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Abstract—This paper presents a new method for tracking
objects using stereo vision with linear cameras. Edge points
extracted from the stereo linear images are first matched to
reconstruct points that represent the objects in the scene. To
detect the objects, a clustering process based on a spectral analysis
is then applied to the reconstructed points. The obtained clusters
are finally tracked throughout their center of gravity using
Kalman filter and a Nearest Neighbour based data association
algorithm. Experimental results using real stereo linear images
are shown to demonstrate the effectiveness of the proposed
method for obstacle tracking in front of a vehicle.

Keywords—Linear stereo vision; Spectral clustering; Objects
detection and tracking; Kalman filter; Data association.

I. INTRODUCTION

Two inseparable aspects coexist in the field of intelligent
transportation applications like video surveillance, robotic,
etc: detection and tracking. This question that is a challenging
problem is widely treated in the literature in terms of sensors
(video cameras, laser range finder, Radar) and methodologies.
It is an important task within the field of computer vision,
due to its promising applications in many areas. Among the
domains of computer vision, stereo vision aims to find relief
of a scene. More precisely it allows reconstructing, partially
or fully, a 3D scene from two or more images taken under
slightly different angles. The key step in a stereo process is
matching primitives (pixels, segments, regions, etc.) extracted
from the images. There are two broad classes of matching
methods [1]. The first one includes the methods using pixel
neighborhood correlation that produces a dense disparity map.
The second one refers to the methods based on characteristics
matching. In this case, the matching process yields to a sparse
disparity map. In this work, we are particularly interested in
edge points based stereo matching using linear images. Once
the matching process is achieved, the geometric triangulation
leads to a list of points represented in a 2D coordinate system
of the 3D dimensional world, since linear stereo vision
permit to reconstruct only horizontal and depth information
[1], [2], [3], [4], [5]. The objective is then to regroup these
points in order to form clusters, where each cluster of points
corresponds to an object of the scene. To perform this task,
the difficulty is that there is no knowledge about the number
of objects and the distribution of the reconstructed points in
the scene. Hence, the classical supervised clustering methods
are not suitable to achieve this task [6], [7].

Considering the object detection problem, there are many
object detection methods in the literature, which can be
classified as point detectors based, segmentation based,
background subtraction based, or clustering based [8]. In
[9], [10], the authors proposed a method that proceeds with
agglomeration partitioning. They consider as much points as
isolated groups before eliminating iteratively irrelevant groups
by minimizing an objective function until obtaining the correct
number of groups. Other authors proposed division based
partitioning, which consists in creating a new group within
the current partition, and then readjusting it until reaching a
criterion optimality. The PDDP method (Principal Direction
Divisive Partitioning), proposed by Boley [11], uses iteratively
geometric properties of principal component analysis to divide
the points cloud. We can also cite a clustering approach that
combines K-means and SVM algorithms to discriminate
burnt from unburnt areas [12], [13]. In this technique, the
training set is defined automatically by K-means algorithm,
which takes into account an entropic term to determine the
optimal number of classes. Considering the second aspect
that is devoted to object tracking, there are two categories
of tracking approaches in the literature: by matching or
by update. Matching track is used to build trajectory
characteristics of objects. The principle of this approach is to
detect objects and agglomerate them temporally in order to
obtain coherent paths over time. Tracking by update consists
in detecting and locating objects depending on their state
at the previous time. More precisely, tracking consists in
estimating the parameters characterizing the objects during
the sequence acquisition, such as geometry invariance of the
scene or objects, object appearance (photometry or color) or
kinematic (space-time constraints). Among the parameters
widely used in the literature, one can cite position of center
of the objects, to which may be added, depending on the
considered application [14], scaling [15] and/or orientation
[16] that are used generally for rigid or articulated objects
[17]. For deformable objects, the parameters to be estimated
are based on modeling contours [18] or modeling appearance
using deformable surface models such as active appearance
models [19], [20]. All these characteristics define the state of
the objects in the scene. Unfortunately, most existing tracking
methods are based on a single target model and they are
limited to certain specific controlled environments [21]. In
the context of our work, we propose a complete solution
for localization and tracking objects in static and dynamic
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scenes. For the object detection purpose, we propose to use a
clustering method based on a spectral analysis of the points
distribution whereas the tracking stage is based on a filtering
technique and a data association method. The principle of
the used object detection method is to perform a spectral
decomposition of a transition matrix, constructed from the
data to be clustered. The spectral decomposition consists
in extracting the eigenvalues of the transition matrix. The
analysis of these eigenvalues allows detecting the different
structures in the data to be clustered. The spectral analysis
leads to a selection of a number of significant eigenvalues that
corresponds to the number of clusters to be extracted from the
reconstructed points. A K-means based clustering algorithm is
then applied to extract the clusters that represent the objects
in the scene. The clustering process may provide two or more
clusters for the same object. This occurs when the number
of clusters is over estimated by the spectral analysis. To deal
with this problem, an objects merging strategy is developed to
merge the clusters representing the same objects. Finally, the
detected objects are tracked throughout the geometric centers
of the extracted clusters using Kalman filter and a nearest
neighbor based data association technique.

