
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 1, 2014

105 | P a g e

www.ijacsa.thesai.org

An Automated approach for Preventing ARP

Spoofing Attack using Static ARP Entries

Ahmed M.AbdelSalam

Information Technology Dept.

Faculty of Computers and

Information, Menofia University

Menofia, Egypt

Wail S.Elkilani

Computer Systems Dept.

Faculty of Computers and

Information, Ain Shams University

Cairo, Egypt

Khalid M.Amin

Information Technology Dept.

Faculty of Computers and

Information, Menofia University

Menofia, Egypt

Abstract—ARP spoofing is the most dangerous attack that

threats LANs, this attack comes from the way the ARP protocol

works, since it is a stateless protocol. The ARP spoofing attack

may be used to launch either denial of service (DoS) attacks or

Man in the middle (MITM) attacks. Using static ARP entries is

considered the most effective way to prevent ARP spoofing. Yet,

ARP spoofing mitigation methods depending on static ARP have

major drawbacks. In this paper, we propose a scalable technique

to prevent ARP spoofing attacks, which automatically configures

static ARP entries. Every host in the local network will have a

protected non-spoofed ARP cache. The technique operates in

both static and DHCP based addressing schemes, and Scalability

of the technique allows protecting of a large number of users

without any overhead on the administrator. Performance study

of the technique has been conducted using a real network. The

measurement results have shown that the client needs no more

than one millisecond to register itself for a protected ARP cache.

The results also shown that the server can a block any attacker in

just few microsecond under heavy traffic.

Keyword—component; layer two attacks; ARP spoofing; ARP

cache poisoning; Static ARP entries

I. INTRODUCTION

The evolving of computer networks, and the variety of its
services and applications, has increased the users need for
LANs [1] and the security of LANs also become a more
concern. An essential part of successful communication
between users within LAN is the Address Resolution Protocol
(ARP) [2]. ARP is specified in RFC 826 [3] to allow hosts to
resolve network layer address (IP) to datalink layer address
(MAC) [3]. Although the importance of ARP protocol for
communication in LAN, it formulates the most dangerous
attacks threating LANs. ARP spoofing or ARP cache
poisoning are the two main attacks threating the ARP protocol
operations [4].

ARP Spoofing is a hacking technique to send fake ARP
request or ARP reply, ARP spoofing problem comes from the
way the ARP protocol works [5]. Since the ARP protocol is a
stateless protocol that receives and processes ARP replies
without issuing ARP request [6], the ARP cache can be
infected with records that contain wrong mappings of IP-MAC
addresses. ARP spoofing can be used to launch one of two
different attack categories [7]: Denial of Service (DoS) attacks
or Man in the Middle (MITM) attacks

Several solutions have been proposed to mitigate the ARP
spoofing, but each has its limitations [7]. The solutions have
been classified into five different categories [8]:

 Modifying ARP using cryptographic techniques

These solutions add some cryptographic features to the
ARP protocol, but will not be compatible with the standard
ARP and affect the protocol performance.

 Kernel-based patching

The technique adds a patch to the operating system kernel
in order to prevent ARP spoofing attacks, but the problem is
that not all operating systems can be patched and it may
become incompatible with the standard ARP protocol.

 Securing switch Ports

Use the switch port security or Dynamic ARP inspection
(DAI) option to prevent ARP spoofing. However its ability of
preventing ARP spoofing easily, the cost of implementing such
solution may not be acceptable by most of the organizations.

 ARP spoof detection & protection software

Programs or tools developed to prevent ARP spoofing
attacks, but the experimental results have shown there
ineffectiveness in protection.

 Manually configuring static ARP entries

The most basic and effective way to prevent ARP spoofing
[1] [6] [9] is adding static ARP entries at each host. However
this solution cannot be easily managed and cannot scale well
specially in organizations that have large number of users and
require a heavy workload on the network administrator.

In this paper, a scalable technique to prevent ARP spoofing
attacks, which automatically configures static ARP entries is
proposed. It overcomes the problems of the solutions of the
techniques that use static entries. The remaining part of the
paper is organized as follows: Section II surveys background
and related work. Section III shows the details of the proposed
method. The experimental results are discussed in section IV.
Finally section V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Address resolution Protocol

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 1, 2014

106 | P a g e

www.ijacsa.thesai.org

ARP is specified in RFC 826 [3] as a protocol that provides
dynamic mapping from an IP address to the corresponding
MAC address to grant successful communication between
users within LAN. ARP messages are classified as request and
reply message. When a user has packet to transmit, it will send
a broadcast ARP request asking about the MAC address for a
certain IP. The machine, recognizing the IP address as its own
address, returns an ARP reply containing its MAC address. The
mapping will be saved in the device ARP cache [2].

