
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 10, 2014

1 | P a g e

www.ijacsa.thesai.org

A GA-Based Replica Placement Mechanism for Data

Grid

Omar Almomani

Department of Network and Computer Information System

Faculty of Informtion Technology

The World Islamic Sciences & Education University, Jordan

Mohammad Madi

School of Computing

College of Arts and Sciences

Universiti Utara Malaysia, 06010 Sintok, Kedah

 Abstract—Data Grid is an infrastructure that manages huge

amount of data files, and provides intensive computational

resources across geographically distributed collaboration. To

increase resource availability and to ease resource sharing in

such environment, there is a need for replication services. Data

replication is one of the methods used to improve the

performance of data access in distributed systems by replicating

multiple copies of data files in the distributed sites. Replica

placement mechanism is the process of identifying where to place

copies of replicated data files in a Grid system. Choosing the best

location is not an easy task. Current works find the best location

based on number of requests and read cost of a certain file. As a

result, a large bandwidth is consumed and increases the

computational time. Authors proposed a GA-Based Replica

Placement Mechanism (DBRPM) that finds the best locations to

store replicas based on five criteria, namely, 1) Read Cost, 2)

Storage Cost, 3) Sites’ Workload, and 4) Replication Site.

Keywords—Data Grid; Data replication; distributed systems;

Replica placement mechanism; GA-Based Replica Placement

Mechanism

I. INTRODUCTION

Data Grids [1, 2] is an infrastructure that deals with huge
amount of data to enable grid applications to share data files in
a coordinated manner. Such an approach is seen to provide fast,
reliable and transparent data access. Nevertheless, the approach
is considered as a challenging problem in grid environment
because the volume of data to be shared is large despite of
limited storage space and network bandwidth. Furthermore,
resources involved are heterogeneous as they belong to
different administrative domains in a distributed environment.

However, it is unfeasible for all users to access a single
instance of data (e.g. a data file) from one single organization
(e.g. site). This would lead to the increase of data access
latency. Furthermore, one single organization may not be able
to handle such a huge volume of data by itself. Motivated by
these considerations, a common strategy is used in data grids as
well as in distributed systems, and is known as replication.
Replication vouches the efficient access without large
bandwidth consumption and access latency [3-9]. Replication
technique is one of the major factors affecting the performance
of data grids [10]. Creating replicas can reroute a client
requests to certain replica sites and offer a higher access speed
[11].

Replication is also bounded by two factors: the size of
storage available at different sites within the Data Grid and the

bandwidth between these sites [12]. Furthermore, the files in
Data Grid are mostly large [13, 14]; so, replication to every site
is infeasible. Therefore deciding on the optimal locations to
host a certain popular files is needed, in order to reduce the
bandwidth consumption of the network. In this paper a GA-
Based Replica Placement Mechanism (GARPM) propose by
which the process of placing files in grid sites can be done in
optimal or near-optimal manner. Authors present an adaptive
genetic algorithm that solves the replica placement problem in
data grid. The proposed mechanism considered as a long-term
optimization technique that has two direct improvements on the
performance of data grid. One is to optimize data access which
leads to shorter execution time by considering the read cost of
files; and the other one is to optimize the network bandwidth,
which can avoid network congestion with the sudden
frequently required data by considering workload of grid sites
and distribution of current replicas.

The GARPM addresses the problems of current replication
mechanisms which could be epitomized in two points:

A large amount of network bandwidth is consumed
resulting from a bad utilization of the network by the existing
systems [11, 15-22] . As a result of bad utilization of network
bandwidth will lead to increasing of the job execution time [17,
23-27]. The proposed work is expected to minimize network
bandwidth consumption and reduce job execution time. The
rest of this paper is structured as follows. Section 2 provides a
brief description on existing work in replica placement
mechanisms. Authors include details of our proposed
replication mechanism in Section 3 and provide a numerical
example that explains how the proposed mechanism works in
Section 4. Finally, conclude the paper in Section 5.

II. RELATED WORKS

There are many studies in the literature that concern replica
placements issues. Chin-Min Wan et al. [19] proposed a replica
placement scheme that tries to overcome the bottleneck caused
by increasing the downlinks, which are occurring at the same
time. The proposed strategy chooses the best site to host the
replica according to the evaluation result based on the number
of user request and transmission cost.

