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Abstract— To make cloud computing model Practical and to 

have essential characters like rapid elasticity, resource pooling, 

on demand access and measured service, two prominent 

technologies are required. One is internet and second important 

one is virtualization technology. Virtualization Technology plays 

major role in the success of cloud computing. A virtualization 

layer which provides an infrastructural support to multiple 

virtual machines above it by virtualizing hardware resources 

such as CPU, Memory, Disk and NIC is called a Hypervisor. It is 

interesting to study how different Hypervisors perform in the 

Private Cloud. Hypervisors do come in Paravirtualized, Full 

Virtualized and Hybrid flavors. It is novel idea to compare them 

in the private cloud environment. This paper conducts different 

performance tests on three hypervisors XenServer, ESXi and 

KVM and results are gathered using SIGAR API (System 

Information Gatherer and Reporter) along with Passmark 

benchmark suite. In the experiment, CloudStack 4.0.2 (open 

source cloud computing software) is used to create a private 

cloud, in which management server is installed on Ubuntu 12.04 – 

64 bit operating system. Hypervisors XenServer 6.0, ESXi 4.1 and 

KVM (Ubuntu 12.04) are installed as hosts in the respective 

clusters and their performances have been evaluated in detail by 
using SIGAR Framework, Passmark and NetPerf. 

Keywords—CloudStack; Hypervisor; Management Server; 

Private Cloud; Virtualization Technology; SIGAR; Passmark  

I. INTRODUCTION 

Cloud computing is a model for enabling convenient, on-
demand network access to a shared pool of configurable 
computing resources such as networks, servers, storage, 
applications, and services that can be rapidly provisioned and 
released with minimal management effort or service provider 
interaction [1]. 

Virtualization, in computing, refers to the act of creating a 
virtual version of something, including but not limited to a 
virtual computer hardware platform, operating system, storage 
device, or computer network resources. Storage virtualization 
is amalgamation of multiple network storage devices into what 
appears to be a single storage unit. Server virtualization is 
partitioning of a physical server into smaller virtual servers. 
Operating system-level virtualization is a type of server 
virtualization technology which works at the operating system 
(kernel) layer. Network virtualization is using network 

resources through a logical segmentation of a single physical 
network. Virtualization is the technology which increases the 

utilization of physical servers and enables portability of virtual 
servers between physical servers. Virtualization Technology 
gives the benefit of work load isolation, work load migration 
and work load consolidation.  

For being able to reduce hardware cost, cloud computing 
uses virtualization. Virtualization technology has evolved 
really quickly during past few years. Also it is particularly due 
to hardware progresses made by AMD and Intel. Virtualization 
is a technology that combines or divides computing resources 
to present one or many operating environments using 
methodologies like hardware and software partitioning or 
aggregation, partial or complete machine simulation, 
emulation, timesharing, and many others [2]. A virtualization 
layer provides an infrastructural support using the lower-level 
resources to create multiple virtual machines that are 
independent and isolated from each other. Such a virtualization 
layer is also called Hypervisor. [2]. 

Cloud computing allows customers to reduce the cost of the 
hardware by allowing resources on demand. Also customers of 
the service need to have guaranty of the good functioning of 
the service provided by the cloud. The Service Level 
Agreement brokered between the providers of cloud and the 
customers is the guarantees from the provider that the service 
will be delivered properly [3]. 

This paper provides a quantitative comparison of three 
hypervisors Xen Server 6.0, VMware ESXi Server 4.1 and 
KVM (Ubuntu 12.04) in the private cloud environment. 
Microsoft Windows 2008 R2 server is installed on three 
hypervisors as a guest operating system and a series of 
performance experiments are conducted on the respective guest 
OS and results are gathered using SIGAR [36], Passmark [16] 
and NetPerf [35]. This technical paper presents and analyses 
the results of these experiments. The discussion in this paper 
should help both IT decision makers and end users to choose 
the right virtualization hypervisor for their respective private 
cloud environments. The experimental results indicate that both 
XenServer and VMware ESXi Server deliver almost equal and 
near native performance in all the tests except in CPU test 
ESXi is performing marginally better than XenServer and in 
Memory test XenServer performing slightly better than that of 
ESXi Server. Furthermore, KVM performance is noticeably 
lower than that of XenServer and ESXi Server, hence it needs 
to improve in all the performance aspects. 
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II. VIRTUALIZATION TECHNIQUES 

This section describes the different virtualization techniques 
namely, Full virtualization and Paravirtualization used by 
different hypervisors. 