B. ARP cache

ARP cache is a table of recently resolved IP addresses and
their corresponding MAC addresses. The ARP cache is
checked first before sending an ARP Request frame. ARP
cache entries can be dynamic or static [4].

 Static ARP cache entries: are permanent and manually
added records using a TCP-IP utility. Static ARP cache
entries are used to provide ARP requests for commonly
used local IP addresses. The problem with static ARP
entries is that they have to be manually updated when
network interface equipment changes [10].

 Dynamic ARP cache entries: are entries learned by
ARP protocol and have a time-out value associated with
them to remove entries from the cache after a specified
period of time [10].

C. ARP spoofing

 ARP is a stateless protocol that uses ARP replies to update
ARP cache using wrong or spoofed mappings [11]. As
mentioned before, ARP spoofing can be used to launch [7]
either one of the following attack categories:

 Man in the Middle (MITM): An attacker deceives both
ends of communication and fills their ARP cache with
wrong IP-MAC mapping. As a matter of fact, it inserts
itself between the two ends of communication. Hence, it
will gain a copy of every bit sent between them.

 Denial of service (DoS): An attacker fills the ARP
cache of victim with wrong IP-MAC mapping, so every
packet sent from victim will be sent to the wrong MAC.

D. Related Work

As mentioned previously, solutions attempting to prevent
ARP spoofing attack using the static ARP cache entries are
very efficient. Yet this category of solutions has some major
problems [7] [8]: (1) overhead required for manual
configuration of static entries, (2) Limited scalability for large
networks, and (3) Ability to work in static and DHCP based
networks.

In the following, we will survey several methods belonging
to this category along with their drawbacks.

The DAPS (Dynamic ARP spoof Protection System)
technique suggested in [8] is a solution to ARP spoofing that
snoops DHCP packets and use them as vaccines. Yet this
technique doesn’t scale well for those network that use static IP
addressing scheme and also vaccines will be invalid if DHCP
starvation attack occurs.

In [12], the NIDPS (Network Intrusion Detection and
Prevention System) technique is suggested have a server
collecting IP-MAC mappings from users using small agents.
These mappings will be then used as static ARP entries to
correct any wrong mapping detected. However, agents aren’t
authenticated to the server. Moreover, it detects only attacks
from its LAN segment. Also, the server examines every packet
going in or out the LAN segment. Finally, it waits for the attack
to occur and then try to solve it.

Xiangning et al. [13] has proposed a technique that expands
the snort preprocessors plug-ins by adding an ARP detection
module. The proposed technique doesn’t scale well in large
networks due to the need of manual configuration of the static
mappings at the server. It also doesn’t work in DHCP based
networks.

A solution to ARP spoofing using a server is proposed in
[14]. The server will get mappings for the network users from
the DHCP server. It replies also to ARP requests.
Unfortunately, this solution works only in DHCP networks.
Also, it is not compatible with the standard ARP. Moreover, if
DHCP starvation occurs, all the server information will be
invalid.

Ai-zeng Qian [15] proposed a technique to prevent ARP
spoofing by using static ARP entries but the technique still
doesn’t work with dynamic networks using DHCP addressing.
The administrator must assign all IP addresses along with their
MAC to the server so it will be not visible for large scale
network.

A method is suggested in [16] to solve ARP spoofing
problem using snort IDS and static ARP entries. Yet, it still
needs the administrator to add the static mappings manually.
Also, it works only in static networks.

Table 1 compares the proposed algorithm with the previous
solutions, the comparison criteria includes if it works in DHCP
and static networks, ability to prevent attacks, scalability, and if
manual or automatic configuration of the static entries is used.

TABLE I. COMPARISON BETWEEN THE PROPOSED ALOGORITHM AND

PREVIOUS SOLUTIONS

Technique Static DHCP Prevention Scalability Automatic

Proposed

DAPS [7]

NIDPS [12]

Xiangning

[13]

Ortega [14]

Ai-zeng [16]
Xiangdong

[17]

III. THE PROPOSED METHOD

The proposed technique is a client-server protocol that
prevents ARP spoofing by automatically configuring static
ARP entries. The protocol works in both static and DHCP
networks.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 1, 2014

107 | P a g e

www.ijacsa.thesai.org

Moreover, it can work in large-scale networks without any
overhead on the administrator. In addition, the technique
doesn’t require special hardware to be deployed, as any host
can work as ARP server.

