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Abstract—This paper presentsa framework, called the knowl-
edge co-creation framework (KCF), for heterogeneousmulti-
agentrobot systemsthat usea transfer learning method.A multi-
agent robot system(MARS) that utilizes reinforcement learning
and a transfer learning method has recently beenstudied in real-
world situations. In MARS, autonomousagentsobtain behavior
autonomously through multi-agent reinforcement learning and
the transfer learning method enablesthe reuseof the knowledge
of other robots’ behavior, such as for cooperative behavior.
Those methods,however, have not been fully and systematically
discussed.To address this, KCF leveragesthe transfer learning
method and cloud-computing resources. In prior research, we
developedontology-basedinter-task mapping asa core technology
for hierarchical transfer learning (HTL) method and investigated
its effectiveness in a dynamic multi-agent environment. The
HTL method hierarchically abstracts obtained knowledge by
ontological methods.Here, we evaluate the effectivenessof HTL
with a basic experimental setup that considers two types of
ontology: action and state.

Keywords—Transfer learning; Multi-agent reinforcementlearn-
ing; Multi-agent robot systems

I. INTRODUCTION

Actual multi-agentrobot systems(MARSs) haverecently
beendeployedin real-worldsituations.Among otherapplica-
tions,a multi-robot inspectionsystemsfor disaster-strickenar-
eas,autonomousmulti-robotsecuritysystems,andautonomous
multi-robotconveyancesystemsfor warehouseshavebeende-
veloped[1]–[3]. However,the real world, wheresuchMARSs
are expectedto operate,is a dynamicenvironmentthat com-
plicates the developmentof the systemsbecausedevelopers
must customizethe robotsto this dynamicenvironment.The
applicationof multi-agentreinforcementlearning(MARL) to
MARSs is one of the approachestaken in responseto this
problem.MARL is a mechanismfor implementinga posteriori
cooperationamongagents,which can behaveadaptivelyin a
dynamicenvironmentevenwhen they are not providedwith
specific control policies. The benefitsof MARL have been
demonstratedin variousstudiesover the pastdecade[4]–[6].

´
Theapplicationof MARL to actualrobotshasbeenstudiedby
Mataric[7]. A methodfor acceleratingthelearningprocesshas
also beeninvestigatedbecausereinforcementlearning in dy-
namicenvironmentsrequiresa long time to obtainan optimal
(or nearlyoptimal) solution[6]. However,this methodis diffi-
cult to apply to MARS with MARL in dynamicenvironments
becausethe learningspeedis impractically low. Moreover,a
MARS typically containsat leastone pre-programmedrobot,
andMARL hasthe following drawbacks.

• The learningprocessrequiresa long time.

• The obtainedknowledgedependson the situation.

• There is a limit to a robot’s capacity to store the
knowledge.

In contrast,cloud roboticshasrecentlybeenproposed[8],
[9] asa meansto increasetheavailability of standalonerobots
by utilizing cloud computingresources.Cloud robotics may
increasethe utility of MARSs becausethe robotsgain access
to broaderknowledge,vast computing resources,and exter-
nal functions.This should be helpful for achievingpractical
implementationof MARSs with MARL.

In this context,we proposea knowledgeco-creationframe-
work (KCF) by integratingMARS, MARL, andcloudrobotics
[10], [11]. To implement this framework, an autonomous
mobilerobotin aMARS internallyexecutescyclicalprocesses,
andwe implementcloud servicesfor gatheringandassimilat-
ing knowledge(Fig. 1) as follows.

• Knowledge data are generatedby using computer
simulationandotherMARL systems.

• A robot savesknowledgeto its own repositoryvia a
networkconnectedto cloud computingresources.

• The robot observesthe environmentalstate.

• Therobotselectsparticularknowledgefrom therepos-
itory on the basisof the observedenvironment.
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Fig. 1: Simplified representationof a KCF. All systems(in-
cluding the otherrobots,MARS andsimulator)areconnected
to cloud-computingresources.

• If the observedenvironmentis unknown, the robot
acquiresthe learnedknowledgeof otherrobots(reuse
of knowledge)[12].

• As a result of this action, the robot obtains new
knowledgeabout unknown environmentsand shares
new knowledgewith other robotsandsystems.

Note that an autonomousagentactson the basisof existing
knowledgeif the observedenvironmentis known.