The purpose of the strategy is to replicate the file to a site
that provides minimum average transmission cost.
Transmission cost is defined to be inversely proportional to
bandwidth, and the site that provides the minimum average
transmission cost is selected.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 10, 2014

2 | P a g e

www.ijacsa.thesai.org

Following the bandwidth aspect, [28] proposed a dynamic
replication strategy, called Bandwidth Hierarchy based
Replication (BHR) to reduce access time by avoiding network
congestion. BHR reduces the time taken to access and transfer
the file. It places a replica at a high bandwidth location.
However, such an approach only considers transmission cost
and does not guarantee to minimize the overall cost.

A load balancing replication strategy has been proposed by
[21], where the most frequently accessed file is placed closed
to the users and the decision of replica placement is made
based on the access load and the storage load of the candidate
replica servers and their sibling nodes. In relation to this, [29]
discussed various replication strategies namely;
MinimizeExpectedUtil, MaximizeTimeDiffUtil,
MinimizeMaxRisk, and MinimizeMaxAvgRisk while
considering the utility and risk indexes, and making the replica
placement decision by optimizing the average response time.
They concluded that considering both current network state and
file requests are better than considering the file requests alone.

Meanwhile, the work on dynamic replication algorithm by
[22] had resulted in a Popularity Based Replica Placement
(PBRP) algorithm for hierarchical Data Grids. The idea behind
PBRP is to place replicas as close as possible to those clients
that frequently request data files. Further work by [30]
presented a dynamic replica placement in multi-tier Data Grid
that categorized the files based on their access frequency into
two groups: 1) Most Frequent Files (MFF) that are replicated
and placed at the parent node of their respective best clients,
where the best client for a file is a client which generates the
maximum request for that file, and 2) Least Frequent Files
(LFF) that are placed at one tier below the root of the Data Grid
along the path of their best client. In [31], a dynamic placement
algorithm was proposed that takes into account the dynamicity
of sites in the Data Grid, since a site can at any time leave the
grid and possibly join again later. Thus, two parameters were
investigated: the request number for each file by each site, and
utility of each site that involves the number of times the site did
not answer to a file request due to its absence from the grid.

On the other hand, the authors in [23] suggested a model
that provides a function that evaluates the placement of replica.
The objective of this function is to maximize the difference
between the replication benefits and replication cost (storage
cost and transfer time). The benefit is the reduction in transfer
time to the potential users, the storage cost is the storage cost at
the remote site, and the transfer time is the duration from the
current location to the new location. Yet, site workload is not
considered, thus the system will not guarantee to perform well
with increasing of running jobs.

Ruay-Shing et al. [17] proposed a dynamic replication
mechanism that replicates a popular file to suitable site
according to the access frequencies for each file that has been
requested. Access frequency is an essential parameter that
should be taken into account when determining replica
placement. However, some important parameters such as
overall cost (i.e. storage cost and read cost), distance and
availability should not be neglected; otherwise the overall
system performance is degraded.

III. REPLICA PLACEMENT STRATEGY

In previous work [32], authors proposed a replica creation
model that evaluates the files based on the exponential and
dependency level of files in grid system. Each file in the
system is evaluated and given a File Value (FV). The main
goal of our previous work [32] was to identify file that need to
be replicated (also known as popular files). Details on such
approach can be seen in [32]. In this work, we are pursuing to
identify sites that best to host the newly created replicas. Thus
assume that the popular file already determined and authors use
their values in this work

The GA-Based Replica Placement Mechanism (GARPM)
finds location sites to place the newly created replicas, such
that the total Read Cost (RC) is minimized, which is defined as
[26] the cost of transferring data file from the underlying site to
the remote sites. The best locations are the sites that provide
the best service to all other sites and users in the grid system.
In users’ perspective, the best sites are located as close as
possible to the sites that most potentially request the underlying
replicas. This improves the geographical locality of the sites,
which consider files that requested by the sites are likely to be
requested by nearby sites [33]. However, in sites’ perspective
the best sites are located as far as possible from the replication
sites that never request the underlying replicas. Hence,
choosing the best location sites depends on four parameters: 1)
Storage cost, 2) Read cost, 3) Sites’ Workload, and 4)
Replication Sites.