The protocol proposed defines three different messages:

A. Register Message: is a unicast message sent from the client

to the server. It contains its IP and MAC address. Also it

includes a hashed authentication key.

B. Update Message: is a broadcast notification message sent

from the server to all users in the network indicating that a

new user has entered the network. It also contains the IP

and MAC address of that new user.

C. Register Response Message: is a unicast message sent from

the server to the new user. It contains all static ARP entries

of users successfully registered at the server.

The protocol also defines two different entities:

a) ARP Client: is a software installed on user’s

machines. It fulfills the following

 Automatically get the IP and MAC address of the user
and use them to send register message to the server.

 Receive update and register response messages from the
server.

 Verify that update or register response messages
received are coming from a trusted server.

 Use the IP and MAC pairs received in the update or
register response message to add static ARP entries to
the user ARP cache.

b) ARP Server: is a server software that can be installed

on any device in the network. It can also be installed on a

dedicated server, and has the following functions:

 Receive register messages from the ARP clients.

 Verify that the message is coming from a trusted user.

 Make use of the IP and MAC pairs encapsulated within
the register message to create a list of trusted users in
the network.

 Send broadcast update message to notify them that a
new user has come to the network.

 Send register response message to the new users.

 Take the proper action regarding users who try to
violate the protocol security rules.

The proposed protocol defines two different algorithms for
the client and server in order to prevent the ARP spoofing
attack

1) Client Algorithm
The client algorithm described in Algorithm 1 adds static

entry for the server in the client ARP cache to avoid the rogue
server threat. Furthermore, it obtains the user IP and MAC
address automatically to make the user has no opportunity to
send fake information to the server.

Algorithm 1: ARP_Client

Step 1: Add static ARP entry for the server.
Step 2: Automaitcally get user IP and MAC address
Step 3: Formulate the Register Message
Step 4: Send the register message to the server.
Step 5: Listen to updates from the server
Step 6: if message received from the server then

 Extract the source IP
 if source IP = Server IP then

Extract Key, IP, MAC
if received key is correct then

if similar MAC in ARP Cache then
Delete this record

else
 Add static ARP entry using extracted IP
 and MAC address
 Return to step 5

 end if

 else

 Discard the message
 Return to step 5

 end if
 else

 Discard the Message
 Return to step 5

 end if

 else
 Return to step 5

 end if

The algorithm checks the source IP address of the received
message to be sure that it is coming from the trusted server. It
only accepts the IP and MAC addresses encapsulated in the
message if the key is correct.

In order to work in DHCP networks where IP and MAC
mappings are frequently changing, the algorithm searches for
the MAC encapsulated in the message. If matched map is
found, it will be changed to the new mapping. Otherwise a new
mapping will be added.

Finally if any of the conditions are not met, the algorithm
will discard the message and return to listen for another
message from the server.

2) Server Algorithm
The server algorithm, described in Algorithm 2, listens to

incoming register messages from the clients, checks the hash
code to be sure that the message is coming from a trusted host.
Users are given only three trials to send the correct hash code.
If it fails to send the correct hash code within the three trials,
the server will block this user.

The blocking action depends on the addressing scheme
being used, for DHCP networks, the MAC address of the user
will be added to DHCP deny list. Hence, it will not be able to
obtain IP configuration from the DHCP server again, for static
networks, the server will prevent traffic from this user to reach
the server by obstructing its IP address.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 1, 2014

108 | P a g e

www.ijacsa.thesai.org

Algorithm 2: ARP_Server

Step 1: Add static entry for itself
Step 2: Listen to users Register Messages
Step 3: if register message received from user then

if the hash code matched then
if wrong trials less than 3 then

if similar MAC in ARP cache then
update this record

else
delete this record

end if
send update message to all users
send register response message to the new user
return to step 2

else
discard the message
return to step 2

end if
else if it has wrong previous wrong trials then

Increment wrong trials for that MAC
if wrong trials equal 3 then

Add to DHCP deny list Or Block this IP
end if
Discard the message
Return to step 2

else
Add to sucpicious list
Discard the message
Return to step 2

end if
 else

Return to step 2

 end if

If user wrong trials have reached three or more, its traffic
will be discarded even if it gets the correct hash code, and the
administrator is the only one who has the ability to remove it
from the block list. It is to be noted that we block undesirable
users on the network layer instead of the usual blocking criteria
using TCP. This enables the protocol proposed to stop DoS
attacks completely.