This work is structured into the following sections: Section A
presents briefly the principle of linear cameras based stereo
vision. Section B details the proposed spectral clustering
method. In section C, the tracking procedure is described.
Before concluding, experimental results are presented and
discussed in section D.

A. Stereo vision with linear cameras

Stereo vision is a popular technique for inferring 3D po-
sition of objects seen simultaneously by two or more cameras
from different viewpoints. Linear stereovision refers to the
use of linear cameras providing line-images of the scene [5],
[6]. Therefore, the information to be processed is drastically
reduced when compared to the use of classic video cameras.
Furthermore, linear cameras have a better horizontal resolution
than video cameras. This characteristic is very important for
an accurate perception of the scene in front of a vehicle. In
our work, a linear stereo system is built with two line-scan
cameras, so that their optical axes are parallel and separated
by a distance E. Their lenses have a same focal length f.
The fields of view of the two cameras are merged in the
same plane, called optical plane, so that the cameras shoot
the same scene. A specific calibration procedure that takes
into account the fact that the line-scan cameras cannot provide
the vertical information is developed in [5]. The first step in
stereo vision is to extract from each image the primitives to be
matched. In classical video images, one can extract different
types of primitives. In the case of linear images, the choice
is restricted as a result of the one dimensional nature of the
profile of a linear image. The only possibility in this case
is to search for contour points corresponding to the frontiers
of different objects present in the image. Edge extraction is
performed by means of the Deriche’s operator and a technique
that selects pertinent local extrema [4]. Applied to the left
and right linear images, this edge extraction procedure leads
to two lists of edges, where each edge is characterized by
its position in the image, the amplitude and the sign of the
response of Deriche’s operator. To match the edges we used the

method presented by the authors in [4]. In this method, stereo
matching task is viewed as a constraint satisfaction problem
where the objective is to highlight a solution for which the
matches are as compatible as possible with specific constraints:
local constraints (position and slope constraints) and global
ones (uniqueness, smoothness and ordering constraints). The
local constraints are used to discard impossible matches so
as to consider only potentially acceptable pairs of edges
as candidates. Applied to the possible matches in order to
highlight the best ones, the global constraints are formulated in
terms of an objective function, which is defined so that the best
matches correspond to its minimum value. A Hopfield neural
network is then used to map the optimization process [22].
Once the matching process is achieved, a simple geometric
triangulation allows obtaining for each matched edge pair a
2D point characterized by its horizontal position and depth [4].
Line-scan cameras cannot provide the vertical information.
Consider that the image coordinates xl and xr represent the
projections of the point P in the left and right imaging sensors,
respectively. Using the pinhole lens model, the coordinates of
the point p in the optical plane can be found as:

Zp =
E.f

d
(1)

Xp =
xl.Zp
f
− E

2
=
xr.Zp
f

+
E

2
(2)

Where f is the focal length of the lenses, E is the base-line
width and d = |xl − xr| is the disparity between the left and
right projections of the point p on the two sensors.