We developedthe hierarchical transfer learning (HTL)
method as the core technologyof KCF. The HTL method
enablesinter-taskmapping(ITM) by using ontology among
heterogeneousagents.This allows autonomousrobots and
virtual agentsto reuseknowledgefrom other typesof robots
and agents.Here, we describeexperimentsthat confirm the
HTL enablesreuseof knowledgeby using action and state
ontologiesto mediateamongheterogeneousMARSs.

The rest of the paper is organizedas follows. Section2
describesthetheoryandassumptionsof reinforcementlearning
andtransferlearning.Section3 is anoverviewof theproposed
HTL. Section 4 provides details about the preconditionsof
simulation experiments.Section 5 details evaluationof the
effectivenessof HTL throughsimulationand containsa dis-
cussionof theresults,which suggestthatautonomouslearning
agentscan reuseknowledgefrom other heterogeneousagents
by usingHTL. Section6 containsconcludingremarks.

II. REINFORCEMENTLEARNING AND TRANSFEROF
KNOWLEDGE

A. ReinforcementLearning

Reinforcementlearning is one type of machinelearning
method, in which agentscan use a trial-and-error method
to createa policy for accomplishingtasks. Many kinds of
reinforcementlearningmechanismshavebeenproposedover
the past few decades.In this study, we adopt Q-learning,
definedbelow, as the reinforcementlearningmechanism:

Q(s, a)← Q(s, a) + α{r + γV (s′)−Q(s, a)} (1)

V (s) = max
a∈A

Q(s, a) (2)

Here, S is a state space,with s, s′ ∈ S; a an element
of an action spaceA; α(0 < α ≤ 1) is the learning rate;
γ(0 < γ ≤ 1) is the discountrate; and r is the reward.The
learningagentsselecteachdefineda with a probability given
by the Boltzmanndistributionaccordingto

p(a|s) =
exp

(Q(s,a)
T

)∑
b∈A exp

(Q(s,b)
T

) . (3)

Here, T is a parameterthat determinesthe randomness
of selection. The Q-learning model can select actions in
descendingorder accordingto the action value from learned
knowledge.Whenthe valuesof availableactionsarethe same
or are equal to default value, the Boltzmann distribution is
usedto selectthe actionat random.

B. TransferLearning in ReinforcementLearning

Transferlearning,as proposedby Taylor, is a framework
for reuseof a policy obtainedthroughreinforcementlearning
[12]. The policies and solutionsobtainedthrough reinforce-
ment learningarehereregardedasknowledge.In the transfer
learningmethod,an agentfirst learnsthe policy asan action–
statepair during the sourcetask. Next, an agentperforming
the target task can reusethe knowledgeobtainedduring the
sourcetaskvia ITM. ITM definesthe relationof the spacesS
andA betweenthe targetand sourcetasks.If the target task
agenthasstatespaceStarget and action spaceAtarget, then
ITM for simple taskswill map S and A betweenthe target
andsourcetasks.This is formulatedas follows:

χS(s) : Starget → Ssource

χA(a) : Atarget → Asource (4)

Here,s anda aretheelementsof thestatespaceandaction
space,respectively;χS(s) and χA(a) are the corresponding
functions of ITM. The agentcompletingthe target task can
havedifferent characteristicsfrom the agentthat learnedthe
sourcetask. Hence,the agentperforming the target task can
adaptits behaviorfor a new environmentor targettask.This
methodis fundamentalin a single-agentenvironment.

C. TransferLearning in a Multi-agentDomain

In recentyears,transferlearninghasbeeninvestigatednot
only for single–agentsystemsbut also for MARSs. For ex-
ample,Boutsioukiset al. proposeda transferlearningmethod
with multi–agentreinforcementlearning, which enablesthe
use of ITM among agents [13]. Taylor et al. proposeda
parallel transfer learning method,which runs the target and
source tasks simultaneously[14]. Their method speedsup
learningin multi–agenttransferlearning.However,manysuch
methods do not take into account the operation of large
numbersof single–agentsystemsand MARSs, which means
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that an inter–taskmap must be either createdor modified
with every entry of a new agentsystem.The quality of ITM
is the most important factor in agentperformanceon target
tasks.Therefore,we believe that ITM for a systemshould
be designedby humans(such as researchersand engineers)
on the basisof experienceand intuition. However,as already
mentioned,manuallydesigningan ITM systemis problematic
when large numbersof single-agentsystemsand MARSs are
involved in the transferlearningsystem.