If the key is correct and the number of wrong trials doesn’t
reach the threshold, the server will search its ARP cache for
matching between MAC address encapsulated in the register
message received and MAC address in ARP cache. This gives
the algorithm the ability to work with DHCP based networks.
In turn, it prevents an intruder having the hash code to spoof all
ARP cache entries. As a matter of fact, it can only spoof one at
a time. If it tries to spoof another one the old spoofed entry will
be deleted.

In case a user tries to register with wrong hash code for the
first time, it will be inserted in the suspicious users list. When
its wrong trials reaches three, it will be moved to the blocked
list.

User who has successfully registered at the server will
receive a register response message contains the IP and MAC
addresses of all successfully registered users to add them as
static ARP entries. Moreover, all other users will receive an
update message contains IP and MAC address of the new user
to add it as a static entry in their ARP cache.

Using the client and server algorithms, every user in the
network will have its ARP cache filled with static ARP entries

for all other users in the network. Hence, it will not suffer from
the ARP spoofing problem again. And everything is done
automatically without any overload on the administrator; this
gives the algorithm a greater scalability.

IV. EXPERIMENTAL RESULTS

Experimental measurement has been chosen to evaluate the
performance of the proposed algorithm. The faculty of
computers and information, Menofia University (Menofia is
one of the districts of Egypt) network, shown in fig.1, is used to
conduct the measurements. The network consists of three
separate LANs. Each LAN ends with an edge switch. The
LANs are connected through a core switch.

LAN 1 consists of 19 users and an ARP server. LAN 2
consists of 13 users and an application server offering web
browsing, FTP, and mail services. LAN 3 is a network of 16
users and an Asterisk VOIP server for voice over IP calls
between network users.

All PCs are core i5 processor with 4 GB of RAM. The edge
switches are cisco catalyst 2960 switch with 24 ports. The core
switch is cisco catalyst 4006 switch. Also the wireshark
software is used in measuring the values.

The response time metric has been chosen to evaluate the
performance of the algorithm. The response time is measured
at the different stages of the algorithm and at both sides of the
protocol (client and server) taking in mind the different
parameters affecting the response time values. These measures
speed, reliability, and robustness of the algorithm. Hence, it
proves the algorithm efficiency.

LAN 1LAN 2LAN 3

UserUser Application server
ARP server

User VOIP Server

Edge Switch Edge Switch
Edge Switch

ADSL Router

Internet

Core Switch

Fig. 1. Faculty of computers and Information, Menofia university network

A. Server Side Measures

1) Authentication time ()
It represents the amount of time needed to authenticate a

trusted user. Fig.2 shows the authentication time values. The X
Axis represents the number of simultaneous attackers trying to
authenticate using wrong key. The Y Axis represents the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 1, 2014

109 | P a g e

www.ijacsa.thesai.org

authentication time values in nanoseconds. The different colors
represent the number of users trying to authenticate at the same
time.

Fig. 2. Authentication Time () in nanoseconds versus number of
attackers for the different number of users

2) Acceptance time ()
It represents the time spent by the server to accept an

authenticated user. Fig.3 shows the acceptance time values.
The X Axis represents the total number of ARP cache records.
The Y Axis represents the acceptance time values in
nanoseconds. The different colors represent the number of
users trying to authenticate at the same time.

Fig. 3. Acceptance Time () in nanoseconds versus number of ARP
cache records for different number of users

3) Registration time ()
It represents the time taken by the server to add an entry for

a new user in the ARP cache. Fig.4 shows the registration time

values. The X-Axis represents the total number of ARP cache
records. The Y-Axis represents the registration time values in
nanoseconds. The different colors represent the number of
users trying to register themselves at the same time.

Fig. 4. Registration Time () in nanoseconds versus number of ARP cache

records for the different number of users

4) Update time ()
It represents the time needed by the server to notify all

network users that a new user has entered the network. Fig.5
shows the update time values. The X Axis represents number
of simultaneous users trying to communicate with the server.
The Y Axis represents the update time values in nanoseconds.