X86 operating systems are designed to run directly on the 
bare-metal hardware, so they naturally assume they fully ‘own’ 
the computer hardware. The x86 architecture offers four levels 
of privilege known as Ring 0, 1, 2 and 3 to operating systems 
and applications to manage access to the computer hardware. 
While user level applications typically run in Ring 3, the 
operating system needs to have direct access to the memory 
and hardware and must execute its privileged instructions in 
Ring 0. Virtualizing the x86 architecture requires placing a 
virtualization layer under the operating system (which expects 
to be in the most privileged Ring 0) to create and manage the 
virtual machines that deliver shared resources. Three 
alternative techniques now exist for handling sensitive and 
privileged instructions to virtualize the x86 Architecture. Full 
virtualization [17] approach, translates kernel code to replace 
non-virtualizable instructions with new sequences of 
instructions that have the intended effect on the virtual 
hardware. This combination of binary translation and direct 
execution provides Full virtualization as the guest OS is fully 
abstracted (completely decoupled) from the underlying 
hardware by the virtualization layer. The full virtualization 
approach allows datacenters to run an unmodified guest 
operating system, thus maintaining the existing investments in 
operating systems and applications and providing a non-
disruptive migration to virtualized environments. VMware 
ESXi server uses a combination of direct execution and binary 
translation techniques [4] to achieve full virtualization of an 
x86 system. Paravirtualization [17], involves modifying the OS 
kernel to replace non-virtualizable instructions with hyper-calls 
that communicate directly with the virtualization layer 
hypervisor. The hypervisor also provides hyper-call interfaces 
for other critical kernel operations such as memory 
management, interrupt handling and time keeping. The 
paravirtualization approach modifies the guest operating 
system to eliminate the need for binary translation. Therefore it 
offers potential performance advantages for certain workloads 
but requires using specially modified operating system kernels 
[4]. The Xen open source project was designed initially to 
support paravirtualized operating systems. While it is possible 
to modify open source operating systems, such as Linux and 
OpenBSD, it is not possible to modify “closed” source 
operating systems such as Microsoft Windows. Hardware 
vendors are rapidly embracing virtualization and developing 
new features to simplify virtualization techniques. First 
generation enhancements include Intel Virtualization 
Technology (VT-x) and AMD’s AMD-V which both target 
privileged instructions with a new CPU execution mode feature 
that allows the VMM to run in a new root mode below ring 0. 
The hardware virtualization [17] support enabled by AMD-V 
and Intel VT technologies introduces virtualization in the x86 
processor architecture itself.  

III. HYPERVISOR MODELS 

All three hypervisors which used in the experiment are 
discussed from viewpoint of their virtualization technique.  

A. Paravirtualized Hypervisor  

XenServer - Citrix XenServer is an open-source, complete, 
managed server virtualization platform built on the powerful 
Xen Hypervisor. Xen [21] uses para-virtualization. Para-
virtualization modifies the guest operating system so that it is 
aware of being virtualized on a single physical machine with 
less performance loss. XenServer is a complete virtual 
infrastructure solution that includes a 64-bit Hypervisor with 
live migration, full management console, and the tools needed 
to move applications, desktops, and servers from a physical to a 
virtual environment [8]. Based on the open source design of 
Xen, XenServer is a highly reliable, available, and secure 
virtualization platform that provides near native application 
performance [8]. Xen usually runs in higher privilege level than 
the kernels of guest operating systems. It is guaranteed by 
running Xen in ring 0 and migrating guest operating systems to 
ring 1. When a guest operating system tries to execute a 
sensitive privilege instruction (e.g., installing a new page 
table), the processor will stop and trap it into Xen [9]. In Xen, 
guest operating systems are responsible for allocating the 
hardware page table, but they only have the privilege of direct 
read, and Xen [9] must validate updating the hardware page 
table. Additionally, guest operating systems can access 
hardware memory with only non-continuous way because Xen 
occupies the top 64MB section of every address space to avoid 
a TLB flush when entering and leaving the Hypervisor [9]. 
XenServer is a complete virtual infrastructure solution that 
includes a 64-bit Hypervisor [8]. 