1) Storage Cost (SC): RC is the cost of storing a file at a

certain site [23-26, 34]. The storage cost might reflect the size

of the file, the throughput of the site, or the fact that a copy of

the file is residing at a specific site. In this context the storage

cost is the storage space used to store data, and can be

computed as following equation [33]:

𝑆𝐶 =
𝐹𝑖𝑙𝑒 𝑆𝑖𝑧𝑒

𝐹𝑟𝑒𝑒 𝑆𝑝𝑎𝑐𝑒
 (1)

Where,
Free Space: is the current available space of the underlying

storage site

2) Read Cost (RC): RC is the cost of transferring data file

from the underlying site to the remote sites [26], and can be

computed as:

𝑅𝐶 =
∑ 𝐹𝑉𝑠𝑖

×𝐹𝑇𝑇 𝑛
1

𝑚
 (2)

Where,

𝑛: The total number of the sites in the grid.

𝑚:Number of sites that request the replica from the underlying

site.

𝐹𝑉𝑠𝑖
: The file value with respect to the specific site si, which

could be computed as:

𝐹𝑉𝑠𝑖
=

𝑁𝑂𝑅𝑠𝑖

𝐹𝑖𝑙𝑒 𝑉𝑎𝑙𝑢𝑒
 (3)

Where,

𝑁𝑂𝑅𝑠𝑖
: Number of request for a file from a specific site si

𝐹𝑇𝑇: is the data transmission time, and depends on the size
of the file and the current network bandwidth of the link

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 10, 2014

3 | P a g e

www.ijacsa.thesai.org

between the two underlying sites. FTT is computed as in the
following equation [26]:

𝐹𝑇𝑇 =
𝐹𝑖𝑙𝑒 𝑆𝑖𝑧𝑒

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
 (4)

3) Sites’ Workload: The workload of the site is defined as

the number of request that can be satisfied by the underlying

site [24, 35]. The candidate site should not exceed a specific

amount of workload that is assigned to it.

4) Replication Sites: Replication site is the site that is

hosting the replica of the underlying file. Replication site

influence the candidate sites. The candidate site should be

located as far as possible from the replication sites, because of

two main reasons: 1) the replication sites itself never request a

replica that is already stored on it, 2) the load need to be

distributed.
The proposed strategy, namely GARPM, combines the four

parameters together in order to make the decision on the
placement of replicas, according to the following steps:

1) Calculate the storage cost of the popular file by

applying equation 1;

2) Calculate the transfer time of the popular file by

applying equation 4;

3) Identify the sites that could be excluded from being

candidates sites to hold the replicas, and those sites have the

following characteristics:

a) already stored the replicas in their storage elements

(Replication Sites),

b) already exceeded their maximum workload, and

c) have a direct connection to replication sites;

4) Calculate the RC of each candidate site by applying

equation 2;

5) Up to this step, we are given the number of copies to be

created of a popular file, and a set of candidate sites with

associated read cost. Our goal then to fine the best sites to host

the certain number of copies, so as to optimize the total read

cost.

IV. GA-BASED ALGORITHM

Genetic algorithms (GA) are an evolutionary optimization
approach which is an alternative to traditional optimization
methods [36]. The effectiveness or quality of a GA (for a
particular problem) can be judged by its performance against
other known techniques – in terms of solutions found, and time
and resources used to find the solutions [37]. moreover, GA
has shown itself to be extremely effective in problems ranging
from optimizations to machine learning [38]. An important
advantage of GA is that they search for the optimal solution by
examining only the overall all valuation of a solution; they
require no specific problem related information for their search.
i.e. it is a blind search [39].

In general GA search strategy consists of the following steps:

1) Generate initial population (Initialization): generate

random population of n chromosomes

2) Evaluate fitness: evaluate the fitness of each

chromosome in population

3) Create new population: create a new population by

repeating the following steps until the new population is

complete:

a) Select two parent chromosomes from the population

according to their fitness (the better fitness the bigger chance

to be selected)

b) Crossover the parents to form a new offspring

(children)

c) Mutate new offspring at each locus

d) Place the new offspring in the new population

4) Replace: use the new generated population for further

run of algorithm

5) Test: if the end condition is satisfied, stop and return the

best solution in the current population

6) Loop: go to step 2.
GA begins with an initial population represented by

chromosomes. Chromosome is a set of solutions from one
population. It can be taken and In general when apply the GA
replica placement problem, the algorithm will works as
following: at the first we start with a random initial population
𝑃0. 𝑃0 = [𝑘1, 𝑘2, 𝑘3, … 𝑘𝑛]

The size of initial population is n chromosomes. Each
chromosome si of this population consists of n binary bits or
(sites).