Fig. 5. Update Time () in nanoseconds versus the number of users

5) Server Convergence time ()
It represents the time taken by the server to send to the new

user its ARP cache as a register response message. Fig.6 shows
the server convergence time values. The X Axis represents the
total number of ARP cache records. The Y Axis represents the
server convergence time values in nanoseconds. The different
colors represent the number of users trying to communicate
with the server at the same time.

0 1 2 4 8 16

1 5822 5813 5829 5837 5841 5846

2 6103 6111 6119 6124 6129 6137

4 6279 6283 6289 6297 6306 6316

8 6809 6815 6823 6832 6842 6852

16 7907 7917 7929 7941 7958 7983

32 8113 8124 8139 8156 8169 8186

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

Authentication Time
1 2 4 8 16 32

1 5 10 25 50 100

1 3631 5866 8660 15085 25422 46933

2 3703 5993 8991 15423 25399 48003

4 3957 6378 9573 16234 26847 49334

8 4208 6911 10412 17411 28003 50867

16 4421 7423 11517 18534 29211 51997

32 4987 8009 12786 19765 31116 54161

0
10000
20000
30000
40000
50000
60000

Acceptance Time

1 2 4 8 16 32

1 5 10 25 50 100

1 5028 6704 7263 11733 16761 26819

2 5287 6998 7734 12645 17432 28005

4 5517 7305 8411 14114 19634 30233

8 5919 7913 9831 15654 22344 32946

16 6108 8726 11531 16973 24987 34988

32 6734 10113 13383 18321 28166 37213

0
5000
10000
15000
20000
25000
30000
35000
40000

Registration Time

1 2 4 8 16 32

32126 33107 34311 35876 37323 39765

0

10000

20000

30000

40000

50000

1 2 4 8 16 32

Update time

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 1, 2014

110 | P a g e

www.ijacsa.thesai.org

Fig. 6. Server convergence Time () in nanoseconds versus number of

ARP cache records for the different number of users

6) Detection time ()
It represents the time in nanoseconds spent by the server to

detect a new attacking user and adds it to the suspicious users
list, Fig.7 shows the detection time values.

The X Axis represents the number of suspicious user’s list
records. The Y Axis represents the detection time values in
nanoseconds. The different colors represent the number of
users trying to communicate with the server at the same time.

Fig. 7. Detection Time () in nanoseconds versus number of record in
suspicious users list for the different number of users

7) Blocking time ()
It represents the time spent by the server to add a user to the

blocked users list. Fig.8 shows the blocking time values. The X
Axis represents the total number of records in the suspicious
users list.

The Y Axis represents the detection time values in
nanoseconds. The different colors represent the number of
users trying to communicate with the server at the same time.

Fig. 8. Blocking Time () in nanoseconds versus number of suspicious
users list records for different number of users

It can be noted from Fig 2 to 8 that for any measured time
() the time needed
per user is nearly constant for any number of users for the same
number of records.

B. Client side measures

1) Client Acceptance time ()
It represents the time needed by the client to be sure that the

server accepted its register request message. It will be
calculated using equation (1):

 (1)

Where is the client acceptance time, RTT is the
round trip time, is the server authentication time, is
the sever acceptance time, is the server registration time,
and is the server update time.

The RTT value depends of the nature of traffic workload.
The users are divided into four groups and every group of users
is using one or more of the services: mail, file transfer, VoIP
call, or web browsing. The workload depends on the number of
services used by every group. The results were taken for 3
different types of workloads: light, normal, and heavy
workload. Light workload represents one service usage. Two
services are considered for normal workload and three for
heavy workload [17].

a) Light traffic workload

Fig.9 shows the Client acceptance time values in light
traffic workload, The X Axis represents the number of records
in Server ARP cache. The Y Axis represents the Client
acceptance time in Microseconds, the different colors represent
the number of users trying to communicate with the server at
the same time.