III. HIERARCHICAL TRANSFERLEARNING

A. Heterogeneityof Robotsand Agents

For actual environments,it is assumedthat the hetero-
geneityof robotsimplies that they may havedifferent sensors
(e.g.,cameraandlaserrangefinder)andactuatorarrangements
(e.g. crawler platform, omni-directionalmobile platform, and
humanoid platform). Moreover, different versions of robot
types and differencesin manufacturingare also aspectsof
heterogeneity.In contrast,characteristicsof virtual agentsare
similar to otheragentsin the virtual environment,suchas for
simpletaskagents.For thepurposeof evaluationin this paper,
we assumea simulatedenvironment.Hence,heterogeneityis
characterizedby the number of elementsof S and A. We
supposethat the heterogeneityof S arisesfrom differences
in tasks,andthe heterogeneityof A arisesfrom differencesin
the motion characteristicsof agents.

B. Ontology-basedITMs

Our KCF with HTL enablesintegrationof ITMs among
agents[10]. In a previouspaper,we proposedHTL, which
uses the concept of ontologies as a method for creating
ITMs. We call this techniqueontology-basedITM (OITM).
Ontology is introducedhere as an “explicit specificationof
a conceptualization”for the purposeof learning [15]. Our
OITM leveragesthe function of ontology by which we can
describemany different relations in terms of ontology, and
specifically we can describeintegrativeITMs amongagents
(Fig. 2). Moreover, if we first define the ITM of a system
in termsof ontology, then agentscan useITM to searchthe
knowledgeof many other agents.We assumethat a concrete
action of an agent is called an instanceof ontology and an
abstractaction of ontology is called a class or upper class.
Weadditionallyspecifythatanyontologypresentationin cloud
resourcescanbe accessedby all agents.

An exampleof OITM is shownin Fig. 3. First, the agent
developermapsconcreteactionsof an agentto the ontology.
Another agentdeveloperalso mapsactionsto this ontology.
When the agent reusesthe knowledge of other agents, it
searchesfor a mapping that matchesits actions with other
agent actions. Second,the agent transfersknowledge from
other agentsto itself using the knowledgeand mapping of
ontology for ITM. Note that when the agent transfersthe
knowledgefrom otheragents,OITM requirestwo ontologies,
such as an action ontology and a stateontology. Hence,the
agentindividually searchescorrespondingactionsandstatesof
otheragents.

Fig.3 showsa casewherethreeheterogeneousagentsare
presentin an environment.The action spacesof thesethree
agentsareas follows:

(a) (b)

Fig. 2: Difference betweenITM and OITM. (a) Simplified
image of ITM with four agentsand others. (b) Simplified
imageof OITM, which integratesITM amongagents.

Aα = {aα1, aα2, aα3, aα4}
Aβ = {aβ1, aβ2, aβ3} (5)
Aγ = {aγ1, aγ2, aγ3, aγ4, aγ5}

We connectedeachinstance(concreteaction) to the class
CA

3 = {ca3,1, ca3,2, ca3,3, ca3,4}. The class spaceCA
3 is also

mapped to an upper class CA
2 = {ca2,1, ca2,2, ca2,3}, and

CA
1 = {ca1,1}. Thesemappingdescribesfunctions like ITM,

definedbelow,asmappingsbetweeninstancesandclasses,and
betweenclassesandupperclasses.

χO
S (s) : S → CS

h

χO
A(a) : A→ CA

h (6)

χO
S (c

s) : CS
h → CS

h−1

χO
A(c

a) : CA
h → CA

h−1 (7)

Here,we definedtwo typesof OITM, namely,χO
S (·) and

χO
A(·). The functionχO

S (·) representsanOITM aboutthestate
spaceamong instances,classes,and upper classes.χO

A(·) is
an OITM about an action space.In the implementation,the
agentshavemechanismsto searchthe OITM.

C. Methodfor Transferof Knowledge

As mentionedabove, the agent can reuseknowledgeof
other agents through HTL. In this study, we adopted Q-
learningasthereinforcementlearningmodel.In theQ-learning
mechanisms,transferredknowledgeis reusedas follows.

