
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 12, 2014

97 | P a g e

www.ijacsa.thesai.org

A Grammatical Inference Sequential Mining

Algorithm for Protein Fold Recognition

Taysir Hassan A. Soliman

Associate Professor

Information Systems Dept.

Faculty of Computers & Information

Assiut University, Egypt

Ahmed Sharaf Eldin

Professor

Information Systems Dept.

Faculty of Computers & Information

Helwan University, Egypt

Marwa M. Ghareeb

Lecturer

Information Systems Dept.

Faculty of Computers & Information

Modern Academy, Egypt

Mohammed E. Marie

Lecturer

Information Systems Dept.

Faculty of Computers & Information

Helwan University, Egypt

Abstract—Protein fold recognition plays an important role in

computational protein analysis since it can determine protein

function whose structure is unknown. In this paper, a Classified

Sequential Pattern mining technique for Protein Fold

Recognition (CSPF) is proposed. CSPF technique consists of two

main phases: the sequential mining pattern phase and the fold

recognition phase. In the sequential mining pattern phase, Mix

& Test algorithm is developed based on Grammatical Inference,

which is used as a training phase. Mix & Test algorithm

minimizes I/O costs by one database scan, discovers subsequence

combinations directly from sequences in memory without

searching the whole sequence file, has no database projection,

handles gaps, and works with variant length sequences without

having to align them. In addition, a parallelized version of Mix &

Test algorithm is applied to speed up Mix & Test algorithm

performance. In the fold recognition phase, unknown protein

folds are predicted via a proposed testing function. To test the

performance, 36 SCOP protein folds are used, where the

accuracy rate is 75.84% for training data and 59.7% for testing

data.

Keywords—Data mining; grammatical inference; sequential

mining; protein fold recognition

I. INTRODUCTION

Protein fold recognition is an important step towards
understanding protein three-dimensional structures and their
biological functions. Fold recognition techniques do not
require similar sequences in the protein databank, just similar
folds. Successful approaches have been applied to protein fold
recognition [1]. For example, various researchers used Neural
networks to predict protein folds, such as GeneThreader [2],
TUNE (Threading Using Neural nEtwork) [3], neural
networks with tailored early-stopping [4], Bayesian Networks
[5], structural- pattern based methods [6], and Genetic
Algorithms [7,8]. Examples of using Support Vector Machines
(SVM) have been illustrated as follows: directly predict the
alignment accuracy of a sequence template alignment [9] and a
combined technique of Support Vector Machine (SVM)
classifier with Regularized Discriminant Analysis (RDA) [10].

Other research has been performed using Monte Carlo methods
[11]. In addition, many researchers used parallel evolutionary
algorithms for protein fold recognition, such as parallel EST,
probabilistic roadmap for motion planning, pRNAPredict for
RNA secondary structure [12-16]. However, although
significant improvement has been made, the accuracy of the
existing methods remains low and there is a need for new
methods contributing to the field of fold recognition.

Sequential mining algorithms have been proposed to
predict protein folds. The objective of sequential pattern
mining is to discover interesting sequential patterns in a
sequence database. It is one of the essential data mining tasks
widely used in many applications, including customer purchase
pattern analysis and biological data sequences [17-22], etc.
Many research have been performed to efficient sequential
pattern mining, such as [23-25], closed and maximal
sequential pattern mining [26-29], constraint-based sequential
pattern mining [30-32] approximate sequential pattern mining
[33], sequential pattern mining in multiple data sources [34],
sequential pattern mining in noisy data [35], incremental
mining of sequential patterns [36], and time-interval weighted
sequential pattern mining [37]. Two of the general sequential
mining algorithms are SPADE [24] and PrefixSpan [23], which
are more efficient than others in terms of processing time.
SPADE is one of the vertical-format based algorithms and
uses equivalence classes in the mining process. PrefixSpan is
one of the pattern-growth approaches. It recursively projects a
sequence database into a set of smaller projected sequence
databases and grows sequential patterns in each projected
database by exploring only the locally frequent fragments.
cSPADE [38] algorithm is a straightforward extension of
SPADE algorithm. The only difference is the involvement of
constraints in the cSPADE. These constraints include length,
width, and duration limitations on the sequences, item
constraints, event constraints, and incorporating class
information. In addition, one of the SPADE based algorithm
called SPAM (Sequential PAttern Mining) [39] has been
proposed. It integrates the ideas of GSP, SPADE, and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 12, 2014

98 | P a g e

www.ijacsa.thesai.org

FreeSpan and combines a vertical bitmap representation of the
database with efficient support counting.

One of the promising areas is Formal Language Theory and
Grammatical Inference (GI), which is playing important role in
the development of new methods to process biological data
[40]. Many works propose GI techniques to tackle
bioinformatics tasks, such as secondary structure identification
[41], protein motifs detection [42], and optimal consensus
sequence discovery [43]. In this paper, GI is used as the
backbone of the sequential pattern mining algorithm, which has
achieved faster and higher performance accuracy than other
sequential pattern mining algorithms for protein fold
recognition.

In this paper, we introduce a Classified Sequential Pattern
mining technique for Protein Fold Recognition (CSPF). CSPF
consists of two main phases: 1) Sequential pattern mining and
2) fold recognition. It handles gap constraints, uses data
parallelization, and performs incremental updating. CSPF has
shown efficient results when applied to 36 SCOP protein folds.
This paper is organized as follows: section 2 explains the
proposed CSPF technique. Section 3 describes datasets used
and the performance study. Finally, section 4 gives the
conclusions and future work.