B. Objects detection

Objects detection is an important and yet challenging task
in the computer vision field. It is a critical part in many
applications such as image search and scene understanding.
It is still an open problem due to the complexity of object
classes and images. In this paper, we are interested in detecting
objects using a 3D scatter plot reconstructed from linear stereo
vision. The proposed method is based on an unsupervised clas-
sification approach using spectral clustering [23], [24]. This
approach allows also avoiding the problem of local minima
inherent to the most part of classification methods [25]. The
principle of this approach is to perform spectral decomposition
of a similarity matrix, constructed form data to be clustered.
The decomposition consists in extracting the eigenvectors of
a transition matrix, calculated from the similarity matrix. The
analysis of these eigenvectors can detect the different structures
in data to classify [25], [26].

1) Spectral clustering algorithm:

Consider a set of n points L = {P1, ...., Pn} to be
segmented in order to extract the clusters that correspond to
the objects observed in the scene. A point Pi is characterized
by its horizontal position and depth that are extracted from the
linear stereovision process. The spectral clustering procedure
can be summarized as in the Algorithm 1.

As indicated above, spectral clustering requires first to
adjust the scaling parameter σ, which is used in the expression
of the affinity matrix A (Equation 3). The second requirement
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Algorithm 1: Spectral clustering algorithm
1) First, one must form a matrix A in Rn∗n. Called the

affinity matrix, this matrix represents the similarity
between the point pairs. In our case, more the
distance between two points is small more is high
their similarity. Hence, the objective is to affect to
the same cluster the points that are close each other
in their representation space. The similarity can be
represented by different forms: Cosine, Gaussian, or
Fuzzy function [24]. In this paper, the Gaussian
representation which generally the more used in the
literature is adopted. The Gaussian similarity matrix
is defined by equation 3:

Aij =

{
exp(

−d2(Pi,Pj)
σ2 ) if i 6 =j

0 if i = j
(3)

Where d(Pi, Pj) is a distance function, which is
often taken as the Euclidean distance between the
points Pi and Pj , and σ is a scaling parameter
which is further discussed in the next section.

2) Define a diagonal matrix D as Dii = j Aij
∑

3) Normalize the affinity matrix A to obtain a
transition matrix N. Table I gathers different types
of normalization forms that could be applied to the
affinity matrix. After some preliminary tests, we
retained symmetric division normalization
(Equation 4), which is more suitable for our
application convenient

N = D− 1
2AD− 1

2 (4)

4) Form the matrix X=[X1,.
........................................,Xk] in Rn∗k, where
X1,.
...,Xk are the k igenvectors of the matrix N ,
corresponding to the k significant eigenvalues
λ1,. ...,λk. The determination of value of k is
discussed in section B.4.

5) Normalize the lines of the matrix X to have a unit
module.

6) Consider each line of the matrix X as a point in
Rk, and perform a classification using K-means
algorithm with k classes.

7) Run M times the K-means algorithm and conserve
the optimal partition for which the intra-class inertia
is minimal, where M = kn

k! is the number of
possible partitions.

8) Assign the point Pi to the class Cj if and only if
the line Xi of the matrix X has been assigned to
the class Cj .

concerns the determination of the number of classes k that
corresponds to the number of significant eigenvalues of the
transition matrix N . We propose in this paper an experimental
methodology to estimate conjointly σ and k, in order to make
the clustering process as a nonparametric and unsupervised
classification method.

2) Estimation of the scaling parameter σ:

As expressed in equation 3, the performance of spectral
clustering depends on the scaling parameter σ. Thus, choosing