𝑘𝑖 = [𝑠1, 𝑠2, 𝑠3, … 𝑠𝑛] 𝑤ℎ𝑒𝑟𝑒 𝑠𝑖 ∈ {0,1}
Therefore each bit (site) of a chromosome can be either

included (si = 1) or excluded (si = 0) from being a candidate
to host one replica. Number of bits in each chromosome has to
be same as number of sites in the grid system, as each bit
represent one site. Moreover, number of ones in each
chromosome must be equals to number of copies that are
created of the popular file. Example of possible initial
population is as follows.

[

𝑘1 = [1 1 0 0 0 0 0 0 1 1 0 0 0 0 1]

𝑘2 = [0 0 0 1 0 1 0 0 0 0 1 0 1 1 0]

𝑘3 = [1 0 1 1 0 0 1 1 0 0 0 0 0 0 0]
⋮
⋮

𝑘𝑛 = [0 0 0 1 0 0 0 1 1 1 0 1 0 0 0]]

From the above example, by looking at the chromosomes it
clearly seen that the total number of sites is 15, and number of
copies to be hosted is five copies. For instance, the first
chromosome (k1) indicates that

𝑠𝑖𝑡𝑒1, 𝑠𝑖𝑡𝑒2, 𝑠𝑖𝑡𝑒9, 𝑠𝑖𝑡𝑒10, 𝑎𝑛𝑑 𝑠𝑖𝑡𝑒15

have been selected to host the five replicas of the popular file.
After the initial population is generated randomly, the

fitness value of each chromosome is evaluated by using
objective function or cost function. In our case the cost
function represented by the Overall Cost (OC) of sites,
therefore the objective is to minimize the total OC. So, the
lower the total OC, the fitter the solution represented by that
chromosome is.

The value of fitness function is given by the following
equation:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 10, 2014

4 | P a g e

www.ijacsa.thesai.org

∑ 𝑅𝐶(𝑠𝑖𝑡𝑒𝑖) + 𝑆𝐶(𝑠𝑖𝑡𝑒𝑖)
𝑛
𝑖=1 (5)

Where, 𝑛 is the total number of sites.
For example, the fitness value of the first chromosome

could be calculated by summing the total OC of candidate sites
that represented by 1 in the chromosome. In other words,
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑘1) = 𝑂𝐶(𝑠1) + 𝑂𝐶(𝑠2) + 𝑂𝐶(𝑠9) + 𝑂𝐶(𝑠10) +
𝑂𝐶(𝑠15)

Assume that OC of 𝑠𝑖𝑡𝑒1, 𝑠𝑖𝑡𝑒2, 𝑠𝑖𝑡𝑒9, 𝑠𝑖𝑡𝑒10, 𝑎𝑛𝑑 𝑠𝑖𝑡𝑒15
are 20, 50, 44, 32, and 60 respectively, so the𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑘1) =
20 + 50 + 44 + 32 + 60 = 206. The same goes for the rest
of chromosomes.

Having calculated the fitness value of the population, the
next generation can be determined. Select chromosomes for
reproduction, more fit chromosomes are more likely to be
selected for reproduction. For selection, the Roulette Wheel
selection used, where fitness level is used to associate a
probability of selection with each chromosome. The roulette
wheel selection scheme can be implemented as follows:

 Evaluate the fitness, fitness(ki), of each chromosome
in population

 Compute the probability, (Pi), of selection each

member of the population: Pi =
fitness(ki)

∑ fitness(kj)
n
j=1

 , where n

is the population size

 Calculate the cumulative probability, (qi), for each

chromosome: qi = ∑ Pi
n
j=1

 Generate a random number, r ∈ (0, 1].

 If r < q1 then select the first chromosome, x1, else
select the chromosome xi such that qi−1 < r ≤ qi.

 Repeat steps 4-5 n times.

Having selected the parents for reproduction, crossover is
performed by taking two parts of two chromosomes to create
new chromosomes. Crossover process is illustrated in the
example below as shown in Figure 1. Suppose that there two
parents namely 𝑃1 and 𝑃2, to create the children let say 𝐶ℎ1 and
𝐶ℎ2 do the following steps:

 Go through 𝑃1from the left side and take the first 𝑛 2⁄
number of ones, then write them down in the same
position in 𝐶ℎ1.