II. METHODS

CSPF technique consists of two main phases: the sequential
pattern mining phase and the fold recognition phase. In the
sequential pattern mining phase, Mix & Test algorithm is
developed, which is used as a training phase. In the fold
recognition phase, unknown protein folds are predicted via a
proposed testing function. Our work is close to the sequential
pattern mining suggested in [13]. However, this work depends
on a new algorithm for sequential pattern mining, based on
grammatical inference. In addition, it employs parallel
sequential pattern mining and incremental updating.

A. Phase I: Sequential Pattern Mining:

During this phase, Mix & Test algorithm is developed in
order to mine sequential patterns for each fold, based on
Grammatical Inference. The key advantages of Mix &Test
algorithm are minimizing I/O costs via one database scan,
discovering combinations directly from sequences in-memory
without searching the whole sequences file, no database
projection, handling gaps, and working with variant length
sequences without having to align them. In addition, Mix &
Test algorithm supports incremental updating, where it does
not prune infrequent patterns and count the support of them
during the mining steps. Mix & Test algorithm acts
iteratively. First, it generates a list of no gap sequential
combinations, which will serve as the seed for the coming
generation if there is a gap value specified. If no gap is
specified, this list will be evaluated by the testing strategy with
the specified minimum support threshold. Thus, this list will
obtain the frequent and infrequent lists. If the gap value is
specified, Mix &Test will loop to the combinations generation
step and will use the combinations list obtained from the
previous step to construct new combinations list with a gap by
following steps of Mix &Test algorithm’s grammar.

The steps of the algorithm are shown in Fig. 1.

1) Mix Strategy:

Problem Definition: Given a sequences file S that contains a

set of sequences S= {s1, s2, ..., sm} and a set of items I = { i1,

i2, …, in} that may appear in any sequence (here, a set of

amino acids), where m is the number of sequences in a file

and n is the number of amino acids. A sequence sj= <i1, ...,in>

, where i1 is the first item in the sequence and in is the last item

in the sequence. Let P is a subsequence that is derived from sj,

Pt is the current generated subsequence. Pt-1 is the previous

generated subsequence. The first generated subsequence will

be:

P1(sj) = in-1 & in(1)

The generated subsequence will be:

 Pt(sj)= in-t & Pt-1(sj) (2)

1. Read New Protein Sequences

2. Apply Mix Strategy to generate sequential

combination
3. If New Combination then

Add new combination to Arraylist with

support =1
 Else

 Increase it support by 1

4. If End of sequences file then
 If stopping criterion is reached

 (No_of Max gaps) then

 If Combinations’ support >=Minsup then
 Output frequent Sequential patterns

 Else

 Output Infrequent Sequential patterns
 Else

 GOTO step 3

Else
 GOTO step 2

Fig. 1. Mix & Test Algorithm Flowchart

Sequential combinations Generation "No-Gap
combinations"

Mix strategy will first generate all "no gap combinations"
list. It starts by reading the first sequence of protein sequences
file and generates all possible sequential combinations of it.
Mix strategy inserts the generated combination to the "no gap
combinations" list with support equals to 1. Mix strategy will
loop through new generated P to generate all possible
combinations of it, using a removing procedure. This
procedure removes the last item of the last generated
combination to get a new combination from current P. It will
stop generate Pt when t equals to number of items in the
sequence n. An example of generated sequential combinations
of “No-gap combinations” is illustrated in Table I, given
original sequence MAKNNGCDP. After generating all
possible sequential combinations from the first sequence of the
protein sequences file. It will start to read the second sequence
and go through the previous steps and generate all new
combinations. If the new generated combination is previously
composed, its support will be incremented by one; otherwise, it

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 12, 2014

99 | P a g e

www.ijacsa.thesai.org

will be inserted to "no gap combinations" list with support
equals to 1, as clarified in Fig. 1.

Gapped Sequential combinations Generation

If there is a gap value specified, the "no gap combinations"
list will be used to generate "one gap combinations" list, which
will be used to generate "two gaps combinations" list, and so
on. Mix strategy will use two procedures to generate all
possible gapped sequential combinations: Ladder and
CrissCross procedures.

First, the Ladder procedure reads each combination in "no
gap combinations" list and loops through it by inserting one
gap at a time starting from the second character position shifted
right in each loop until reaching the last character of the
combination. Then, it will start again to read the next no gap
combination and apply the previous steps on it.

TABLE I. LIST OF GENERATED SEQUENTIAL COMBINATIONS “NO-GAP

COMBINATIONS”

SUBSEQUENCE LIST OF GENERATED COMBINATIONS

P1 DP

P2 CD, CDP

P3 GC, GCD, GCDP

P4 NG, NGC, NGCD, NGCDP

P5 NN, NNG, NNGC, NNGCD, NNGCDP

P6 KN, KNN, KNNG, KNNGC, KNNGCD,

KNNGCDP

P7 AK, AKN, AKNN, AKNNG, AKNNGC,

AKNNGCD, AKNNGCDP

P8 MA, MAK, MAKN, MAKNN,

MAKNNG, MAKNNGC, MAKNNGCD,
MAKNNGCDP

Definition 1: Given C as a "no gap combinations" list. Ci is
a no gap combination. Let L be the gapped combination list
generated by Ladder procedure, as follows:

Ly(Ci(Sj)) = Ci – iy+1 (3)

Where Ly(Ci(Sj)) is the y combination generated by Ladder
procedure from no gap combination Ci, and iy+1 is the item i
with the position y+1 in Ci combination.

