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Abstract—Power electronics are widely used in electric 

vehicles, railway locomotive and new generation aircrafts. 

Reliability of these components directly affect the reliability and 

performance of these vehicular platforms. In recent years, 

several research work about reliability, failure mode and aging 

analysis have been extensively carried out. There is a need for an 

efficient algorithm able to predict the life of power electronics 

component. In this paper, a probabilistic Monte-Carlo 

framework is developed and applied to predict remaining useful 

life of a component. Probability distributions are used to model 

the component’s degradation process. The modelling parameters 

are learned using Maximum Likelihood Estimation. The 

prognostic is carried out by the mean of simulation in this paper. 

Monte-Carlo simulation is used to propagate multiple possible 

degradation paths based on the current health state of the 

component. The remaining useful life and confident bounds are 

calculated by estimating mean, median and percentile descriptive 

statistics of the simulated degradation paths. Results from 

different probabilistic models are compared and their prognostic 

performances are evaluated. 

Keywords—Prognostics; Monte-Carlo Simulation; Remaining 

Useful Life 

I. INTRODUCTION 

Nowadays in order to provide warning and predict failures 
to avoid catastrophic failure of products and systems, there has 
been an increasing tendency in monitoring the ongoing 
"health" of them [1]. The insulated gate bipolar transistor 
(IGBT) modules play an increasing significant role in on-wing 
for avionics system, such as communication system in 
autonomous working, radar system and navigation system and 
so on. The failures of IGBT components can degrade the 
efficiency of the systems or result in system failures [1]. In 
general, IGBT modules have several thousand hours' lifetime 
expectancy [2], but in order to analyze failures from several of 
them, the lifetime of the modules needs to be reduced. 
Therefore the process that causes it to fail must still operate 
the module within its specifications, but in a greatly reduced 
time frame. 

IGBT accelerated aging system is to design and implement 
a system capable of performing robust experiments on gate 
controlled power transistors to induce and analyze prognostic 
indicators [3]. The main goal for the development of 
experiment system was to identify precursor parameters for 
device failure. Precursor parameters are parameters of the 
device that change with time wherein the change can be 
mapped to degradation in the device. Once the precursor 
parameters are identified, suitable diagnostic and prognostic 

algorithms can be implemented using these parameters to 
provide early warning of failure and predict remaining useful 
life [4]. 

Hence, a comprehensive approach to the development of a 
prognostic framework for IGBTs is required, there is a 
necessity to develop methods to predict the remaining useful 
life (RUL) of IGBTs to prevent system stoppage and costly 
failures. Prognostic is a technology under ongoing 
development. The technology aims towards high technology 
sectors, for example the automotive or aerospace industries, 
for ensuring safety and customer satisfaction. Most modern 
vehicles monitor their systems to ensure correct operation. If a 
fault is detected or predicted the user of the vehicle is usually 
notified before the fault has had a detrimental effect on the 
vehicle. Modern vehicles also monitor their usage and change 
their service intervals accordingly. The reliability of IGBTs 
directly affect the reliability and performance of these vehicle 
system. In recent years, series of research work about IGBT 
reliability, failure mode and aging analysis has been carried 
out widely, and a suitable prognostic method for IGBT and an 
efficient algorithm for predicting the IGBT RUL become 
increasingly important. 

As electronic components have an increasingly 
consumption in new generation aircrafts and vehicles, and the 
amount of electronic failure will also become significant. Fault 
diagnosis and prognostic, estimation of remaining useful life 
and health management have vital roles to avoid catastrophic 
failure, improve aircraft reliability, reduce maintenance cost 
and increase performance [5]. This paper bases its study on 
IGBT for development of algorithms for estimating remaining 
useful life of components, and it is considered to contribute to 
the prognostic technology development in integrated vehicle 
health management (IVHM) field and advance the electronic 
components prognosis. 