Qj(s, a) = (1− τ)Qt(s, a) + τQs(χo
S(s), χ

o
A(a)) (8)

Here, Qt(s, a) is knowledge about the target task and
Qs(s, a) is knowledgeabouta sourcetask, known via HTL.
The transferredknowledgealsousesOITM andthe functions
χO
S (·) and χO

A(·) meansOITM. The term Qj(s, a) is the
combined knowledge of the target and source tasks, and
τ(0 < τ < 1) is aparameterfor adjustingtheaction’svaluefor
thedifferencebetweenthetargetandsourcetask.A targettask
agentselectsanactionfromQj(s, a) accordingto aBoltzmann
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Fig. 3: OITM for agentactions.The agent’sdevelopermapsconcreteactionsof an agentto abstractactionsin upperclasses,
which may be mappedinto still higherclasses.All actionsof all agentsaremappedto an ontology in this manner.

Fig. 4: Simplified schematicof an internal reinforcement
learning model in a target task with Eq. (8). A learnercan
receivestateandrewardsfrom theenvironment.Thesourceof
transferredknowledgecannotreceivethereward.Theactionis
selectedby usingcombinedknowledgeaccordingto Eq. (8).

distribution (Equation(3)). However,updatingof knowledge
occursonly for Qt(s, a) by Q-learning(Fig.4). In an actual
environment,when an actual agent,such as a robot, reuses
transferredknowledge,the knowledgeof sourcetasksconsists
of a data file generatedby the source task agent, and the
target task agentmust receivethe transferredknowledge(in
the form of thesefiles) aboutthe sourcetaskvia the network
infrastructure.Hence, to reuse knowledge,HTL requires a
communicationinfrastructure,as well as a list of available
repositoriesof knowledgeandpublic ontologyservers.

IV. TASK DESCRIPTION

Wecarriedout simulationexperimentsto confirmtheeffec-
tivenessof HTL in four dynamicenvironments.We designed
environmentsfor MARL and heterogeneousexperiments.We
provide the following experimentalconditions of computer
simulation.

A. Pursuit Game

Previous studies have adopted tasks such as zero-sum
games, foraging tasks, and cooperativecarrying tasks for
evaluatingMARL. Here,we adopta pursuitgameto evaluate
MARL performance.The pursuitgameis a benchmarktestof
agentperformance,measuredastime until capture.We setan
N ×N grid as the simulationworld. An arbitrarynumberof
hunteragentsandprey agentsaredeployedin this world, and
we evaluatethe numberof steps(i.e., time) until the hunters
captureall of the prey. In our pursuit game,we set locations
for prey in the grid world. The final stateof this gameoccurs
when all prey has been capturedby hunters,which occurs
when all huntersare adjacentto the prey at the end of turn.
The locationsof all agentsare resetto their initial positions
after capture.A single episodeis definedas numberof steps
to reacha stateof capture.Agentsact in a predefinedorder,
suchas hunter1 → hunter2 → prey, and one set of actions
is regardedas a single step.A cell cannotbe simultaneously
occupiedby multiple agents,andagentscannotcrosstheworld
boundaries.Moreover,hunterscan learn cooperativecapture
actions,but prey cannotlearn.

B. Differencein Tasks

The heterogeneityof the statespacedependson the Task
and Sensor characteristicsin actual learning. In this exper-
iment, we defined heterogeneityof the state spaceas the
differencein Tasks.

We define the grid world of a pursuit game according
to a study by Tan [4] and Arai et al. [5]. In this particular
implementation,huntersanda prey agentcanmove in a 7 ×
7 grid world. The initial position of eachagentis shown in
Fig.5. The differencebetweentasksis the numberof hunters.
We call the taskin Fig. 5 (a) “2 vs. 1” andthat in 5 (b) “3 vs.
1”. Note that in the 2 vs. 1 task,the observableenvironmental
stateof a hunter is the set containingthe coordinatesof the
otherhunterandof theprey.In the3 vs. 1 task,theobservable
environmentalstate is the set containing the coordinatesof
the other two huntersandof the prey.Therefore,the concrete
differencebetweentasksis theobservablenumbers of theset
of S. In eachtask,the observableenvironmentalstateasa set
S is definedas follows.
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(a) (b)

Fig. 5: Difference in tasks.(a) Two huntersvs. one prey in
7×7 grid world, with initial positionsof eachagent.(b) Three
huntersvs. oneprey in 7× 7 grid world with initial positions
of agentsin the four corners.