Consider the first combination in the "No gap
combinations" list is MAKNNGCDP, applying this procedure,
we will obtain these one gap combinations: M_KNNGCDP,
MA_NNGCDP, MAK_NGCDP, MAKN_GCDP,
MAKNN_CDP, MAKNNG_DP, and MAKNNGC_P. Note
that MAK_NGCDP is equivalent to MAKN_GCDP, so that
they are treated as one combination and inserted only once in
"one gap combinations" list as MAKNGCDP.

Second, the Crisscross procedure generates the rest of
possible gapped sequential combinations of "one gap
combinations" list. It reads each combination in "no gap
combinations" list, looping through it and inserting one gap
between each character of combination's characters. It starts
from the second character's position shifted right one character
position in each loop.

Definition 2: Given C as a "no gap combinations" list. Ci is
a no gap combination. Let Q be the gapped combination list
generated by Crisscross procedure, as follows:

Qr(Ci(Sj)) = Ci – (ir+1 & ir+3 & ir+5 & ir+7 … in) (4)

Where Qr(Ci(Sj)) is the r combination generated by
Crisscross procedure from no gap combination Ci, and ir+1 is
the item i with the position r+1 in Ci combination. The
concatenation part of the function will stop when n equals to or
greater than the number of items in Ci.

By applying this procedure in the last example,
MAKNNGCDP no-gap combination will produce:
M_K_N_C_P, MA_N_G_D, MAK_N_C_P, MAKN_G_D,
MAKNN_C_P, MAKNNG_D, and MAKNNGC_P. Notice
that all these derivative combinations by the two procedures
will take the same support of the parent no gap combination
which they are derived from it. Mix strategy will stop
generating new combinations when the number of sequences in
protein sequences file. The final result from applying the Mix
strategy will be a list of all combinations derived from all
combinations lists.

2) Test strategy:
The Test strategy will filter final combinations list, which

contains all no-gap and gapped combinations to distinguish
frequent and infrequent patterns, according to user-specified
support. However, infrequent patterns will not be discarded
because incremental updating will be performed later on.

The most time consuming step in the Mix&Test algorithm
is updating the combinations list, where a search is required in
order to ensure if the generated combination is a new one to
insert it or an old one to update its support. Thus, the
combinations list may become very large. Therefore, a
lexicographic prefix tree of lists is suggested, where each list
contains all combinations with the same prefix. For example,
let P = {p1, p2, … , pn} be a set of lists (here n= 20 Amino
Acids). Each pi represents a list of all combinations with a
prefix i. For example, if i = M, the list Pm can contain
combinations, such as MV, MVV, MTV, MNKLSV. After
Mix strategy generates the new combination, the first character
of this combination is checked to determine which list to be
inserted in. So, instead of having one big list, we will have pn
lists, this shrinks time T to find or insert combination to T/n. In
order to increase the speed of computing and minimize the
time required to generate the combinations in Mix strategy,
especially with the large number of files and the rapid
incoming rates, Parallel Mix strategy (PMix) is proposed.
PMix uses horizontal data parallelization, where the data are
split into chunks in the memory for the task. These data
chunks will be distributed on PMix threads. Each thread will
apply Mix strategy to generate the combinations of candidate
patterns of this data chunk. After all threads finish their work, a
combination integrator module will integrate all combinations
generated from the threads into one final combinations list. The
final combinations list is used by combinations evaluator
module, which applies test strategy to get frequent and
infrequent patterns.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 12, 2014

100 | P a g e

www.ijacsa.thesai.org

3) Incremental updating
CSPF saves and records the sequential patterns of each

fold, which are generated from the training phase. However,
increasing the speed of processing, especially with large
volumes of data and high data rates, is highly required.
Existing incremental updating algorithms are highly based on
the availability of main memory. As a result, the use of In-
Memory relational databases is proposed, where TimesTen
Oracle database management system is applied. TimesTen is
an In-Memory DBMS technology, which provides very fast
data access time because all its data will reside in physical
memory (RAM) during run time. TimesTen provides
applications with short, consistent response times and very
high throughput required by applications with database-
intensive workloads.

Incremental updating handles two cases: inserting new data
and deleting old data. First, Insert module, as shown in Fig. 2,
deals with new protein files to existing fold trial, the Mix
strategy is applied to obtain the combination patterns of these
files. These patterns are sent to database and added to the
previously obtained frequent sequential patterns. Updated
patterns can be classified into four cases: 1) Patterns that were
frequent in the old database and become infrequent in the new
database, 2) Patterns that were frequent in the old database and
still frequent in the new database, 3) Patterns that were
infrequent in the old database and become frequent in the new
database, and 4) Patterns that were infrequent in the old
database and still infrequent in the new database. Second, the
Delete module deals with deleted sequences from the original
database, which yields an inconsistent state with respect to the
same specified minimum support threshold. The Delete
procedure is similar to the Insert procedure. When deleting
some protein sequences from existing fold trial, the obtained
lists of frequent and infrequent patterns are affected. Delete
module provides two ways for deletion either by deleting files
directly by specifying their names or by a range of time to
delete files in between.

B. Phase II: Protein Fold Recognition

The objective of the fold recognition phase is to classify
unknown protein folds. In addition, an incremental updating
module is used for maintaining the underlying database.

1) Weight Function for Protein Fold Recognition
The proposed weight function classifies the unknown

protein by matching the extracted sequential patterns of each
fold with the coming protein sequence. A weight for each fold
with respect to the unknown protein is calculated. The higher
the number of matched patterns is found, the higher the weight
for the fold and the higher the probability of it to be selected as
the recognized fold. However, there are very important aspects
that have to be considered: 1) The length of the matched
sequential patterns. The more matched frequent patterns with
long length are reached, the higher the accuracy of the fold
classification. 2) Two folds having the same number of
sequential patterns. The proposed Weight Fold Function is:

Wf= N/ S + ∑ (Ki * (Li / Mi)) (5)

Where N is Number of matched Patterns, M is the
Maximum length of extracted patterns for the fold, L is Length

of pattern, K represents Number of patterns with the same
length, S is the number of extracted sequential patterns for a
fold, and W is the weight of the fold.