There are several approaches that have been developed for 
electronic prognostics. The issues unaddressed in previous 
IGBT prognostics studies will form the basis for the 
motivation of the current study. [6] used a system model 
approach to estimate the remaining useful life of lithium ion 
batteries. The battery was represented by a lumped parameter 
model. The parameters of the model were calculated using 
relevance vector machine (RVM) regression on experimental 
data. An extended Kalman filter and particle filter algorithms 
were used to determine the battery RUL. 

[7] describes the use of prognostic cells to predict failure in 
integrated circuits. The prognostic cell was developed to fail 
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prior to the circuit on the same chip for all realistic operating 
conditions. Prognostic monitors in the test cell experienced the 
exact environment that the actual circuit experienced, but at an 
accelerated rate, thereby providing failure prediction. [8] used 
the data-driven approach to detect anomalies of notebook 
computers by monitoring performance parameters and 
comparing them against the historical data using Mahalanobis 
distance. 

A physics-based prognostic approach was used by [7] in 
the development of a diagnostic system based on a virtual 
system. Using a Virtual Test Bed (VTB), system faults found 
in a real world system were simulated along with a normally 
operating real world system. For the development of a fault 
diagnostic system for a brake-by-wire system, [9] used a 
similar fuzzy system approach. Six failure modes of the 
system were identified and three measurement points chosen. 
The input signals were processed on a segment-by-segment 
basis, by a feature extraction process, and by fault detection. 

The aim of this paper is to develop a prognostic approach 
that is applicable to power electronic components and 
computational efficient embeddable in a low power device. 
Here, IGBT is used a case study. The outline of this paper is as 
follows: Section I describes the background of the prognostic 
is described and summarizes the current research work on 
IGBT. Section II describes IGBT accelerated aging 
experiments, IGBT aging data. The aging data are processed 
and the degradation profiles of IGBT are analyzed. In section 
III, the maximum likelihood method is utilized to computing 
the parameters of IGBT degradation models. In section IV, 
Monte Carlo simulation method and IGBT degradation models 
are used to predict the RUL, and the algorithm of IGBT 
prognostic is developed. The RUL prediction results are 
analyzed in section V and the error and root mean square error 
are analyzed to compare the efficiency of different models in 
predicting the RUL. Section VI concludes the paper and the 
future works are discussed. 

II. IGBT DEGRADATION PROFILE 

A. Aging Experiments 

The IGBT accelerated aging experiments are designed to 
study the aging characters of the IGBT and develop the 
algorithm of prognostic for prediction of the remaining useful 
life. The IGBT degradation data set is acquired from the aging 
process system, which is provided by the AMES laboratory of 
NASA [10]. The data set can be used to design and develop 
prognostic algorithms for semiconductor components such as 
IGBTs which have increasingly been used in modern multiple 
vehicle systems. IGBT accelerated aging experiments belong 
to the project in NASA to investigate the degradation 
characterizations of electronic components [11], as electronic 
components have an increasingly consumption in new 
generation aircrafts and vehicles, and the amount of electronic 
failure will also become significant. Fault diagnosis and 
prognostic, estimation of remaining useful life and health 
management have a vital role to avoid catastrophic failure, 
improve aircraft reliability, reduce maintenance cost and 
increase performance.  

IGBT accelerated aging experiments are based on the 
aging platform which induces the degradation and electronic 
faults into the test system. Prevalently, four kinds of accelerate 
aging methods are widely used in accelerated aging 
experiments, which are thermal cycling, hot carrier injection, 
electrical over stress and time dependent dielectric breakdown 
stimulus [12]. The IGBT functional failure such as die solder 
degradation and wire lift were brought by the thermal cycling 
accelerate aging approach. Hot carrier injection could 
accelerate electrons and holes pass into gate oxide, which 
could result in the increase of IGBT threshold voltage. IGBT 
condition mutation and lighting could be caused by the 
electrical overstress due to the excessive voltage, current or 
power. The breakdown of IGBT gate oxide will happen when 
the charge injection exceeds the threshold which is caused by 
accumulating of the temperature in the gate oxide when it is 
being operated [12]. Accelerated aging approaches such as 
thermal cycling and electrical overstress are used in IGBT 
accelerate aging experiments to speed up the degradation and 
failure of the IGBT in experiments environments which 
simulate the scenarios of industrial practical application. 
Precursor parameters, such as collector voltages, collector 
currents, gate voltages and currents, and environmental 
parameters such as temperature are monitored and recorded to 
be utilized for IGBT diagnosis and prognosis research [13].  

