%

20% = 100 (9 buckets) 0.235s 36,364 3.89%

40% = 200 (4 buckets) 0.261s 38,774 10.78%

TABLE II. RL5915 RESULTS

Decider
Hashed

Time

Hashed

Cost

Hashed

Error

10% = 600 (10 buckets) 39.64s 640,430 13.24%

20% = 1200 (6 buckets) 66.376s 617,670 9.22%

40% = 2400 (4 buckets) 155.015s 609,920 7.85%

TABLE III. RL11849 RESULTS

Decider
Hashed

Time

Hashed

Cost
Hashed Error

5% = 600 (30 buckets)

20 runs average:
51.92s 1,116,000 20.87%

10% = 1200 (15 buckets)

20 runs average:
251.14s 1,053,300 14.07%

20% = 2400 (6 buckets)

3 runs average:
917.97s 1,002,600 8.59%

 NN 2-opt without hashing: the machine ran out of
memory and thus no results were gained.

 Results for Hashing algorithm are in Table 3

VIII. CONCLUSION

As shown in the results section, the hashed bucket
algorithm is very effective in reducing the overall execution
time of large scale TSPs. Fig. 4 and fig. 5 show the comparison
between algorithm methods and different decider values quite
clearly.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 1, 2014

74 | P a g e
www.ijacsa.thesai.org

We are able to reach a path in less than 10% of the time
required for the original NN 2-opt. We understand that the
tradeoff is in optimality yet a 9%~15% error is considered an
acceptable margin for such a gain in execution speed.

We would also like to note that original NN 2-opt algorithm
was unable to run on the limited specs of the machine after a
certain size due to its memory consumption. Accordingly,
another advantage of the algorithm is the possibility to reach
results using limited memory and execution power. This begs
the possibility that the algorithm would be useful in robots and
applications that run on batteries (reduced power consumption)
and limited size.

REFRENCES

[1] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution

Programs, Springer-Verlag, 2nd edition, 1994

[2] Keld Helsgaun, “An effective implementation of the Lin-Kernighan
traveling salesman heuristic”, European Journal of Operational

Research, 2000

[3] Keld Helsgaun, “General k-opt submoves for the Lin–Kernighan TSP

heuristic”, Springer and Mathematical Programming Society, 2009

[4] Donald Davendra, Traveling Salesman Problem, Theory and
Applications, InTech, 2010

[5] Hirotaka Itoh, The Method of Solving for Travelling Salesman Problem

Using Genetic Algorithm with Immune Adjustment Mechanism, 2010

[6] Oloruntoyin Sefiu Taiwo, Olukehinde Olutosin Mayowa & Kolapo

Bukola Ruka, “Application Of Genetic Algorithm To Solve Traveling
Salesman Problem”, International Journal of Advance Research

(IJOAR), Volume 1, Issue 4, April 2013

[7] Ryouei Takahashi, “Solving the Traveling Salesman Problem through
Iterative Extended Changing Crossover Operators”, 10th International

Conference on Machine Learning and Applications, 2011

[8] Atif Ali Khan, Muhammad Umair Khan, & Muneeb Iqbal, “Multilevel
Graph Partitioning Scheme To Solve Traveling Salesman Problem”,

Ninth International Conference on Information Technology- New
Generations, 2012

[9] Chris Walshaw, “A Multilevel Lin-Kernighan-Helsgaun Algorithm for

the Travelling Salesman Problem”, Computing and Mathematical
Sciences, University of Greenwich, Old Royal Naval College, Sep. 2001

[10] Ioannis Mavroidis, Ioannis Papaefstathiou, & Dionisios Pnevmatikatos,

“A Fast FPGA-Based 2-Opt Solver for Small-Scale Euclidean Traveling
Salesman problem”, International Symposium on Field-Programmable

Custom Computing Machines, 2007

[11] Hoda A. Darwish, Hoda N. Shagar, Yasmine A. Badr, et al., “A Hashing
Algorithm for Rule-Based Decomposition in Double Patterning

Photolithography”, IEEE 22nd International Conference on
Microelectronics (ICM), 2010

Fig. 4. Performance/Time Comparison

0

500

1000

1500

2000

2500

493 5915 11849

Ti
m

e
in

 S
ec

o
n

d
s

No. of Points

Performace/Time Comparison

UnHashed Decider 1 Decider 2 Decider 3

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 1, 2014

75 | P a g e
www.ijacsa.thesai.org

Fig. 5. Error Margin Comparison

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

493 5915 11849

P
at

h
 C

o
st

 E
rr

o
r

%

No. of Points

Error Margin Comparison

UnHashed Decider 1 Decider 2 Decider 3