Fig. 2. Insert Module

III. APPLICATION

The CSPF technique is evaluated using different
parameters, such as different support thresholds, number of
sequences, memory consumption, and number of items per
sequence. CSFP is trained and tested by a specific set of
selected folds from the Structural Classification of Proteins
(SCOP) database

1
. The ASTRAL SCOP 1.75B dataset

updated on 25-4-2013 is selected, where no proteins with more
than 40% identity between them are included. The ASTRAL
SCOP 1.75B dataset release has 49,757 PDB entries and
136,776 Domains. For each fold in this set, a corresponding
set of at least 30 protein members is obtained from Protein
Data Bank (PDB) [44], which is a worldwide archive of
structural data of biological macromolecules. The protein
sequences extracted from this release are used to validate the
results of the proposed model. Two third of this dataset is used
in the training phase to establish features set for each fold and
one third is used in the test data to check validity of the
proposed model. The algorithms are developed using Java
language with NetBeans IDE 7.2 as the Java execution
environment. The algorithms are tested on an Intel Core™ i5
2.50 GHz with 6 GB of main memory. The operating system
used is Windows 7.

The following performance evaluation tests are achieved:
1) For no gap mix strategy: a) Comparison of Mix & Test,
PMix, and SPAM in terms of varied number of sequences, b)
Comparison of Mix& Test, PMix, SPAM, and PrefixSpan in
case of varied support threshold, and c) Comparison of Mix&
Test, PMix, SPAM, and PrefixSpan in case of changing
number of items per sequence. 2) For gapped mix strategy:
Comparison of Mix & Test, and cSPADE algorithms
according to the changes in maximum gap value. 3)
Incremental Updating, 4) Memory consumption, and 5) Fold
recognition phase: a comparison between the proposed method
and SAM, which is widely used as a benchmark in fold

1http://scop.berkeley.edu/

http://scop.berkeley.edu/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 12, 2014

101 | P a g e

www.ijacsa.thesai.org

0

5

10

15

20

25

30

35

40

45

0 100

000

200

000

300

000

400

000

500

000

600

000

700

000

800

000

900

000T
im

e
(m

)

Number of sequences

M&T

PMix

SPAM

0
30
60
90

120
150
180
210
240
270
300

0 1000 000 2000 000 3000 000 4000 000 5000 000

T
im

e
(m

)

Number of sequences

M&T

PMix

SPAM

0

30

60

90

120

150

180

210

240

270

300

330

360

390

420

0 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

T
im

e
 (

m
)

Support Threshold

M&T

PMix

PrefixSpan

SPAM

recognition [39,45]. However, SAM requires higher
computational effort during training, since it employs the
Baum–Welch algorithm for training the model, which is an
iterative procedure.

A. Performance analysis of no gap mix strategy

1) Number of sequences Test:
In this study, we measure the performance of Mix & Test,

PMix, and SPAM algorithms according to the change in
number of sequences. Fig. 3 shows the performance results
derived from Mix &Test, PMix, and SPAM having data
ranges from 100, 000 to 900,000 sequences. Fig. 4 illustrates
the performance results derived from Mix&Test, PMix, and
SPAM having data ranges from 1,000,000 to 5,000,000
sequences. In both figures, Mix &Test and PMix outperform
SPAM, where time taken by them is much smaller than time
taken by SPAM. In addition, PMix outperforms both Mix &
Test and SPAM algorithms because of parallelization step.

Fig. 3. M&T, PMix vs. SPAM having data ranges from 100,000 to 900,000

sequences

2) Minimum Support Threshold test:
Fig. 5 and Fig. 6 show the processing time of Mix&Test

and PMix versus PrefixSpan and SPAM at different values of
support threshold having the number of sequences equals
25,000 and 50,000, respectively. For protein sequences data
and with very low minimum support threshold, the
performance of PrefixSpan and SPAM take hours to process.
On the other hand, Mix&Test and PMix take seconds and are
not affected with the change of minimum support threshold
values.

Fig. 4. M&T, PMix vs. SPAM having data ranges from 1,000,000 to
5,000,000 sequences

Fig. 5. Mix & Test, PMix, PrefixSpan, and SPAM Comparisons with varied

support threshold (25,000 Sequences)

Fig. 6. Mix & Test, PMix, PrefixSpan, and SPAM Comparisons with varied

support threshold (50,000 Sequences)

3) Number of Items per Sequence
Four tests are applied, having 180 and 300 items per

sequence (ips) and variant support threshold, as shown in Fig.
7(a,b), respectively . Each trial in each test of the experiment is
represented by adding 5% to the support threshold value of the
previous trial. Thus, the first trial with support threshold value
equals to 5% and the last one with support threshold value
equals to 50%. The execution time is measured in each trial.
The result of these tests shows the relationship between the
value of the support threshold and the processing time in
seconds according of the four algorithms: Mix& Test, PMix,
PrefixSpan, and SPAM. As shown in Fig. 7(a,b), Mix & Test
and PMix are much faster than PrefixSpan and SPAM.