The experiment data and measurements are shared in the 
website of NASA as an open database which can be used to 
develop prognostic algorithms available to academic and 
industrial researchers [10]. IGBT accelerated aging data set 
are measurements and sensor data collected from IGBT 
accelerated aging experiments platform shown in figure 1. The 
data set includes the measurements being recorded from IGBT 
experiments (or operating) environment and survey data 
representing the deterioration of IGBT in the experiments. 
This data set contains mass data from thermal overstress aging 
experiments, including several parameters being recorded 
continuously such as collector current, collector voltage, gate 
voltage, package temperature etc. [14]. These data and 
parameters were monitored and recorded constantly until the 
IGBT failure in accelerate aging experiments. The data set 
were formatted in a data array which could be read by 
MATLAB to facilitate analysis and processing for the data in 
the subsequent research and investigation. 

Figure 2 depicts a process of the prognostic algorithm 
development used in this paper. Firstly, IGBTs are tested in 
accelerated aging experiments following standard experiment 
procedures in an environmental simulation scenario to 
accelerate aging and failure. The monitoring data and 
experiments parameters are recorded and collected to transport 
into the software platform which are used as data formation 
and data storage. IGBT diagnostic and prognostic 
investigation will based on these data set. Prognostic 
algorithm for RUL prediction will be developed, and Monte 
Carlo simulation is used in the prognostic algorithm which 
will be described in more detail in the subsequent sections. 
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B. Degradation Data 

The aim of data processing is to gain useful information 
from the data with the approach of analysis and sorting. 
Collector emitter voltage is selected as a precursor parameter 
for the IGBT aging prognostic in this paper [15]. The profile 
of the VCE collected from the aging experiment is presented in 
figure 3. The collector emitter voltage of the IGBT presents a 
monotone increasing in the whole aging process and the VCE is 
also presents a fluctuation and oscillation during this process, 
but the VCE falls quickly at the end of the aging process when 
the IGBT becomes to fail. The whole aging process is more 
than 10000 time units. The whole aging process is more than 
10000 time units. 

The aging data of raw VCE as a precursor parameter are 
processed by low-pass filtering, and its filtered profile is 
shown in figure 4. It can be seen that VCE presents an increase 
step by step during the whole IGBT aging process. The data is 
now clean and more suitable for the analysis. The variation of 
VCE in the whole aging process could be separated into 7 
stages, and the values of VCE for each phase are discretely 
different. Seven IGBTs were used in the accelerated aging 
experiment. It can be seen that the degradation stages are 
clearly separated from each other. The time duration where 
VCE stays in each stage are computed and listed in table I. The 
VCE voltage value is approximately 2.45V at the starting of the 
aging process. The degradation states can be determined by 

the level of VCE. In this particular IGBT, VCE increases about 
0.5V discrete step at each degradation phase. 

TABLE I.  IGBT DEGRADATION DATA SETS. 

 
IGBT degradation process 

IGBT 

No. 