 Go through right side of 𝑃2 and take the first (𝑛 −
𝑛

2
)

number of ones, then write them down in the same
position as 𝑃2 in 𝐶ℎ1.

 Fill in the rest of positions of 𝐶ℎ1 by zeros.

 To create 𝐶ℎ2 follow the steps above by replacing 𝑃1
with 𝑃2.

Fig. 1. Example of crossover process between two parents

Mutation performed by a little modifying a chromosome. In
this case it can be achieved by randomly picking a one attribute
of a chromosome and convert it. Figure 2 below lists an
example in which the bit (site) number two and five of a
chromosome mutated and converted from 0 to 1 and from 1 to
0 respectively.

Fig. 2. Example of mutation process

Parents have been selected and children chromosomes
created via crossover and an occasional mutation. After that, it
is the time to insert the newly created children in to the
population and begin the selection, crossover, and mutation
process again until some stopping criterion is met. three criteria
used as stopping conditions. (1) The evolution stops if the
total number of iterations reaches a predefined number of
iterations, (2) if the fittest chromosome of each generation has
not changed much, that is, the difference is less than 10-3 over
a predefined number, or (3) if all chromosomes have the same
fitness values, i.e., when the algorithm has converged. below
shows the algorithm described above.

1: Begin

2: Initialize the population, 𝑷

3: Evaluate 𝑷

4: While stopping conditions not true do

5: Apply Roulette Wheel Selection for Reproduction

(create 𝑷𝑚𝑎𝑡𝑖𝑛𝑔)

6: Crossover 𝑷𝑚𝑎𝑡𝑖𝑛𝑔

7: Mutate 𝑷𝑚𝑎𝑡𝑖𝑛𝑔

8: Replace 𝑷 with 𝑷𝑚𝑎𝑡𝑖𝑛𝑔

9: Evaluate 𝑷

10: End

GA-based Algorithm

0 0 0 0 1 0 1 1 0 0 1 0 1 0 1P1

1 0 1 0 0 1 0 0 0 1 1 0 0 1 0P2

1 1 1

1. Write down the first 6/2 left ones from the first parent in the same
position

2. Write down the first 6 - (6/2) right ones from the second parent in
the same position

1 1 1 1 1 1

3. Fill in the rest of positions

0 0 0 0 1 0 1 1 0 1 1 0 0 1 0Ch1

1 0 1 0 0 1 0 0 0 0 1 0 1 0 1Ch2

0 1 0 0 0 0 1 1 0 1 1 0 0 1 0

0 0 0 0 1 0 1 1 0 1 1 0 0 1 0

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 10, 2014

5 | P a g e

www.ijacsa.thesai.org

V. CONCLUSION AND FUTURE WORK

This study describes the replica placement services as a part
of replication management in Data Grid. The GA-Based
Replica Placement Mechanism (GARPM) finds the best
location sites to place the newly created replicas. From the
users’ perspective, the best sites are located as close as possible
to the sites that most potentially will request the underlying
replicas to improve the geographical locality of the sites, while
considering that the files that are requested by the sites are
likely to be requested by nearby sites [33]. However, from the
sites’ perspective, the best sites are the ones that are located the
farthest from the replication sites that never request the
underlying replicas. The proposed strategy can make good
decision on which replicas each site should store, such that
comply with users’ satisfaction and resource’s satisfaction.

As a future work, it is our intention to implement the
presented replication mechanism in a grid environment, for
example by using OptorSim, a grid simulator. Furthermore, the
strategy can be tested on a larger of number of sites and of
different topologies.

REFERENCES

[1] A. Chervenak, E. Deelman, C. Kesselman, B. Allcock, I. Foster, V.
Nefedova, J. Lee, A. Sim, A. Shoshani, and B. Drach, "High-
performance remote access to climate simulation data: A challenge
problem for data grid technologies," in Super Computing, 2003, pp.
1335-1356.

[2] I. Foster, E. Alpert, A. Chervenak, B. Drach, C. Kesselman, V.
Nefedova, D. Middleton, A. Shoshani, A. Sim, and D. Williams, "The
Earth System Grid II: Turning climate datasets into community
resources," in Annual Meeting of the American Meteorological Society,
2002.