Fig. 7. (a). M&T and PMix vs. PrefixSpan and SPAM under different support
threshold and 180 items per sequence

0

30

60

90

120

150

180

210

240

270

300

330

360

390

420

450

0 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

T
im

e
(m

)

 Support Threshold

M&T

PMix

PrefixSpan

SPAM

0

50

100

150

200

250

300

350

400

450

500

550

600

650

0 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

T
im

e
 (

m
)

 Support Threshold

M&T

PMix

PrefixSpan

SPAM

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 12, 2014

102 | P a g e

www.ijacsa.thesai.org

0

1000

2000

3000

4000

5000

6000

7000

10 000 20 000 30 000 40 000 50 000

T
im

e
(s

)

Number of sequences

M&T (TT)

M&T (MySql)

0

200

400

600

800

1000

1 2 3 4 5

T
im

e
(s

)

Maximum Gap

PMix

M&T

cSPADE

0

200

400

600

800

1000

1 2 3 4 5

T
im

e
(s

)

Maximum Gap

PMix

M&T

cSPADE

Fig. 7. (b).M&T and PMix vs. PrefixSpan and SPAM under different

support threshold and 300 items per sequence

B. Performance analysis of gapped mix strategy

In this case, the performance of Mix&Test and PMix versus
cSPADE algorithm is tested, according to the changes in
maximum gap value, as illustrated in Fig. 8. This minimum
support threshold equals to 35%. One can observe that the
higher the gap value, the higher consumed time taken, having
Mix&Test and PMix algorithms outperform cSPADE in small
gap values. In addition, PMix outperforms both Mix&Test and
cSPADE.

Fig. 8. Mix&Test and PMix vs. cSPADE under different Maximum Gap

Values

C. Performance analysis of Incremental Updating Process

The Incremental updating module is implemented via two
different database management systems. The first is MySQL
DBMS with a conventional disk-resident database and the
other is the Oracle TimesTen database, as explained
previously. The performance of Mix&Test(TimesTen) and
Mix&Test(MySql) according to the change in number of
sequences (in this case from 10,000 to 50,000 sequences) is
tested. In this case, a support threshold value equals to 20%
with no gap value is applied, as illustrated in Fig. 11. In
addition, the performance result of Mix&Test(TT) outperforms
Mix&Test(MySql). Mix&Test(TT) takes around 30 seconds to
process 10,000 sequences file where M&T(MySql) takes
around 200 seconds to process it. This is because Timesten
database is more efficient than MySql DBMS, where it offers a
small, fast multithreaded, and transactional database engine
with in-memory and disk-based tables.

Fig. 9. Mix&Test(TT) and Mix&Test(MySql) under different Sequences File

volumes

D. Performance Analysis of Memory Consumption

To evaluate the memory consumption of Mix&Test and
PMix are evaluated versus cSPADE under two aspects, which
are the different gap values and the variant number of
sequences. Changing gap values, Mix& Test and PMix are
tested versus cSPADE algorithm by using sequences file with
30,000 sequences with minimum support threshold value
equals to 30%, as illustrated in Fig. 10. PMix consumes
memory greater than Mix&Test because it processes
multithreads in the same time. Also, cSPADE consumes much
memory more than both Mix& Test and Pmix.

Fig. 10. The memory consumption of M&T and PMix vs. cSPADE under
different gap values

E. Performance Analysis of Fold recognition Phase:

The fold recognition phase of CSPF technique is trained
and tested by the dataset described previously [13]. In Table
II, we compare the sensitivity of the CSPF to SPM sensitivity
for fold recognition. Sensitivity of each model represents the
number of proteins, which are classified successfully from the
whole proteins under evaluation.

CSPF reported an overall accuracy of training data equals
to 75.84%, with MaxGap=0 and MinSup=20%, while the
overall accuracy of "SPM for FR" model is 59.7% with
MaxGap=3 and MinSup=40%. A set of 804 protein
experiments (test data set) are used to measure the accuracy of
the model with the test set. CSPF reported an overall accuracy
of testing data equals to 34.32%, as shown in Table III.

0

80

160

240

320

400

480

560

640

720

800

0 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

T
im

e
 (

m
)

Support Threshold

M&T

PMix

PrefixSpan

SPAM

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 12, 2014

103 | P a g e

www.ijacsa.thesai.org

TABLE II. SENSITIVITY FOR ALL FOLDS AND OVERALL ACCURACY OF

THE PROPOSED CSPF TECHNIQUE AND "SPM FOR FOLD RECOGNITION (FR)"

Fold index CSPF Sensitivity
SPM for FR

Sensitivity

 (Proteins) (%) (Proteins) (%)