1st 

Phase 

2nd 

Phase 

3rd 

Phase 

4th 

Phase 

5th 

Phase 

6th 

Phase 
Failure 

1 670 970 1368 2369 3793 5079 10740 

2 827 827 1389 1389 2306 3208 5075 

3 1099 1099 1905 2490 2900 3889 6799 

4 894 894 1733 2384 2789 3887 5141 

5 927 1055 2115 2544 3388 7449 10285 

6 578 578 1560 2109 3403 4236 12164 

7 750 1631 2755 3001 3757 5079 6861 

 

III. MAXIMUM LIKELIHOOD ESTIMATION 

A. Degradation Model 

Table II records the run-to-failure degradation process of 7 
IGBT samples used in the accelerated aging experiment. The 
columns are the time durations of each degradation phases. It 
can be seen that an IGBT will degrade and undergo 6 
degradation phases before it eventually fail. Each phase will 
last for a period of time before the degradation progresses 
further to the next phase. Take the first IGBT for example, the 
operational use life of IGBT-No.1 is 5079 unit time, and the 
duration of the IGBT stayed in its first degeneration phase is 

 

 
 

Fig. 1. IGBT accelerated aging experiments hardware [10]. 

 

 

Fig. 3. Collector-Emitter Voltage Profile. 
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Fig. 2. Process of IGBT prognostic algorithm development. 

 
 

Fig. 4. Collector-Emitter Voltage after K-Mean Clustering. 
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670 unit time, then the IGBT degraded into the second 
degradation phase and stayed 300 unit time before its further 
degradation to step into the third degradation phase. And so on, 
until the IGBT had stayed for 1286 unit time in the last phase, 
the IGBT continued degraded and completely failed.  

In this paper, the occurrence of degradation (or time 
duration of each degradation phase) is assumed to be random 
and uncorrelated to other degradation phases. Therefore, 6 
independent stochastic process models could be built to 
represent the degradation phases which follow the random 
probability distribution. In this paper, Gamma, Exponential 
and Poisson distributions are used in modeling the degradation 
process. 

TABLE II.  IGBT DEGRADATION PHASE DURATION. 

 
Duration of Each Phase 

IGBT 

No. 

1st 

Phase 

2nd 

Phase 

3rd 

Phase 

4th 

Phase 

5th 

Phase 

6th 

Phase 

IGBT 

Life 

1 670 300 398 1001 1424 1286 5079 

2 827 0 562 0 917 902 3208 

3 1099 0 806 585 410 989 3889 

4 894 0 839 651 405 1098 3887 

5 927 128 1060 429 844 4061 7449 

6 578 0 982 549 1294 833 4236 

7 750 881 1124 246 756 1322 5079 

 
The IGBT degradation and failure are considered to be 

random, and hence the duration time (Ti) of the degeneration 
phase is considered to be a random variable, see figure 5. The 
y-axis in the figure represents the collector emitter voltage of 
the IGBT, and the x-axis represents the aging time of the 
experiment. The figure indicates that the duration time (Ti) in 
which the IGBT was measured in different volt of VCE is a 
random variable and it could be represented using the 
probability density functions summarized in table III. 

B. Modelling Parameters 

In this paper, the Maximum Likelihood method is used to 
estimate the parameters listed in table III for the Gamma, 
Exponential and Poisson distribution models. In order to 
estimate the model parameters, the duration time of 7 IGBTs 
in degradation process are used as statistical samples, and the 
six degradation phases are considered to be uncorrelated 
stochastic processes. 

For the Gamma distribution, there are two modelling 

parameters κ and θ to be estimated. It is assumed that the 

duration of each degradation phase are uncorrelated and 
follow the Gamma probability distribution defined in table III. 
Maximum Likelihood Estimation (MLE) is generically 
formulated as 
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from which κ and θ can be analytically estimated using [17] 
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Table IV summarizes the parameters for 6 uncorrelated 

degradation phases obtained from MLE.  

TABLE IV.  MLE FOR GAMMA PROBABILITY DISTRIBUTION. 