TABLE I: Different forms of the normalization function

Normalization f(A,D)
Division N = D−1 A

Symmetric division N = D− 1
2AD− 1

2

Nothing N = A
Normalized additive N = (A+dmaxI−D)

dmax
; dmax=max

i
(Dii)

optimally the value of this parameter is an important issue.
In [25], the authors suggested choosing σ automatically by
running their clustering algorithm repeatedly for a number of
values of σ and selecting the one providing less distorted
clusters of the rows of the matrix X constructed in step
4 of the clustering algorithm. In [26], the authors propose
two selection strategies, manual and automatic. The first one
relies on the distance histogram and helps finding a good
global value for the parameter σ. The second strategy sets
σ automatically to an individually different value for each
point, resulting in an asymmetric affinity matrix. Originally,
this selection strategy was motivated by supposing that the
clusters are non-homogeneously dispersed, but it provides also
a very robust way for selecting σ in homogeneous cases. In our
case, we adopted the selection strategy proposed in [26] for its
simplicity. For that, different values for σ are taken to select
the value that provides less distorted clusters of the row of the
matrix X [27], [28]. Our common approach is to try different
values of σ and retain the best one. Section D describes our
experimental methodology to set the value of the parameter σ.

3) Estimation of the number of clusters k:

The determination of the number of clusters k can be
performed by analyzing the eigenvalues {λi} or the eigenvec-
tors {Xi} of the matrix N [26]. Theoretically, this analysis
consists in selecting the eigenvalues with a value equal to
1. In practice, significant eigenvalues have to be chosen by
applying a thresholding procedure, i.e., eigenvalues that exceed
a threshold are retained. One can consider also the analysis of
the difference between successive eigenvalues. The disadvan-
tage of this strategy is that the jump between two successive
eigenvalues, which can be big or small, is difficult to control
[27]. We tested this strategy in order to determine an empirical
relationship between the difference of successive eigenvalues
and the significant ones. After various tests, we found that
thresholding analysis is more adapted for our application. In
section D, we will present our experimental methodology to
set the threshold value for extracting significant eigenvalues,
and then the number of clusters.
It is worthy to note that the clustering process can provide
two or more clusters for the same object. This situation occurs
when the spectral analysis produces an overestimation of the
number of clusters, during significant eigenvalues selection
step. To resolve this problem, an object fusion strategy is
developed for merging clusters representing the same object.
This fusion procedure is described in Section C.6.

C. Objects Tracking

Objects tracking in space is a basic problem, but important
in many computer vision applications. It consists in recon-
structing the trajectory of objects along time. This problem
is inherently difficult, especially when unstructured forms are
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considered for tracking. It is also very difficult to build a
dynamic model in advance, without a priori knowledge of
objects motion.

1) Modeling:

In this work, we are interested in tracking objects, where
each object is represented by a cluster of points. The clusters
are obtained by the spectral clustering algorithm described
in section B.2. To model moving objects, we consider the
hypothesis that the displacement of an object, represented
by a cluster of points, is modeled by the displacement of
the geometric center of the points. We can therefore apply
the fundamental principle of point dynamic to express the
following equations:

x(t) = x(t− dt) + .
x.dt+

1

2

..
x.dt2 (5)

z(t) = z(t− dt) + .
z.dt+

1

2

..
z.dt2 (6)

where x is the horizontal position and z is the depth
of the geometric center of a cluster representing an object.
Recall that the reconstruction space is represented by two
axes as described in section A. They represent respectively
the horizontal position and depth of reconstructed points from
linear stereo vision [4].

The most popular approach used for tracking mobile ob-
jects is based a kalman filter which represents a particular
case of filter bayesian under the Gaussian noise assumption.
KF is a tool for estimating object’s state and smoothing its
changes. In our case, KF is used with the Discrete White Noise
Acceleration Model (DWNA) to describe object kinematics
and process noise [29].

2) Kalman filter:

The filter is very powerful in several aspects: it supports
estimations of past, present, and even future states, and it can
do so even when the precise nature of the modelled system is
unknown. KF addresses the general problem of estimating the
state s ∈ Rn of a discrete-time controlled process governed by
a linear stochastic difference equation [30]. The discrete-time
state equation with sampling period T is expressed as follows:

S(l + 1) = F × S(l) +W (l + 1) (7)

In this work, the state S(l) is composed with the position
and velocity of the geometric center of a cluster of points
representing an object: S(l) = [x vx z vz]

t, where l is time
step. The State Transition Matrix F is given by:

F =

 1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1



The target acceleration is modeled as a white noise W (l). The
measurement model Y ∈ Rm (m=2 in our case) is given by:

Y (1) = H × S(1) + V (1) (8)

where H is the observation model: H =

[
1 0 0 0
0 0 1 0

]
The random variables W (l) and V (l) represent the process

and measurement noises, respectively. They are assumed to be
independent, white, and with normal probability distributions:

P (W ) ∼ N(0, Q)

P (V ) ∼ N(0, R) (9)

In practice, the process noise covariance Q and measurement
noise covariance R matrices might change with each time
step or measurement. In this paper, we assume that they are
constant.
KF can be written as a single equation. However, it is most
often conceptualized as two distinct phases: prediction phase
and updating phase. The prediction phase uses the state esti-
mated from the previous time step to produce an estimate of
the state at the current time step. The predicted state estimate
is known as the a priori state estimate, because although it is
an estimate of the state at the current time step, it does not
include observation information from the current time step. In
the updating phase, the current a priori prediction is combined
with the current observation information to refine the state
estimate. This improved estimate is known as the a posteriori
state estimate.
For multiple objects tracking, the problem of data association
must be handled. The proposed data association algorithm is
presented in the section C.4.

3) Kalman filter algorithm :

In this algorithm (Algorithm 2), i correspond to the ith

geometric center to track. Sapr is the a priori state estimate;
Papr is the a priori estimate error covariance; Sapos is the
a posteriori state estimate; Papos is the a posteriori estimate
error covariance, Yapr is the predicted measurement; Res
is the measurement innovation, or the residual. C is the
innovation covariance; K is the filter gain and Y is the sensor
measurement.

4) Data association :

Once the prediction step is achieved, one must perform
data association between predicted objects and observed ones
from measurements provided by the sensor. Data association
is important for multiple target tracking applications. In this
section, we describe a method of data association for tracking
multiple objects where the number of objects is unknown
and varies during tracking. In the literature, there are many
data association algorithms such as Nearest-Neighbour (NN),
Probabilistic Data Association (PDA), Joint PDA (JPDA) and
multiple hypotheses tracking (MHT) [31], [32]. In this paper,
we used the Nearest Neighbour (NN) method, which is simple
to implement: for each new set of observations, the goal is to
find the smallest Mahalanobis distance based on the association
between an observation and an existing track, or between
an observation and a new track assumption. In our case, we
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Algorithm 2: Kalman filter algorithm

Initialization :

Q =

 0 0.0001 0 0
0.0001 0.0025 0 0

0 0 0 0.0001
0 0 0.0001 0.0025


P iapos(0) = Q

R =

[
(0.5)2 00

0 (0.5)2

]
Siapos(0) = Si(0)

Prediction :

Siapr(l) = F × Siapos(l − 1) (10)

P iapr(l) = F × P iapos(l − 1)× F t +Q (11)

Updating :

Y iapr(l) = H × Siapr(l) (12)

Resi(l) = Y i(l)− Y iapr(l) (13)

Ci(l) = H × P iapr(l)×Ht +R (14)

Ki(l) = P iapr(l)×Ht × (Ci(l))−1 (15)

Siapos(l) = Siapr(l) +Ki(l)×Resi(l) (16)

P iapos(l) = (I4 −Ki(l)×H)× P iapr(l) (17)

are interesting to track the geometric centers of the obtained
clusters representing the objects in the scene. Mahalanobis
distance is a statistical distance that takes into account the
covariance and correlation of the elements of the state vector,
and it is appropriate to solve data association problem. In our
case, the covariance and correlation are determined between
the measurement (observation) provided by the sensor and the
predicted measurement given by Kalman filter. Mahalanobis
distance is defined by:

d2m(Y, Yapr) =
1

2
(Y − Yapr)t × C−1 × (Y − Yapr) (18)

where C is the covariance matrix of the residual Res,
which is the measurement innovation (see Equation 14); Yapr
is the predicted measurement (see Equation 12); Y is the
measurement (observation) provided by the sensor.
Before applying the Mahalanobis distance based NN
data association, one needs to define a search area for
identifying potential candidate points (geometric centers) to
the association. The size of searching area, which must be
defined for each geometric center representing an object,
depends on the movement of the object. The search area for
each object is considered as a circle.