a1 20/21 95.2 15/21 71.4

a3 20/20 100 17/20 85

a4 38/103 36.89 30/103 29.1

a24 28/28 100 28/28 100

a39 27/31 87.09 26/31 83

a60 21/25 84 19/25 76

a118 30/32 93.75 28/32 87.5

Class A (total) 184/260 70.76 163/260 62.7

b1 81/132 61.36 68/132 51.5

b2 20/20 100 19/20 95

b18 21/21 100 20/21 95.2

b29 22/24 91.6 21/24 87.5

b34 22/44 50 10/44 22.7

b40 26/61 42.6 25/61 41

b47 25/25 100 24/25 96

b55 18/24 75 16/24 66

b82 22/28 78.5 20/28 71.4

b121 27/27 100 26/27 96.3

Class B (total) 284/406 69.95 249/406 61.3

c1 82/143 57.34 16/143 11.2

c2 88/91 96.70 85/91 93.4

c3 20/22 90.9 22/22 100

c23 49/58 84.4 30/58 51.7

c26 31/35 88.57 29/35 82.9

c37 79/91 86.8 32/91 35.2

c47 34/39 87.1 22/39 56.4

c55 31/31 100 30/31 96.8

c56 18/20 90 20/20 100

c66 36/40 90 27/40 67.5

c67 30/31 96.77 31/31 100

c69 32/34 94.1 29/34 85.3

c94 22/23 95.6 19/23 82.6

Class C (total) 552/658 83.8 392/658 59.6

d15 39/44 88.6 21/44 47.7

d17 18/20 90 14/20 70

d58 38/102 37.25 22/102 21.6

d144 21/23 91.3 22/23 95.7

Class D (total) 116/189 90.4 79/189 41.8

f23 20/25 80 16/25 64

Class F (total) 20/25 80 16/25 64

g3 62/68 91.1 60/68 88.2

Class G (total) 62/68 91.1 60/68 88.2

Overall 1218/1606 75.84 959/1606 59.7

Using the same test datasets and in order to compare the
efficiency of the proposed model, SAM model [16] is also
employed. A comparison of the results obtained by CPSF,
"SPM for FR" and SAM (E-values ranking) are presented in
Table IV.

CSPF outperforms the other two models, where it reports
an overall accuracy of testing data equals to 34.32% while the
overall accuracy of "SPM for FR" model was 24.9% and
SAM’s overall accuracy was 29.4%. The classification results
of the proposed method CSPF, and "SPM for FR" algorithm
and SAM (E-values) of the test set are shown in Table IV.

In terms of space complexity, for a sequence file with n as
the number of sequences, and m as the number of items per
sequence and number of items equals to 20 which is the 20
amino acids, the space complexity of Mix&Test algorithm is
O(20m+n). In terms of time complexity, the complexity of
generating all the candidate patterns of Mix&Test with no gap
is O(n2). The complexity of generating all the candidate
patterns of Mix&Test with a gap m is O(n2)*m. The
complexity of discovering the frequent patterns is O(N).

IV. CONCLUSIONS

In this work, we proposed a CSFP technique for protein
fold recognition. This technique consisted of two main phases:
sequential patterns extraction and protein fold recognition.
Sequential patterns extraction phase introduced Mix & Test
algorithm. Several experiments were conducted to assess the
performance of Mix&Test and PMix. The performance of
M&T and PMix algorithms were compared with PrefixSpan,
SPAM and cSPADE algorithms.

In addition, performance of CSFP fold recognition was
compared with "SPM for FR" and SAM (E-values) models.
CSPF outperformed "SPM for FR" and SAM (E-values)
models with an overall accuracy for training data equals to
75.84% and "SPM for FR" model was 59.7% for testing data.
Future work of CSFP can be in several directions: utilizing
optimization techniques to enhance the prediction results and
applying high performance computing to provide very fast
process over protein sequences databases. In addition, more
protein sequences will be used.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 12, 2014

104 | P a g e

www.ijacsa.thesai.org

TABLE III. DETAILED SENSITIVITY RESULTS FOR ALL FOLDS UNDER

EVALUATION AND OVERALL ACCURACY OF THE PROPOSED CSPF MODEL IN

THE TEST SET

Fold index

CSPF

Sensitivity

(Proteins)

CSPF

Sensitivity

%

a1 4/11 36.36

a3 8/10 80

a4 3/52 5.7

a24 15/15 100

a39 11/15 37.3

a60 2/12 16.3

a118 3/16 18.75

Class A (total) 46/131 35.11

b1 31/66 46.9

b2 2/10 20

b18 3/10 30

b29 2/12 16.6

b34 11/22 50

b40 12/31 38.7

b47 10/12 83.7

b55 2/12 16.6

b82 0 0

b121 9/14 64.3

Class B (total) 82/203 40.39

c1 2/71 2.8

c2 36/46 78.2

c3 2/11 18.1

c23 11/29 37.9

c26 7/17 41.1

c37 9/46 19.5

c47 1/20 5

c55 1/15 6.6

c56 0 0

c66 3/20 15

c67 8/15 53.3

c69 3/17 17.6

c94 9/12 75

Class C (total) 92/329 27.9

d15 7/22 31.8

d17 1/10 10

d58 8/51 15.6

d144 3/12 25

Class D (total) 19/95 20

f23 8/12 66.6

Class F (total) 8/12 66.6

g3 29/34 85.2

Class G (total) 29/34 85.2

Overall 276/804 34.32

TABLE IV. CLASSIFICATION RESULTS OF THE PROPOSED METHOD CSPF,
"SPM FOR FR" ALGORITHM AND SAM (E-VALUES) IN THE TEST SET

Fold index

CSPF

Sensitivity

%

SAM(E-

values)

Sensitivity%

SPM for

FR

Sensitivity

%

a1 36.36 81.8 18.2

a3 80 60 20

a4 5.7 3.8 28.8

a24 100 6.7 33.3

a39 37.3 87.7 66.7

a60 16.3 16.7 16.7

a118 18.75 0 37.5

Class A (total) 35.11 25.2 32.1

b1 46.9 50 36.4

b2 20 0 30

b18 30 30 20

b29 16.6 25 8.3

b34 50 36.4 0

b40 38.7 6.5 19.4

b47 83.7 83.3 58.3

b55 16.6 25 0

b82 0 14.3 0

b121 64.3 7.1 64.3

Class B (total) 40.39 32 25.6

c1 2.8 14.1 0

c2 78.2 23.9 69.6

c3 18.1 100 9.1

c23 37.9 27.6 24.1

c26 41.1 11.8 47.1

c37 19.5 80.4 10.9

c47 5 25 0

c55 6.6 13.3 0

c56 0 10 0

c66 15 20 5

c67 53.3 80 46.7

c69 17.6 5.9 5.9

c94 75 25 58.3

Class C (total) 27.9 32.5 21

d15 31.8 0 9.1

d17 10 0 0

d58 15.6 3.9 3.9

d144 25 91.7 16.7

Class D (total) 20 13.7 6.3

f23 66.6 25 41.7

Class F (total) 66.6 25 41.7

g3 85.2 44.1 76.5

Class G (total) 85.2 44.1 76.5

Overall 34.32 29.4 24.9

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 12, 2014

105 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] A. Sharaf Eldin, T. H.A. Soliman, M. E. Marie, and M. M. Ghareeb, “A
Deep Glimpse into Protein Fold Recognition,” International Journal of
Sciences, vol. 2, pp.24-33, 2013.