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

κ 25.77 0.0883 9.3663 0.2818 5.1662 3.3289 

 31.8 211.67 88 1754.4 167.3 450.2 

There is only one modelling parameter λ for the Exponential 

distribution model. Similar to Gamma distribution, the 

duration of each degradation phase are assumed to be 

uncorrelated. In this paper, λ  can be estimated using an 

analytical MLE solution [17] 
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 ̅
 

 

∑   
 
   

 
(4) 

 

and the estimated parameters are listed in table V. 

TABLE V.  MLE FOR EXPONENTIAL PROBABILITY DISTRIBUTION. 

Parameter Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

λ 820.7 187 824.4 494.4 864.3 1498.7 
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For Poisson probability distribution, similar to 

Exponential, λ is only the modelling parameter that needs to 

be estimated. λ can be analytically derived, and its MLE can 

be calculated using [17] 

 ̂  
 

 ̅
 

 

∑   
 
   

 (5) 

Table VI summarizes the parameters for 6 uncorrelated 

degradation phases obtained from MLE.  

TABLE VI.  MLE FOR POISSON PROBABILITY DISTRIBUTION. 

Parameter Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

λ 820.7 187 824.4 494.4 864.3 1498.7 

IV. PROGNOSTIC APPROACH 

In section III, the IGBT degradation models have been 
developed based on the probabilistic distributions and tuned 
using the data obtained from the accelerated aging 
experiments. Based on the degradation profiles shown in 
figure 3 and 4, the degradation process can be observed by 
tracking the VCE measurement values. The profile indicates 
that VCE monotonically increases in discrete steps. In this 
paper, Monte Carlo simulation is utilized to generate the 
degradation paths to represent the time durations the IGBT 
stays in different degradation phases.  

Figure 6 shows a block diagram of the prognostic 
algorithm developed in this paper. The aging data sets were 
used to train the degradation model depending on what 
probability distributions are employed. In this paper, the RUL 
of the IGBT component is predicted by the mean of simulation. 
The Monte Carlo simulation is used to propagate degradation 
paths into the future. The RUL can either be the mean or 
median RUL of the multiple propagated paths. The VCE 

measurements provide regular updates to the determination or 
confirmation of the current degradation phase. For every 
measurement updates, the Monte Carlo simulation is re-run to 
generate new degradation paths based on the updated 
measurement and the RUL is then re-calculated from the 
newly generated paths. 

Figure 7 shows an example of IGBT degradation paths. It 
is assumed that the duration Ti follows Gamma, Exponential 
or Poisson probability distributions. Si is the ending time of 
the degradation phase of the sequence i. t is the elapse time 
started from the beginning of the experiment. 6 stochastic 
models are built based on the 6 degradation phases, where the 
related MLE parameters are summarized in table IV-VI. The 
RUL prediction could be calculated using the equation  

 

          (6) 

where RULP means the predicted RUL by either Gamma, 
Exponential or Poisson models, and Sf is the predicted IGBT 
failure time in the aging process. Sf is also the ending time of 
the last degeneration phase. The precursor parameter VCE is 
used to determine in which degradation phase the IGBT is. 
When the IGBT is stay in the first degeneration phase, then: 

   ∑   

 

   

 
(7) 

 

where Ti is generated by Monte Carlo simulation and it 
means the duration time of relevant phase. So the predicted 
RUL could be represented as: 

          ∑   

 

   

   
(8) 

 

 

FIGURE 5: IGBT Degradation Model. 
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Fig. 6. RUL Prediction Process. 
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When the IGBT stays in the ordinal of i degeneration 

phase, because the past generation phase is monitored by 
measurements which is the VCE. So Si-1 is a known number 
could be surveyed from the VCE data recording. Then the 
predicted RUL could be calculated as: 

           (       )  (      ) (9) 

Then 

      ∑   

 

 

 (      ) 
(10) 

 
Where if the simulated Ti generated by Monte Carlo 

simulation is larger than (t-Si-1), it means that the component is 
still and will be continue in this degradation phase, or the 
component has ended the generation phase and begin to jump 

into the next degradation phase. 