Let Gil be the searching circle of the predicted object i
at time step l. The ray of this searching circle is defined by

equation 19.

ray(Gil) = 4v(x, z) (19)

where 4v(x, z) is the difference between the velocities at
time steps l and l + 1.

The data association process is first applied considering the
horizontal position x, the ray of the corresponding searching
circle is determined by ray(Gil) = 4v(x). The results are then
validated by the data association process according to the depth
z, the ray of the corresponding searching circle is determined
by ray(Gil) = 4v(z)

5) Temporal constraint :

Tracking requires information about the past of the ob-
jects. Indeed, when an object appears for the first time, one
cannot decide reliably if the object is real or corresponds to
a wrong detection considering that the sensor can generate
false detection (i.e. the observation does not match any known
object). To make objects tracking more robust, an object must
be detected and tracked during a sufficient long period in order
to assess objects appearance and disappearance. This temporal
constraint will allow ignoring objects generated erroneously
from the stereo matching process. The temporal constraint
consists in associating a minimum lifetime to each object [6].
In our case, we set the minimum lifetime to 5 successive
detections: when an object is not detected during 5 successive
frames, we estimate that it must disappear.

6) Fusion of objects :

The spectral clustering may sometimes produce two or
more distinct objects that represent in reality a single object.
Indeed, points representing the same object may be segmented
onto two or more clusters of points due to an overestimation
of the number of clusters. To resolve this problem, we propose
a cluster fusion technique based on a cluster overlapping
strategy. The fusion technique consists in determining an
overlapping coefficient, defined as follows:

Tc =
dist(oi, oj)

ri + rj
(20)

Where oi and oj are respectively the geometric centers of
the clusters i and j, candidates for a possible fusion; dist(oi, oj)
is their Euclidean distance; ri and , rj which are determined
in the data association step, represent respectively the rays
of the searching areas of the two tracks i and j. The ray ri
is calculated as the difference between the estimated (KF-
based) and measured (observation-based) positions. When the
overlapping coefficient Tc is greater than a threshold, the
considered clusters are merged. In this work, the overlapping
threshold is set experimentally to 0.5.

D. Results and discussion

In this section, we present the performance of the proposed
object detection and tracking approach, to deal with obstacle
detection and tracking in front of a vehicle. As shown in
Figures 1 and 2, the line-scan cameras based stereo set-up is
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installed on the top of a car for periodically acquiring stereo
pairs of linear images as the car travels [4], [6]. The tilt angle
is adjusted so that the optical plane intersects the pavement at
a given distance Dmax= 50m in front of the car. The cameras
have a sensor width of 22.1 mm, a focal length of 100 mm
and deliver images with resolution of 1728 pixels. Within the
stereo setup, the cameras are separated by a distance E=1m.
Figure 3 illustrates a scenario in which a pedestrian is traveling,
according a predefined trajectory, in front of the prototype
vehicle, which is static. The pedestrian, starting from the right
side of the stereoscope (A), is first seen moving to an area
located just beyond the intersection of the plane of view and
the road (B). When arriving to this area, he leaves the field of
view of the cameras and hence disappears in the stereo images
(see Figure 5). Then, the pedestrian reappears in the field of
view and begins to move towards the left camera (C), before
turning slightly to the right camera (D). After that, he moves
towards the left camera and then towards the right one before
leaving their field of view (E).

Fig. 1: Stereo set-up, side view.

Fig. 2: Stereo set-up, top view.

Fig. 3: Stereo set-up, top view.

Figure 4 shows the stereo image sequence representing the

scenario of Figure 3. The linear images are represented as
horizontal lines, time running from top to down each one the
left and right sequences are composed of 200 linear images
each. On the images, one can see clearly the white lines of
the pavement and the pedestrian who appears with a growing
form. The shadow of a car located out of the vision field of
the stereoscope is visible on the right of the images as a black
area.

Fig. 4: Stereo sequence (pedestrian).