[2] D. T. Jones, “GenTHREADER: An efficient and reliable protein fold
recognition method for genomic sequences,” J. Mol. Biol. vol. 287,
pp.797-815, 1999.

[3] Lin K, May A and Taylor W (2002) Threading using neural network
(TUNE): The measure of protein sequence-structure compatibility.
Bioinformatics, vol. 18, 1350-1357.

[4] W. Thomas, C. Igel, and J. Gebert, “Protein fold class prediction using
neural networks with tailored early-stopping,” IEEE International Joint
Conference on Neural Networks IJCNN, vol. 3, pp.1693 – 1697, 2004.

[5] A. Raval, Z. Ghahramani, and D. Wild, “A Bayesian network model for
protein fold and remote homologue recognition,” Bioinformatics, vol.
18: pp.788-801, 2002.

[6] J. Xu, “Fold recognition by predicted alignment accuracy,” IEEE/ACM
Trans. Comput. Biol. Bioinform, vol. 2 , pp.157-165, 2005.

[7] M. Judy and K. Ravichandran, “A solution to protein folding problem
using a genetic algorithm with modified keep best reproduction
strategy,” Proceeding of IEEE Congress on Evolution Computation,
Sep. 25-28, Singapore, pp. 4776-4780, 2007.

[8] R. Unger, “The genetic algorithm approach to protein structure
prediction,” Struct. Bond., vol. 110 , pp.153-175, 2004.

[9] S. Han, B. Lee, S. Yu, C. Jeong, S. Lee, and D. Kim, “Fold recognition
by combining profile-profile alignment and support vector machine,”
Bioinformatics, vol. 21, pp.2667-2673, 2005.

[10] W. Chmielnicki and K. Stapor, “Protein fold recognition with combined
SVM-RDA classifier,” Proceedings of the HAIS, Part I, LNAI 2010,
vol. 6076, pp.162-169, 2010.

[11] F. Liang and W. Wong, “Evolutionary Monte Carlo for protein folding
simulations,” J. Chemi. Phy., vol.115, pp.3374-3380, 2001.

[12] N. Alione, “Parallel evolution strategy on grids for the protein threading
problem,” J. Parallel Distributed Computing, vol. 66, pp.489-1502,2006.

[13] C. Carpio, S. Sasaki, L. Baranyi, and H. Okada, “A parallel hybrid GA
for peptide 3D structure prediction,” Proceedings of the Workshop on
Genome Informatics, Universal Academy Press, Tokyo, 1995.

[14] R. Islam and A. Ngom, “Parallel evolution strategy for protein
threading,” Proceedings of the 25th International Conference on Chilean
Computer Science Society, IEEE Computer Society, Washington, DC.,
USA, pp. 2347 – 2354, 2005.

[15] D. Nguyen, I. Yoshihara, K. Yamamori, and M. Yasunaga, “Aligning
multiple protein sequences by parallel hybrid genetic algorithm,”
Genome Inform, vol. 13, pp.123-132, 2002.

[16] S. Thomas and N. Amato, “Parallel protein folding with STAPL,”
Proceedings of the IEEE 18th International Parallel and Distributed
Processing Symposium, Washington, DC., USA., doi:
10.1109/IPDPS.2004.1303204, 2004.

[17] R. Agrawal and R. Srikant, “Mining sequential patterns,” Proceedings of
the 1995 International Conference on Data Engineering, pp.3–14, 1995.

[18] A. Brazma, I. Johansen, J. Vilo, E. Ukkonen, “Pattern Discovery and
Biosequences,” Honavar, V G, Slutzki G (eds.) ICGI, LNCS (LNAI)
2000, vol. 1433, pp.257-270, Springer, Heidelberg, 2000.

[19] M. Ester, “A top-down method for mining most specific frequent
patterns in biological sequence data,” Proceedings of the 2004 SIAM
International Conference on Data Mining (SDM ’04), pp. 90–101, 2004.

[20] K. Wang, Y. Xu, and J. Yu, “Scalable sequential pattern mining for
biological sequences,” Proceedings of the 2004 ACM International
Conference on Information and Knowledge Management (CIKM ’04),
pp. 178–187, 2004.

[21] Y. Xiong, J. He, and Y. Zhu, “TOPPER: An algorithm for mining top k
patterns in biological sequences based on regularity measurement,”
Proceedings of IEEE Bioinformatics and Biomedicine Workshops
(BIBMW), pp.283-288, 2004.

[22] L. Chen and W. Liu W, “An algorithm for mining frequent patterns in
biological sequence,” Proceedings of the IEEE 1st International

Conference on Computational Advances in Bio and Medical Sciences
(ICCABS), pp. 63-68, 2011.

[23] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. Hsu,
“FreeSpan: frequent pattern-projected sequential pattern mining,”
Proceedings of the ACM 2000 SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’00), pp. 355–359, 2000.