[3] A. Chervenak, E. Deelman, I. Foster, W. Hoschek, A. Iamnitchi, C.
Kesselman, M. Ripeanu, B. Schwartzkopf, H. Stockinger, and B.
Tierney, "Giggle: A framework for constructing scalable replica location
services," in International IEEE Supercomputing Conference (SC 2002)
Baltimore, USA, 2002, pp. 1-17.

[4] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke.,
"The Data Grid: Towards an Architecture for the Distributed
Management and Analysis of Large Scientific Datasets," Journal of
Network and Computer Applications, vol. 23, 2001.

[5] L. Guy, P. Kunszt, E. Laure, H. Stockinger, and K. Stockinger, "Replica
management in data grids," in Global Grid Forum. vol. 5, 2002.

[6] H. Lamehamedi, Z. Shentu, B. Szymanski, and E. Deelman, "Simulation
of dynamic data replication strategies in data grids," in Proceedings of
12th Heterogeneous Computing Workshop (HCW2003), Nice, France, ,
2003.

[7] H. Lamehamedi, B. Szymanski, Z. Shentu, and E. Deelman, "Data
Replication Strategies in Grid Environments," in Fifth International
Conference on Algorithms and Architectures for Parallel Processing,
2002, p. p.378.

[8] E. Otoo, F. Olken, and A. Shoshani, "Disk cache replacement algorithm
for storage resource managers in data grids," in 2002 ACM/IEEE
conference on Supercomputing, Baltimore, Maryland 2002, pp. 1-15.

[9] K. Ranganathan and I. Foster, "Identifying Dynamic Replication
Strategies for a High-Performance Data Grid," International Grid
Computing Workshop, pp. 75-86, 2001.

[10] X. You, G. Chang, X. Chen, C. Tian, and C. Zhu, "Utility-Based
Replication Strategies in Data Grids," in Fifth International Conference
on Grid and Cooperative Computing, 2006, pp. 500-507.

[11] M. Tang, B. S. Lee, C. K. Yeo, and X. Tang, "Dynamic replication
algorithms for the multi-tier Data Grid," Future Generation Computer
Systems, vol. 21, pp. 775-790, 2005.

[12] S. Venugopal, R. Buyya, and K. Ramamohanarao, "A taxonomy of data
grids for distributed data sharing, management, and processing," ACM
Computing Surveys (CSUR), vol. 38, p. 3, 2006.

[13] R. M. Rahman, K. Barker, and R. Alhajj, "Replica placement strategies
in data grid," Journal of Grid Computing, vol. 6, pp. 103-123, 2008.

[14] R. M. Rahman, K. Barker, and R. Alhajj, "Performance evaluation of
different replica placement algorithms," International Journal of Grid
and Utility Computing, vol. 1, pp. 121-133, 2009.

[15] M. Tang, B. Lee, X. Tang, and C. Yeo, "Combining data replication
algorithms and job scheduling heuristics in the data grid," Lecture notes
in computer science, vol. 3648, p. 381, 2005.

[16] M. Tang, B. S. Lee, X. Tang, and C. K. Yeo, "The impact of data
replication on job scheduling performance in the Data Grid," Future
Generation Computer Systems, vol. 22, pp. 254-268, 2006.

[17] C. Ruay-Shiung, C. Hui-Ping, and W. Yun-Ting, "A dynamic weighted
data replication strategy in data grids," in AICCSA 2008: Proceedings of
IEEE/ACS International Conference on computer systems and
applications, 2008, pp. 414-421.

[18] H. P. Chang, "A Dynamic Data Replication Strategy Using Access-
Weights in Data Grids," 2006.

[19] C. Wang, C. Yang, and M. Chiang, "A Fair Replica Placement for
Parallel Download on Cluster Grid," Lecture Notes in Computer
Science, vol. 4658, p. 268, 2007.

[20] C. T. Yang, C. P. Fu, and C. J. Huang, "A dynamic file replication
strategy in data grids," in TENCON 2007-2007 IEEE Region 10
Conference, 2007, pp. 1-5.

[21] Q. Rasool, L. Jianzhong, G. S. Oreku, Z. Shuo, and Y. Donghua, "A
load balancing replica placement strategy in Data Grid," in Proceedings
of Third International Conference on Digital Information Management,
ICDIM, London, UK, 2008, pp. 751-756.