B. Full virtualized Hypervisor 

ESXi Server - VMware ESXi is a Hypervisor aimed at 
server virtualization environments capable of live migration 
using VM motion and booting VMs from network attached 
devices. VMware ESXi supports full virtualization [7]. The 
Hypervisor handles all the I/O instructions, which necessitates 
the installation of all the hardware drivers and related software. 
It implements shadow versions of system structures such as 
page tables and maintains consistency with the virtual tables by 
trapping every instruction that attempts to update these 
structures. Hence, an extra level of mapping is in the page 
table. The virtual pages are mapped to physical pages 
throughout the guest operating system‘s page table [6]. The 
Hypervisor then translates the physical page (often-called 
frame) to the machine page, which eventually is the correct 
page in physical memory.  

This helps the ESXi server better manage the overall 
memory and improve the overall system performance [19]. 
VMware‘s proprietary ESXi Hypervisor, in the vSphere cloud-
computing platform, provides a host of capabilities not 
currently available with any other Hypervisors. These 
capabilities include High Availability (the ability to recover 
virtual machines quickly in the event of a physical server 
failure), Distributed Resource Scheduling (automated load 
balancing across a cluster of ESXi servers), Distributed Power 
Management (automated decommissioning of unneeded servers 
during non-peak periods), Fault Tolerance (zero downtime 
services even in the event of hardware failure), and Site 
Recovery Manager (the ability to automatically recover virtual 
environments in a different physical location if an entire 
datacenter outage occurs) [7]. 
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C. Hybrid methods 

 KVM - KVM (Kernel-based Virtual Machine) is another 
open-source Hypervisor using full virtualization apart from 
VMware. And also as a kernel driver added into Linux, KVM 
enjoys all advantages of the standard Linux kernel and 
hardware-assisted virtualization thus depicting hybrid model. 
KVM introduces virtualization capability by augmenting the 
traditional kernel and user modes of Linux with a new process 
mode named guest, which has its own kernel and user modes 
and answers for code execution of guest operating systems [9]. 
KVM comprises two components: one is the kernel module and 
another one is userspace. Kernel module (namely kvm.ko) is a 
device driver that presents the ability to manage virtual 
hardware and see the virtualization of memory through a 
character device /dev/kvm. With /dev/kvm, every virtual 
machine can have its own address space allocated by the Linux 
scheduler when being instantiated [9]. The memory mapped for 
a virtual machine is actually virtual memory mapped into the 
corresponding process. Translation of memory address from 
guest to host is supported by a set of page tables. KVM can 
easily manage guest Operating systems with kill command and 
/dev/kvm. User-space takes charge of I/O operation‘s 
virtualization. KVM also provides a mechanism for user-space 
to inject interrupts into guest operating systems. User-space is a 
lightly modified QEMU, which exposes a platform 
virtualization solution to an entire PC environment including 
disks, graphic adapters and network devices [9]. Any I/O 
requests of guest operating systems are intercepted and routed 
into user mode to be emulated by QEMU [9]. 

IV. RELATED WORK 

The following papers are studied to understand about the 
relevant work which had happened in the selected research 
area. 

Benchmark Overview - vServCon a white paper by 
FUJITSU [10], scalability measurements of virtualized 
environments at Fujitsu Technology Solutions are currently 
accomplished by means of the internal benchmark "vServCon" 
(based on ideas from Intel‘s "vConsolidate"). The abbreviation 
"vServCon" stands for: "virtualization enables SERVer 
CONsolidation. A representative group of application scenarios 
is selected in the benchmark. It is started simultaneously as a 
group of VMs on a virtualization host when making a 
measurement. Each of these VMs is operated with a suitable 
load tool at a defined lower load level. All known virtualization 
benchmarks are thus based on a mixed approach of operating 
system and applications plus an "idle" or "standby" VM, which 
represents the inactive phases of a virtualization environment 
and simultaneously increases the number of VMs to be 
managed by the Hypervisor [10]. 

The virtualization overhead involves performances 
depreciation rather to native performances. Research have been 
made to measure the overhead of the virtualization for different 
hypervisor such as XEN, KVM and VMware ESX [11]; [12]; 
[13]; [14]; [15]. For their researches Menon used a toolkit 
called Xenoprof which is a system wide statistical tool 
implemented specially for Xen [13]. Due to this toolkit they 
have managed to analyse the performances of the overhead of 
network I/O devices. Their study has been performed within 