S2vs.1 = { x-coordinate of self,

y-coordinate of self,

x-coordinate of the second hunter,

y-coordinate of the second hunter (9)
x-coordinate of prey,

y-coordinate of prey}

S3vs.1 = { x-coordinate of self,

y-coordinate of self,

x-coordinate of a second hunter,

y-coordinate of a second hunter,

x-coordinate of a third hunter, (10)
y-coordinate of a third hunter,

x-coordinate of prey,

y-coordinate of prey}

C. Heterogeneityof Agents

As mentioned above, the game involves two types of
agents: multiple hunter agents and one prey agent. Only
huntersare provided with learning mechanisms;the actions
of the prey are providedby a fixed strategy,as discussedin
detail below.

Agentscanselectonly oneactionperstep.Preycanchoose
an actionfrom five actionsin an actionspaceAprey, which is
definedas follows.

Aprey = {front, back, right, left, stop} (11)

Heterogeneityof huntersmeansthat differencesare per-
mitted betweenthe strategiesand action spacesof different
hunters.In addition,eachagentis providedwith a sensor,such
as sight. We definethe allowed actionsof eachhunterin the
following way.

Ahunter1 = {front, back, right, left, stop} (12)
Ahunter2 = {upper right, lower right,

lower left, upper left, stop} (13)
Ahunter3 = {long front, long right, lower right,

lower left, long left, stop}(14)

(a) (b)

(c) (d)

Fig. 6: Actions andsight rangeof eachagent.Arrows denote
movabledirectionanddistancein grid world. Grayareasshow
the sight rangeof eachagent,and if otheragentsare in sight
range,agentcanobservethe coordinatesof otheragents.

Here,characteristicsof Ahunter1, Ahunter2, Ahunter3 and
Aprey are shown in Fig.6 subfigures(a), (b), (c), and (d),
respectively.Each agenthas its own sight range (shown as
shadedcells),andtheshapeof this rangediffers amongagents.
Thesight rangeof theprey is thesameasthatshownin Fig. 6
(c). Initially, huntersand prey choosetheir actionsrandomly.
Huntersadjusttheprobabilitieswith which actionsareselected
asthe learningprogresses.Althoughthepreydoesnot learn,it
selectsan escapeactionwhenit recognizesa hunter.Theprey
movesawayfrom the hunterwhen it detectsonly onehunter,
or in any of the possibleescapedirections(uniformly chosen)
when it detectsmultiple huntersin its vicinity.

D. ExperimentalConditions

To confirm the effectivenessof HTL, we set the experi-
mentalconditionsas listed in Table I. In this experiment,we
adoptedthe 2 vs. 1 task and the 3 vs. 1 task of the pursuit
game.In the sourcetaskandself-transferexperiment,hunters
1 and2 andthepreyaredeployedin a 7×7 grid world. In the
3 vs.1 task, two hunter1s and one hunter2, or one eachof
hunters1, 2, and3 aredeployedwith thepreyin thegrid world.
Moreover,on top of theaboveexperimentalconditions,we test
theself-transfercondition.Self-transferis usedasconfirmation
of transferredknowledgeproperly generatedby the agentof
thesourcetask,andwe transferthegeneratedknowledgefrom
the sourcetask to the sourcetaskagent.

The Q-learningparametersare set to α = 0.1, γ = 0.99,
and r = 1. The Boltzmann parameterT is 0.01. These
parametersare common to the self-transfercondition. The
default Q-valueis 0 in all experiments,and τ is 0.5. In each
experiment,10000episodesareconductedfor the sourceand
targettasks.

In this experiment,we designedtwo ontologies: action
ontology in Fig.7 and stateontology in Fig.8. For example,
whenthe hunter3 reusesthe knowledgeof hunter1 by using
actionontologyandstateontology,theinformationof observed
statesis put in the stateontology.The hunter3 can translate
its own observedstatesto an observablestate of hunter 1,
and translatedstatesare input to the knowledge that was
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TABLE I: Experimentalconditionsof transferin four experiments.The target task agentusestransferredknowledgefrom a
sourcetaskagentof the sametype.