The stereo sequence is processed with the stereo matching
procedure (see section A). The disparities of all matched edges
are used in order to compute the positions and distances of
the edges of the objects seen in the stereo vision sector.
Figure 5 illustrates the obtained reconstruction image where
distances are represented as gray levels, the darker is the closer,
whereas positions are represented along the horizontal axis.
As in Figure 4, time runs from top to down. The edges of
the two white lines as well as those corresponding to the
transition between the pavement and the area of shadow are
correctly matched. Their detection is stable along the sequence
as positions and distances remain constant during time. The
edges representing the pedestrian are also well reconstructed
as their positions and distances are coherent with the trajectory
of the pedestrian. One can notice few bad matches when
occlusions occur when the pedestrian hides one of the white
lines to the left or right camera. These errors are caused by
matching the edges of the visible white line, seen by one of
the cameras, with those representing the pedestrian.

Fig. 5: Image reconstruction of Pedestrian stereo sequence.

The proposed spectral clustering is then applied to the
reconstructed points for each stereo couple to detect the objects
present in the scene. As discussed in sections B.3 and B.4, we
have to set optimally the scaling parameter σ (Equation 3) and
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the threshold to apply to the eigenvalues of matrix N (Equa-
tion 4) in order to determine the significant ones. The number
of significant eigenvalues provides the number of clusters. For
that, we apply the clustering process considering several values
for the parameter σ2 and three predefined thresholds. For each
couple (σ2, threshold), we compute the percentage of cases
where the detection result is identical to the reality, considering
all the stereo couples of the sequence. Table 2 shows the
obtained percentages, and Figure 6 gives the real number of
objects present in the scene for each stereo couple. One can
see that the best couple (σ2, threshold), providing the high
percentage of 73.23%, is obtained with σ2=1.2 and threshold
= 0.5. Consequently, for the tests presented in the sequel of this
paper, we opted for these values as optimal spectral clustering
parameters.

Fig. 7: Objects detection and tracking with threshold = Mean
and σ2=2.

The clustering stage is performed on the reconstructed
points for each pair of the stereo sequence. The tracking pro-
cess is applied to the geometric centers of the obtained clusters
characterizing the detected objects in the scene. As stated
before (see figure 5), some matching errors occur, especially in
presence of occlusions at the end of the sequence, i.e., when the
pedestrian hides one of the white lines characterizing the scene.
To reduce the effect of these errors on the clustering task, and
hence on the tracking process, we apply the temporal con-
straint that allows ignoring objects generated erroneously from
the stereo matching process. Furthermore, and as mentioned
previously, the clustering process may provide two or more
clusters for the same object. This situation occurs when the
number of clusters is over estimated by the spectral analysis.
To discard this shortcoming, we apply our proposed clusters
fusion strategy presented above. Figures 7 and 8 illustrate the
obtained detection and tracking results with different values of
the spectral clustering parameters (threshold and σ2). In these
figures, each detected and tracked object is represented by a
colored symbol. One can see clearly in Figure 9 that all objects
presents in the scene are correctly detected and tracked with

Fig. 8: Objects detection and tracking with threshold = 0.5 and
σ2=1.2.

the optimal parameters (threshold = 0.5 and σ2=1.2) obtained
by the analysis given by Table II . Indeed, clusters representing
same object (pedestrian in our case) are fused correctly thanks
to the proposed fusion strategy, and, false detections, due to
stereo matching errors, are removed thanks to the temporal
constraint.

Figure 9 shows the number of objects obtained by detection
only and detection/tracking, compared with the real number
of objects present in the scene. As we can see, the tracking
process allows improving the detection results. In terms of
percentage of cases where detection results are identical to
ground truth, the rate reaches 85% with tracking instead of
73.23% (see Table II) obtained without tracking. In order to
validate the performance of our proposed objects detection and
tracking approach, we applied it on a more complex stereo
sequence, acquired with the prototype car traveling in highway.
Figure 10 illustrates the scenario representing the sequence
in which the objects to detect and track are vehicles moving
in front of the prototype car equipped with the stereoscopic
system. Arrows indicate the relative movements of vehicles
relative to the prototype vehicle marked with a cross.