[22] M. Shorfuzzaman, P. Graham, and R. Eskicioglu, "Popularity-Driven
Dynamic Replica Placement in Hierarchical Data Grids," in Parallel and
Distributed Computing, Applications and Technologies, 2008. PDCAT
2008, 2008, pp. 524-531.

[23] K. Ranganathan, A. Iamnitchi, and I. Foster, "Improving data
availability through dynamic model-driven replication in large peer-to-
peer communities," in Global and Peer-to-Peer Computing on Large
Scale Distributed Systems Workshop, 2002, pp. 376–381.

[24] L. Yi-Fang, L. Pangfeng, and W. Jan-Jan, "Optimal placement of
replicas in data grid environments with locality assurance," in Parallel
and Distributed Systems, 2006. ICPADS 2006. 12th International
Conference on, 2006, p. 8.

[25] L. Pangfeng and W. Jan-Jan, "Optimal replica placement strategy for
hierarchical data grid systems," in Cluster Computing and the Grid,
2006. CCGRID 06. Sixth IEEE International Symposium on, 2006, p. 4
pp.

[26] Y. Mansouri, M. Garmehi, M. Sargolzaei, and M. Shadi, "Optimal
Number of Replicas in Data Grid Environment," in First International
Conference on Distributed Framework and Applications, 2008. DFmA
2008. , 2008, pp. 96-101.

[27] K. Ranganathan and I. Foster, "Design and Evaluation of Dynamic
Replication Strategies for a High Performance Data Grid," in
International Conference on Computing in High Energy and Nuclear
Physics, Beijing, 2001.

[28] S. M. Park, J. H. Kim, Y. B. Ko, and W. S. Yoon, "Dynamic data grid
replication strategy based on Internet hierarchy," International
Workshop on Grid and Cooperative Computing, vol. 1001, pp. 1324–
1331, 2004.

[29] R. M. Rahman, K. Barker, and R. Alhajj, "Replica placement in data
grid: considering utility and risk," in Proceedings of Information
Technology: Coding and Computing, 2005. ITCC 2005. International
Conference on, 2005.

[30] Q. Rasool, J. Li, and S. Zhang, "Replica Placement in Multi-tier Data
Grid," in Proceedings of 2009 Eighth IEEE International Conference on
Dependable, Autonomic and Secure Computing, 2009, pp. 103-108.

[31] F. Ben Charrada, H. Ounelli, and H. Chettaoui, "An Efficient
Replication Strategy for Dynamic Data Grids," in Proceedings of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 10, 2014

6 | P a g e

www.ijacsa.thesai.org

International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing (3PGCIC),, 2010, pp. 50-54.

[32] Mohammed Madi, Yuhanis Yusof, and Suhaidi Hassan, " A Dynamic
Replica Creation: Which File to Replicate?," in the Proceedings of the
3rd International Conference on Computing and Informatics (ICOCI
2011), Bandung, Indonesia., 8-9 June 2011.

[33] K. Ranganathan and I. Foster, "Identifying dynamic replication
strategies for a high-performance data grid," Grid Computing—GRID
2001, pp. 75-86, 2001.

[34] H. H. E. Al Mistarihi and C. H. Yong, "Replica management in data
grid," International Journal of Computer Science and Network Security
IJCSNS, vol. 8, p. 22, 2008.

[35] Y. F. Lin, J. J. Wu, and P. Liu, "A List-Based Strategy for Optimal
Replica Placement in Data Grid Systems," in Proceedings of Parallel

Processing, 2008. ICPP'08. 37th International Conference on, 2008, pp.
198-205.

[36] A. Elghirani, R. Subrata, A. Y. Zomaya, and A. Al Mazari,
"Performance Enhancement through Hybrid Replication and Genetic
Algorithm Co-Scheduling in Data Grids," in Computer Systems and
Applications, 2008. AICCSA 2008. IEEE/ACS International Conference
on, 2008, pp. 436-443.

[37] S. N. Sivanandam and S. N. Deepa, Introduction to genetic algorithms:
Springer Verlag, 2007.

[38] D. E. Goldberg, Genetic Algorithms in Search , Optimization and
Machine Learning: Addison-wesley, 1989.

[39] T. Wright, "A genetic algorithm approach to scheduling resourcses for a
space power system," in Electrical Engineering and Applied Physics.
vol. Ph.D.: Case Western Reserve University, 1994.