Experiment Conditions Sourcetask Targettask

Task 2 vs. 1 2 vs. 1
Hunters Agent 1 andAgent 2 Agent 1 andAgent 2

Self-transfer
Direction of Agent 1 → Agent 1
transfer Agent 2 → Agent 2

Task 2 vs. 1 2 vs. 1
Hunters Agent 1 andAgent 2 Agent 2 andAgent 3

Different actionspace
Direction of Agent 1 → Agent 2
transfer Agent 2 → Agent 3

Task 2 vs. 1 3 vs. 1
Hunters Agent 1 andAgent 2 Two agent1 andoneAgent 2

Different statespace
Direction of Agent 1 → Agent 1
transfer Agent 2 → Agent 2

Task 2 vs. 1 3 vs. 1
Hunters Agent 1 andAgent 2 Agent 1, Agent 2, andAgent 3

Heterogeneous
Direction of Agent 2 → Agent 1
transfer Agent 1 → Agent 2

Agent 1 → Agent 3

transferredfrom hunter1.Then,knowledgeoutputsthe action
valuesof hunter1, andhunter3 translatesit to its own actions
by utilizing action ontology. Finally, hunter 3 calculatesthe
combinedknowledge(Eq. (8)), andit selectsa valuableaction
by usingtheBoltzmanndistribution(Eq. (3)). Whenthehunter
3 reusesthe knowledgeof hunter1 by usingstateontology,if
thehunter3 detectsanotherhunter(hunter1) in thegrid world,
then the hunter3 can behavein cooperativeactionsbetween
hunter 1 and hunter 2 in the sourcetask. Here, we assume
that the two ontologiesand the necessarysearchfunction are
preprogrammedin all hunters.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section,we describethe experimentalresultsand
discussJumpstart(JS), which is the differencebetweenthe
value resulting from an agentwith transferand one without
transfer.This is formulatedas follows:

JS=
1

100

(
100∑
i=1

swt
i −

100∑
i=1

sti

)
(15)

Here, swt
i is the number of stepsof the learning curve

without transfer; sti is the number of stepsof the learning
curve with transfer.Moreover,to aid intuitive understanding,
we definethe ratio of JS (RJS),as follows.

RJS=
100∑
i=1

sti

/ 100∑
i=1

swt
i (16)

If we obtainedthe result for JS that the numberof steps
until convergencefor the learningcurvewith transferexceeds

the analogousvalue without transfer, then transfer is not
effectivesincethe final performanceof learningis worsethan
without transfer.Hence,Differencein convergencesteps(DCS)
is definedas follows, and we also define the ratio of DCS
(RDCS).

DCS=
1

100

(
10000∑
i=9901

swt
i −

10000∑
i=9901

sti

)
(17)

RDCS=

10000∑
i=9901

sti

/ 10000∑
i=9901

swt
i (18)

DCS is the averagesteps in the final 100 episodesin
the learning curve with transfer and without transfer. DCS
andRDCSexpressthe differencein convergenceperformance
betweenagentswith knowledgetransferandwithout transfer.

A. Resultsfor Self-transfer

In this experiment,the result of learningwithout transfer
showsimprovedperformance(Fig. 9(a)). This learningcurve
does not convergeto a single solution, in contrast to the
performanceof general reinforcement learning in a static
environment;this differenceoccursbecausethe agentsin all
of our experimentslearn in a dynamicenvironment.

The values of JS are shown in Table II along with the
valuesof otherparameterssuchasRJS,DCS,andRDCS.The
JS value of self-transferexperimentsis 297.16steps,and the
improvementrate with a JS is 80%. The learning curve of
self-transferexhibits an obvious JS relative to the “without
transfer”condition.Moreover,thenumberof stepsof thefinal
100 episodesin the learningcurvewith transferis lower than
the numberof stepsof the final 100 episodesin the learning
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Fig. 7: Action ontology.We mapthe instanceof actionsto a similar upperclass.In this actionontology,for example,“Move to
right (1 cell)” of hunter1 and “Move to right (2 cells)” of hunter3 are similar actionsin the action ontology. If the ontology
designerhasnot specifiedsimilar actions,actionsof agentsareconnectedto upperclasses.

Fig. 8: Stateontology, with coordinatesof cooperativeagents.Instancesof “Self-location” and “coordinatesof prey” of each
hunterareconnectedto the sameclass.Whenthe hunter3 reusesthe knowledgeof hunter1, informationabout“coordinatesof
hunter1” areput in the stateontologyas “coordinatesof hunter2” accordingto the knowledgeof hunter1.

TABLE II: Comparisonof JS,RJS,DCS and RDCS in each
experiment.

Experiment JS RJS DCS RDCS

Self-transfer 297.16 0.20 42.84 0.64

Different actionspace 108.35 0.42 -3.64 1.06

Different statespace 4433.01 0.06 1095.25 0.19

Heterogeneous 3059.12 0.28 602.67 0.51

curve without transfer.in the learningcurve without transfer.
This result indicatesthe effectivenessof reusingknowledge,
and this emergenceeffect is consideredthe basic effect of
transfer learning. In this experiment,the agentalso use the
HTL, andso this result indicatesreappearanceof the effect of
transferlearning.