The prototype car travels in the central lane behind another
car (A). As the distance is decreasing, the optical plane of the
stereo set-up intersects gradually the shadow of the preceding
car and then the whole car from the bottom to the top as shown
in Figure 11. A third car (B) pulls back into the central lane
after overtaking the preceding car (A). Car B is out of the
field of view of the stereo set-up. However, and as it can be
seen in Figure 11, its shadow captured. The prototype car is
itself overtaken by another vehicle (C), which is traveling in
the third lane of the road. The partial presence of car C is
shown in Figure 11. Figure 11 represents the linear images
of the acquired stereo sequence. As in Figure 4, the linear
images are represented as horizontal lines, time running from
top to bottom. The left and right sequences are composed of
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Fig. 6: Real number of objects present in each stereo couple during the Pedestrian sequence.

TABLE II: Percentage of cases where detection result based on spectral clustering is identical to the reality, for different couples
(σ2, threshold). Mean is equal to the mean of all eigenvalues of the matrix N.

threshold
σ2

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.5 72,22 72,22 73,23 71,72 71,72 72,22 72,22 72,73 71,72 72,22 72,73
Mean 67,68 67,68 67,68 68,18 68,18 69,19 69,70 69,70 68,18 66,67 67,68

0,9 69,70 70,20 69,70 69,70 69,70 70,20 69,70 70,20 70,20 69,70 68,69

Fig. 9: Number of objects number by detection and detection/tracking, compared to ground truth.

Fig. 10: Displacement of different vehicles during the sequence
2.

200 linear images each. In Figure 11 we can see the white
lines, which delimit the pavement of the road, and between
these lines, the two dashed white lines and the preceding
car in the central lane. The vehicle (C), which is overtaking
the prototype car, is seen at the bottom of the left and right
sequence on the left-most lane. At the same level, in the middle
of the left and right sequences, one can see the shadow of the
vehicle, which pulls back in front of the preceding car. The
curvilinear aspect of the lines in Figure 11 is caused by the

variations of the stereoscope tilt angle, because of the uneven
road surface. Depth reconstruction is not affected by these
variations, provided that the stereo set-up remains correctly
calibrated when the prototype car is running.

Fig. 11: Stereo sequence 2.

After applying the stereo matching procedure, the obtained
reconstruction image is illustrated in Figure 12. The edges of
the two dashed lines have been correctly matched. The edges
of the lines, which delimit the road, cannot be matched con-
tinuously because they do not always appear in the common
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part of the fields of the cameras. The preceding vehicle (A)
is well detected as it comes closer and closer to the prototype
car as time runs. The shadow of the vehicle (B), which pulls
back in front of the preceding vehicle, is identified as a white
continuous (almost) line at the bottom of the reconstructed
image. Finally, at the bottom of the reconstructed image, we
can see the dark oblique line, which represents the vehicle (C)
overtaking the prototype car.

Fig. 12: Reconstruction image of the sequence 2.

Figure 13 shows the objects detection and tracking results
obtained by applying the proposed approach on the recon-
structed points of Figure 13, using the optimized clustering
parameters (threshold = 0.5 and σ2=1.2). In Figure 13, each
detected and tracked object is represented by a colored symbol.
All the objects are well detected and tracked. However, the
dashed lines and the shadow projected by the vehicle pulling
back in front of the preceding car are missed because of the
application of the temporal constraint.

Fig. 13: Object detection and tracking with threshold = 0.5
and σ2= 1.2.
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II. CONCLUSION

In this paper, we presented a method for detecting and
tracking objects using linear stereo vision. The method starts
by reconstructing 2D points by matching object edges ex-
tracted from linear stereo images. A spectral based clustering
algorithm is then applied on the reconstructed points in order
to extract where each cluster represents an object of the
observed scene. An experimental analysis is conducted to
optimize the clustering parameters. Finally, a tracking pro-
cedure is performed on the extracted clusters using Kalman
filtering and nearest neighbour data association. To improve
the detection and tracking results, a fusion strategy is also
developed to tackle the problem of the presence of multiple
clusters representing a same object. To test and evaluate the
proposed method, experiments are performed with real linear
stereo sequences for objects detection and tracking in front of
a vehicle.
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