1 5 10 25 50 100

1 6704 11453 17879 36317 74819 117333

2 6974 12003 18973 38114 76101 118454

4 7734 13769 20541 41226 78311 119621

8 8947 16278 23001 44992 81003 120872

16 10765 19231 26742 49078 83867 121877

32 11874 21324 30991 56429 86234 123117

0
20000
40000
60000
80000
100000
120000
140000

Server convergence time

1 2 4 8 16 32

1 5 10 25 50 100

1 4749 7263 9777 16203 28495 50006

2 4897 7892 10223 17102 29142 50873

4 5231 8321 10983 18001 30929 52147

8 5713 9107 12314 19635 32765 55725

16 6003 10111 13867 21245 34567 58836

32 6878 11231 15311 23781 37116 63139

0
10000
20000
30000
40000
50000
60000
70000

Detection Time

1 2 4 8 16 32

1 5 10 25 50 100

1 2793 4749 6984 14526 25142 47492

2 2987 5002 7256 14987 25976 48543

4 3347 5967 7967 15789 27127 50129

8 3983 6234 8675 16430 28965 52341

16 4673 6871 9433 17987 31006 54389

32 5987 7954 10856 19768 34569 57345

0

10000

20000

30000

40000

50000

60000

70000

Blocking Time

1 2 4 8 16 32

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 1, 2014

111 | P a g e

www.ijacsa.thesai.org

Fig. 9. Client acceptance Time () in nanoseconds versus number ARP

cache records for different number of users in light worload

b) Normal workload

Fig.11 shows the Client acceptance time values in normal
traffic workload, The X Axis represents number of record in
Server ARP cache The Y Axis represents the client acceptance
time values in microseconds, and the different colors represent
the number of users trying to communicate with the server at
the same time.

Fig. 10. Client acceptance Time () in nanoseconds versus number ARP
cache records for different number of users in normal worload

c) Heavy traffic workload

Fig.11 shows the Client acceptance time values in Heavy
traffic workload. The X Axis represents the number of records
in the server ARP cache. The Y Axis represents the client
acceptance time values in microseconds. The different colors
represent the number of users trying to communicate with the
server at the same time.

Fig. 11. Client acceptance Time () in nanoseconds versus number ARP

cache records for different number of users in heay worload

2) Client convergence time ()
It represents the amount of time needed by the client to

process the register response message and add static ARP
entries using IP and MAC pairs encapsulated within the
message. Fig.12 shows the client convergence time values. The
X Axis represents the total number IP and Mac pairs
encapsulated in the register response message. The Y Axis
represents the client convergence time values in nanoseconds.
The different colors represent number of users trying to
communicate with the server at the same time.

Fig. 12. Client Convergence Time () in nanoseconds versus number of
ARP cache records for the different number of users

1 5 10 25 50 100

1 136.607 188.509 170.878 198.781 186.15 246.724

2 161.2 183.209 171.951 161.299 211.067 237.252

4 177.064 173.277 155.584 198.956 190.098 248.194

8 176.812 171.515 185.942 202.773 195.065 256.541

16 147.759 193.389 175.3 178.771 202.479 251.291

32 153.599 174.011 208.073 208.007 244.216 250.325

0
50
100
150
200
250
300

Client Acceptance Time

1 2 4 8 16 32

1 5 10 25 50 100

1 424.607 382.509 445.878 419.781 393.15 421.724

2 438.2 353.209 378.951 411.299 466.067 471.252

4 410.064 400.277 458.584 386.956 442.098 500.194

8 433.812 384.515 370.942 427.773 459.065 467.541

16 392.759 438.389 398.3 462.771 416.479 527.291

32 441.599 392.011 444.073 392.007 476.216 478.325

0

100

200

300

400

500

600

Client Acceptance Time

1 2 4 8 16 32

1 5 10 25 50 100

1 46.607 942.509 977.878 875.781 969.15 1048.72

2 977.2 907.209 1010.95 920.299 926.067 1110.25

4 957.064 1021.28 894.584 953.956 1075.1 1038.19

8 946.812 876.515 973.942 936.773 897.065 1103.54

16 1001.76 923.389 890.3 1003.77 955.479 1085.29

32 892.599 999.011 947.073 887.007 1010.22 964.325

0

200

400

600

800

1000

1200

Client Acceptance Time

1 2 4 8 16 32

1 5 10 25 50 100

1 4 20 23 34 44 67

2 5 23 29 49 74 127

4 7 31 45 85 146 271

8 9 49 81 167 307 587

16 13 83 139 312 533 1023

32 23 113 198 447 803 1563

0
200
400
600
800
1000
1200
1400
1600
1800

Client convergence time

1 2 4 8 16 32

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 1, 2014

112 | P a g e

www.ijacsa.thesai.org

V. CONCLUSION

In this paper, a solution to the problem of ARP spoofing
has been proposed, the solution is an automatic and scalable
method of configuring static ARP entries instead of manually
configuring. The solution solves the main problems related to
this category of solutions Usage of static entries, automation,
scalability, manageability, prevention, and cost are the main
features of the proposed method. The proposed method has
defined two separate algorithms, one for the client, and the
other for the server. Experimental evaluation was conducted on
the LAN network of the faculty of computers and information,
Menofia university of Egypt. The response time metric is used
to evaluate the algorithm. The values of the response time were
measured at the different stages of the algorithm. Also different
types of traffic workloads were used during the measuring the
response to show the effect volume of traffic on the response
time values. The results prove how fast and accurate the
proposed algorithm is since any new user needs less than one
millisecond to be safe from ARP problem for heavy workloads.