Note that Monte Carlo simulation is used to generate the 
duration time of each phase (Ti). In order to improve the 
accuracy of prediction, a large number of multiple runs is 
needed, which is 500 in this paper. The RUL prediction result 
uses the mean value and the median value of the distribution. 

A combination of statistical properties can be also used to 
improve prognostic accuracies. One can be based on the 
duration time of the degradation phase, and the other can be 
based on the ending time of the degradation phase. Figure 8 
illustrates the use of a combined model for predicting the RUL.  
prediction. The distribution of these two kind of probability 
models are combined to predict the IGBT RUL. When the 
IGBT stays in the ordinal of i degeneration phase, the ending 
time of the phase is Si, and Si could be represented as: 

           (11) 

Where Ti is the duration time of this degeneration phase 
which will be generated by Monte Carlo simulation, and Si-1 is 
the ending time of the prior degradation phase. So Si-1 is a 
known number. Ti is simulated by Monte Carlo. It follows the 
model distribution based on the duration time of the 
degradation phase. The probability of Si is different from the 
distribution of Ti, which means two probability distribution for 
Si has been established. Combining these two distributions to 
predict the RUL is the main solution in this model. 

V. RESULTS 

A. RUL Predictions 

The IGBT RUL prediction results are expressed by a series 
of polylines. The RUL prediction is a continue process from 
the beginning of the IGBT running to the end of the process 
when IGBT is becoming failed. The sensor data are recorded 
at each moment of the IGBT degradation process and the RUL 
prediction are also carried out at each moment of the 
degradation process. Hence, the RUL prediction happens 
through the whole process of the IGBT degradation 
experiment. 

Figure 9 shows an example (i.e. IGBT sample number 1) 
of RUL prognostic results. The result was computed based on 
Gamma distribution model. The straight blue, green and 
yellow dash lines are used as the real and ±10% deviation 
RUL, respectively. They are used as baselines to indicate how 
well the prognostic algorithm performs during the test. In 
figure 9, the red and blue scatter plots are the mean and 
median values of the RUL prediction. The green and yellow 
plots are the 90 and 10 percentiles of the Monte Carlo 
simulated degradation paths. At the beginning of the rendering 
test, the RUL prediction is lower than the real RUL value, 
however as the predicted RUL slowly converges to the real 
value as the operating time is towards the end of component 
life.  

 
 

Fig. 8. Combined Model for RUL Prediction. 

 

 
 

Fig. 7. Probability Model for RUL Prediction. 
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Figure 10 shows an example (i.e. IGBT sample number 1) 
of RUL prognostic results based on Exponential distribution 
model. The red, blue green and yellow scatter plots are the 
mean, median, 90 and 10 percentiles of the simulated 
degradation paths. Similar to Gamma distribution model, the 
predicted RUL slowly converges to the real RUL value as the 
VCE measurements are rendered towards the end of component 
life. However, the 10 and 90 percentile bounds are 
significantly different from the results obtained in the Gamma 
distribution case. The width of these bounds is too wide and 
practically become meaningless information-wise in this case. 

In Exponential distribution, λ , i.e. mean, is the only 

parameter in the model. This model lacks of additional 
parameter that represents the statistical description equivalent 
to the standard deviation. This explains the practically 
irrelevant of the 10 and 90 percentile bounds if these values to 
be derived based on the Exponential distribution model.  

 

Fig. 10. Example of RUL Prediction Results using Exponential Distribution 

An example (i.e. IGBT sample number 1) of Poisson based 
RUL prognostics results is shown in figure 11. Similarly to 
Gamma and Exponential results, the predicted RUL slowly 
converges to the real RUL value as the operating cycles close 
to the end of component life. The degradation paths are linear 
with sudden changes reflected the discrete change in the 
degradation state updated from the VCE measurement. In 
contrast to Exponential distribution, the 10 and 90 percentile 
scatter plots lie very close to the mean and median values. 
These bounds are unrealistic close and practically do not 
provide meaningful information in terms of confident in the 
RUL prediction. 