[24] M. Zaki, “SPADE: an efficient algorithm for mining frequent
sequences,” Machine Learning, vol. 42 (1/2), pp.31–60, 2001.

[25] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal,
and M. Hsu, “Mining sequential patterns by pattern-growth: the
PrefixSpan approach,” IEEE Transactions on Knowledge and Data
Engineering, vol. 16 (11), pp.1424–1440, 2004.

[26] X. Yan, J. Han, and R. Afshar, “CloSpan: mining closed sequential
patterns in large datasets,” Proceedings of the 2003 SIAM International
Conference on Data Mining (SDM ’03), pp. 166–177, 2003.

[27] P. Tzvetkov, X. Yan, and J. Han, “TSP: mining Top-K closed sequential
patterns,” Knowledge and Information Systems, vol. 7 (4), pp. 438–457,
2005.

[28] J. Wang, J. Han, and C. Li, “Frequent closed sequence mining without
candidate maintenance,” IEEE Transactions on Knowledge and Data
Engineering, vol. 19 (8), pp.1042–1056, 2007.

[29] C. Luo and S. Chung, “Efficient mining of maximal sequential patterns
using multiple samples,” Proceedings of the 2005 SIAM International
Conference on Data Mining (SDM ’05), pp. 64–72, 2005.

[30] J. Pei, J. Han, and W. Wang, “Mining sequential patterns with
constraints in large databases,” Proceedings of the 2002 ACM
International Conference on Information and Knowledge Management
(CIKM ’02), pp. 18–25, 2002.

[31] X. Ji, J. Bailey, and G. Dong, “Mining minimal distinguishing
subsequence patterns with gap constraints,” Knowledge and Information
Systems, vol. 11 (3), pp.259–296, 2005.

[32] E. Chen, H. Cao, Q. Li, and T. Qian, “Efficient strategies for tough
aggregate constraint-based sequential pattern mining,” Information
Sciences; 178 (6), pp.1498–1518, 2008.

[33] H. Kum, J. Pei, W. Wang, and D. Duncan, “ApproxMAP: approximate
mining of consensus sequential patterns,” Proceedings of the 2003
SIAM International Conference on Data Mining (SDM ’03), pp. 311–
315, 2003.

[34] C. Kum, J. Chang, and W. Wang, “Sequential pattern mining in multi-
databases via multiple alignment,” Data Mining and Knowledge
Discovery, vol.12, pp.151–180, 2002.

[35] J. Yang, P. Yu, W. Wang, and J. Han, “Mining long sequential patterns
in a noisy environment,” Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’02), pp.
406–417, 2002.

[36] H. Cheng, X. Yan, and J. Han, “IncSpan: incremental mining of
sequential patterns in large databases,” Proceedings of the 2004 ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’04), pp. 527–532, 2004.

[37] M. Lin, S. Hsueh, and C. Chang, “Fast discovery of sequential patterns
in large databases using effective time-indexing,” Information Sciences,
vol.178(22), pp.4228–4245, 2008.

[38] M. Zaki, “Sequence Mining in Categorical Domains: Incorporating
Constraints,” Proceedings of the in 9th Int’l Conference on Information
and Knowledge Management, Washington, DC, 2000.

[39] T. Exarchos, C. Papaloukas, C. Lampros, and D. Fotiadis, “Mining
sequential patterns for protein fold recognition,” Journal of Biomedical
Informatics, vol. 41: 165–179, 2008.

[40] U. Sakakibara, “Grammatical Inference in Bioinformatics,” IEEE
Transactions on Pattern Analysis and Machine Intelligence 27(7), pp.
1051-1062, 2005.

[41] P. Peris, D. Lopez, and M. Campos, “Igtm: an algorithm to predict
transmembrane domains and toplogy in proteins,” BMC-Bioinformatics
9, pp.367-378, 2008.

[42] P. Peris, D. Lopez, M. Campo, and J. Sempere, “Protein motif prediction
by grammatical inference,” In Sakakibara, Y., Y., Kobayashi, S., K.,
Nishino, T., Tomita, E. (eds) ICGI 2006. (LNCS (LNAI), vol. 4201,

http://www.mendeley.com/research/protein-fold-class-prediction-using-neural-networks-tailored-earlystopping/
http://www.mendeley.com/research/protein-fold-class-prediction-using-neural-networks-tailored-earlystopping/
http://dx.doi.org/10.1109/IPDPS.2004.1303204
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yun%20Xiong.QT.&searchWithin=p_Author_Ids:37557517600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Junhua%20He.QT.&searchWithin=p_Author_Ids:37309558100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yangyong%20Zhu.QT.&searchWithin=p_Author_Ids:37559216900&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5695144
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5695144
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ling%20Chen.QT.&searchWithin=p_Author_Ids:37280379600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wei%20Liu.QT.&searchWithin=p_Author_Ids:37834924500&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5724107
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5724107

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 12, 2014

106 | P a g e

www.ijacsa.thesai.org

pp.175-187. Springer, Heidelberg, 2008.

[43] T. Yokomori and S. Kobayashi, “Learning Local Languages and Their
Application to DNA Sequence Analysis,” IEEE Transactions Pattern
Analysis Machine Intelligence, 20(10), pp.1067-1079, 1998.

[44] H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig, I.
Shindyalov, P. Bourne, “The Protein Data Bank,” Nucleic Acids
Research, Vol. 28, pp.235–242, 2000.

[45] D. Fischer, “Servers for protein structure prediction,” Curr Opin Struct
Biol, vol. 16(2), pp.178–182, 2006.