REFERENCES

[1] Yafeng Xu and Shuwen Sun , “The study on the college campus network
ARP deception defense," 2010 2nd International Conference on Future
Computer and Communication (ICFCC), 3(1), pp. 465-467, May 2010.

[2] R. W. Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Addison–
Wesley Professional Computing Series, January 1994.

[3] D. Plummer. An Ethernet address resolution protocol, Nov. 1982. RFC
826.

[4] Mohamed Al-Hemairy, Saad Amin, and Zouheir Trabelsi, “Towards
More Sophisticated ARP Spoofing Detection/ Prevention Systems in
LAN Networks," 2009 International Conference on the Current Trends
in Information Technology (CTIT), pp.1-6, December 2009.

[5] Hu Xiangdong, Gao Zhan, and Li Wei "Research on the Switched LAN
Monitor Mechanism and its Implementation Method based on ARP
spoofing," International Conference on Management and Service
Science.(MASS '09), pp. 1-4, Sept. 2009.

[6] Marco Antônio Carnut and João J. C. Gondim, "ARP spoofing detection
on switched ethernet networks: a feasibility study," 5th Symposium on

Security in Informatics held at Brazilian Air Force Technology Institute,
November 2003.

[7] Cristina L. Abad and Rafael I. Bonilla, "An Analysis on the Schemes for
Detecting and Preventing ARP Cache Poisoning Attacks," 27th
International Conference on Distributed Computing Systems Workshops,
2007. (ICDCSW '07), page(s): 60, June 2007.

[8] Somnuk Puangpronpitag and Narongrit Masusai, “An Efficient and
Feasible Solution to ARP Spoof Problem," 6th International Conference
on Electrical Engineering/Electronics, Computer, Telecommunications
and Information Technology, 2009. (ECTI-CON 2009), 3(1), pp. 910—
913, May 2009.

[9] S. Whalen, "An introduction to ARP spoofing," 2600: The Hacker
Quarterly, 18(3), 2001, (accessed 13-9-2012).
[Online].:http://servv89pn0aj.sn.sourcedns.com/gbpprorg/2600/arp
spoofing intro.pdf

[10] http://technet.microsoft.com/en-us/library/cc958841.aspx. ARP Cache,
(accessed May 8, 2013).

[11] Zouheir Trabelsi and Wassim El-Hajj, "Preventing ARP Attacks using a
Fuzzy-Based Stateful ARP Cache," IEEE International Conference on
Communications.(ICC '07), pp. 1355 -1360, June 2007.

[12] Dr. S. G. Bhirud and Vijay Katkar, "Light Weight Approach for IP-ARP
Spoofing Detection and Prevention," 2011 Second Asian Himalayas
International Conference on Internet (AH-ICI), page(s):1-5, November
2011.

[13] Xiangning HOU, Zhiping JIANG, and Xinli TIAN, "The detection and
prevention for ARP Spoofing based on Snort," 2010 I

[14] Andre P. Ortega, Xavier E. Marcos, Luis D. Chiang and Cristina L.
Abad, " Preventing ARP cache poisoning attacks: A proof of concept
using OpenWrt," Latin American Network Operations and Management
Symposium. (LANOMS), pp. 1-9, Oct. 2009.

[15] Ai-zeng Qian, "The Automatic Prevention and Control Research of ARP
Deception and Implementation," 2009 WRI World Congress on
Computer Science and Information Engineering, , 2(1), pp. 555-558,
April 2009.

[16] Boughrara, A.; Mammar, S., "Implementation of a SNORT's output
Plug-In in reaction to ARP Spoofing's attack," 2012 6th International
Conference on Sciences of Electronics Technologies of Information and
Telecommunications (SETIT), pp.643,647, 21-24 March 2012

[17] R. K. Jain, “The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation, and
Modeling,” Prince Hall, April 1991.