 

Fig. 11. Example of RUL Prediction Results using Poisson Distribution. 

Figure 12 shows an example (i.e. IGBT sample number 1) 
of RUL prognostic results based on the combined (Gamma) 
distribution model. The combined model gives the prognostic 
results, i.e. mean and median, as accurate as the Gamma 
model. However, the 10 and 90 percentiles are much tighter 
than the results obtained from the Gamma distribution. In this 
case, these confident bounds lie close to the ±10% deviation of 
the real RUL. Hence, the 10 and 90 percentile bounds 
calculated using the combined model practically provides 
more meaningful confident intervals in comparison to the 
Gamma, Exponential and Poisson distribution models. 

 

Fig. 12. Example of RUL Prediction Results using Combined Model 

B. Error Analysis 

The errors between the predicted and real RUL values 
reflect the performance of the IGBT prognostic approach. In 
this paper, the prediction (or prognostic) error is defined by 

 

             
(12) 

where Er is the error value between the predicted and real 
values, RULR is the real RUL value of an IGBT and RULP is 
the predicted value obtained from the prognostic algorithm. 
Using equation (12), the prognostic accuracy can be 
quantitatively calculated using 

 

    
  

    
 
         

    
 (13) 

 

 
 

Fig. 9. Example of RUL Prediction Results using Gamma Distribution. 
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In this paper, root mean square error (RMSE) is used to 
measure the prognostic performance of different probability 
distribution models. The RMSE can be calculated using the 
following equations: 

 

    
 

 
∑(  ̂    )

 
 

   

 (14) 
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(16) 

Figure 13 and 14 summarize the mean and median based 
RMSEs of different probability distribution models tested 
against 7 IGBT data samples. For the mean based RUL, the 
Poisson model performs better than other models on most of 
the test samples; Its RMSE is less than other models. However, 
for the median based RUL, the Exponential model has less 
RMSE values in comparison to other models. Comparing the 
RMSE of mean and median predicted RULs, the IGBT test 
sample number 1 and 7 have the smallest RMSE for 
combining model. The rest of other IGBT test samples have 
similar prognostic performance in terms of how different 
probabilistic models performed in relation to each other. 

 

 
 

Fig. 13. RMSE for Mean Based of Predicted RULs. 

 
 
 
 

 

Fig. 14. RMSE for Median Based of Predicted RULs. 

VI. CONCLUSIONS 

The main contribution of this paper is the development and 
implementation of a prognostics framework for IGBTs, and a 
prognostic algorithm with Monte Carlo simulation and with 
the collector emitter voltage as a precursor parameter is 
developed. According to the IGBT failure mechanism and 
degradation characterization, the IGBT degeneration models 
are built. Monte Carlo simulation method and the precursor 
parameter, collector emitter voltage (VCE), are integrated to 
develop the prognostic algorithm on predicting the IGBT RUL. 

Gamma, Exponential, Poisson distribution and the 
combining distribution models are established, and Monte 
Carlo simulation is utilized in the algorithm to computing the 
IGBT remaining useful life. The collector emitter voltage (VCE) 
is used as the precursor parameter used in the prognosis. 

Comparing with the results of RUL prediction with 
different models, the mean value of the RUL prediction and 
the median value of the RUL prediction presents a different 
accuracy. Different models also perform their preference to 
different IGBT on the RUL prediction. The implementation of 
the developed prognostics framework could be applied to 
provide advance warning of failures thereby preventing costly 
power electronics system downtime and failures. 

The combining model can perform much more efficient 
RUL prediction results in some IGBTs, and the combined 
model in this paper is only based on the Gamma distribution, 
much more combining models based on different probability 
distribution could be established and implemented in IGBT 
RUL prediction, and a comparative analysis between these 
combining models is beneficial to the IGBT prognostic. 
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