B. Resultswith Different Action Spaces

The resultsfor the learningcurvesare shownin Fig.9(b).
In this experiment,theresultsexhibit anobviousJS.Thevalue
of JSis 108.35steps,which meansthat theperformanceof the
targettaskagentimproved58% from agentswithout transfer.
This result indicatesthe effectivenessof reusingknowledge
utilizing HTL. For the learning curve in the “with transfer”
condition in Fig. 9(b), the curve decreasesmore slowly than
thecurvefor the initial episodes.This phenomenonshowsthat
theagentlearnedthenewenvironmentasa targettaskby using
the transferredknowledge.

Thevalueof DCSfor learningcurvein the “with transfer”
condition is greaterthan that in the “without transfer” condi-
tion. This result indicatesthat the final stateof learningwith
transferis 1% worse than the caseof without transfer.This
DCS value is consideredsmall enoughfor effectiveness.

C. Resultswith Different StateSpaces

The resultsfor learningcurvesare shownin Fig. 9(c). In
this experiment,the result also exhibits a large value for JS,
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(a) (b)

(c) (d)

Fig. 9: Comparisonof learningcurvesbetween“without transfer” and “with transfer”. (a) Resultof self-transfercondition. In
this experimentalcondition,obtainedknowledgeis commonknowledgeof all experimentalconditions.(b) Resultof experiment
with different actionsspaces.(c) Resultof experimentwith different statespaces.(d) Resultof experimentwith heterogeneous
statespaces.

4433.01steps,which is an improvementrate from the JS of
94%relativeto thecasewithout transfer.Additionally, theDCS
value is also excellent,with improvementof 81%. Together,
thesephenomenameanthat the performanceof the agentin
the“with transfer”conditionis greaterthanperformanceof the
agentin the “without transfer” condition at the final stateof
learning.Themainreasonfor this is theadjustmentof learning
parameters,suchasα, γ, andT . In reinforcementlearningin
a dynamic environment,the agent’sbehavior is sensitiveto
tuning of the learningparameters.Suchsensitivity is clearly
seenin this experimentalresult,wherethe performanceof the
agentin the “without transfer” condition doesnot reachthe

performanceof the agentin the “with transfer”condition.

D. Resultswith HeterogeneousConditions

For theexperimentwith heterogeneousconditions,anobvi-
ousJSvalueis present,asshownin Fig. 9(d). TheDCS value
was high at 49%. Theseresultsindicate the effectivenessof
HTL in a heterogeneousMARL situation.

However,thelearningcurvein the“with transfer”condition
is unstablein the aboveexperimentalconditions.The main
causeof this is difficulty of tasks. In this experiment,the
task is 3 vs. 1, and all agentsare heterogeneous.Moreover,
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reusedknowledgeis transferredfrom heterogeneousagents.
This result indicatesthat the agentscanreusethe knowledge,
althoughthe agentsrequirea relearningprocessfor the target
task.

VI. CONCLUSION

In this paper, we proposedKCF for implementationof
MARL, andpresentedHTL asa transferlearningmethodsuit-
able for largenumbersof heterogeneouslearningagents.The
HTL methodis oneof the functionsof KCF. We alsocarried
out simulationexperimentsunderfour transferconditionswith
the pursuit game used for the environmentand tasks. The
experimentalresultssuggestthat HTL cantransferknowledge
amongheterogeneousagentsandseveraltasks.

For our future work, we plan to demonstratethe effec-
tivenessof HTL by conductingexperimentsin actual multi-
robot learningsystems.In the simulations,the actionsetsand
statesetswere discrete,and it seemshard to apply discrete
setsto real robot systems.Instead,HTL shouldbe appliedto
continuoussets for real situations.An evaluationsystemof
ontologyandan autonomousrestructuringmechanismshould
be developedasnew functions.Thesefunctionsareimportant
becausethereis anincreasedprobabilityof choosingthewrong
design for ontology becausethe architectureof ontologies
(e.g., instancesand classesalong with the relations among
thosefactors) dependson the degreeof the ontology devel-
oper’sexperience.For applicationin real-worldsituations,our
proposedsystem needsa system for autonomousontology
restructuringby agents.
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