uniprocessor as well as multiprocessor. A part of their research 
has been dedicated to performance debugging of Xen using 
Xenoprof. Those researches have permitted to correct bugs and 
improve by that the network performances significantly. After 
the debugging part it has been focused on the network 
performances. It has been observed that the performance seems 
to be almost the same between Xen Domain0 and native 
performances. However if the number of interfaces increase, 
the receive throughput of the domain0 is significantly smaller 
than the native performances. This degradation of network 
performances is cause by an increasing CPU utilisation. 
Because of the overhead caused by the virtualization there are 
more instructions that need to be managed by the CPU. This 
involves more information to treat and bufferization by the 
CPU which cause a degradation of receive throughput 
compared to native performances. More recent studies try to 
compare the differences between hypervisors and especially the 
performances of each one according to their overhead 
[12];[15]. They are using three different benchmark tools to 
measure the performances: LINPACK, LMbench and Iozone. 
Their experiment is divided in three parts according to the 
specific utilisation of each tool. With LINPACK Jianhua had 
tested the processing efficiency on floating point. Different 
pick value has been observed over the different systems tested 
which are native performance, Xen and KVM. The result of 
this show that the processing efficiency of Xen on floating 
point is better than KVM because Fedora 8 virtualized with 
Xen have performances which represent 97.28% of the native 
rather than Fedora 8 virtualized with KVM represent only 
83.46% of the native performances. The virtualization of 
Windows XP comes up with better performances than with the 
virtualization of fedora 8 on Xen. This is explained by the 
authors by the fact that Xen own fewer enhancement packages 
for windows XP than for fedora 8because of that the 
performances of virtualized windows XP are slightly better 
than virtualized fedora 8. 

After having testing the processing efficiency with 
LINPACK, Jianhua have analysed memory virtualization of 
Xen and KVM compared to native memory performances with 
LMbench. It has been observed that the memory bandwidth in 
reading and writing of Xen are really close to native 
performances. However the performances of KVM are slightly 
slower for reading but significantly slower concerning the 
writing performances. The last tool used by Jianhua is IOzone 
which is used to perform file system benchmark. Once again 
the native performances are compared to the virtualization 
performances of Xen and KVM. Without Intel-VT processor 
the performances of either Xen or KVM are around 6 or 7 
times slower than the native performances. However within the 
Intel-VT processor the performances of Xen increase 
significantly because the performances are even better than 
native performances. However KVM does not exploit the 
functionalities of the Intel-VT processors and because of that 
does not improve its performances. 

After analysing the relevant work on hypervisors 
performance we have chosen the below experimentation to 
compare the respective hypervisors in the private cloud 
environment with CloudStack using SIGAR framework which 
is a novel idea. 
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V. TEST METHODOLOGY - PRIVATE CLOUD: CLOUDSTACK 

WITH HYPERVISORS 

In our experiment, the proposed test environment contains 
following infrastructure using open source cloud computing 
software. CloudStack is an Infrastructure as a service (IaaS) 
cloud based software which is able to rapidly build and provide 
private cloud environments or public cloud services. 
Supporting KVM, XenServer and Vmware ESXi, CloudStack 
is able to build cloud environments with a mix of multiple 
different hypervisors. With rich web interface for users and 
administrators with operations of cloud use and operation being 
performed on a browser. Additionally, the architecture is made 
to be scalable for large-scale environments [22]. CloudStack is 
open source software written in java that is designed to deploy 
and manage large networks of virtual machines, as a highly 
available, scalable cloud computing platform. CloudStack 
offers three ways to manage cloud computing environments: an 
easy-to-use web interface, command line and a full-featured 
RESTful API [22]. Private clouds are deployed behind the 
firewall of a company where as public cloud is usually 
deployed over the internet. It is always ideal to use open source 
solutions to perform any experiment related to cloud 
computing.  

In our test environment XenServer, ESXi and KVM   are 
used as hypervisors (Hosts) in the CloudStack (private cloud). 
One machine is Management Server, runs on a dedicated 
server. It controls allocation of virtual machines to hosts and 
assigns storage and IP addresses to the virtual machine 
instances. The Management Server runs in a Tomcat container 
and requires a MySQL database for persistence. In the 
experiment, Management Server is installed on Ubuntu (12.04 
64-bit). On the host servers XenServer 6.0, ESXi 4.1 and KVM 
(Ubuntu 12.04) [31] hypervisors are installed as depicted in 
Fig. 1. Front end will be any base machine to launch 
CloudStack UI using web interface (with any browser software 
IE, Firefox, Safari) to provision the cloud infrastructure by 
creating zone, pod, cluster and host in the sequential order. 
After respective hypervisors are in place, guest OS Windows 
2008 R2 64-bit [33] installed on them to carry out all 
performance tests. 

 

Fig. 1. Test Environment Architecture – Private Cloud (CloudStack with 
Multiple hypervisors) 

A typical enterprise datacenter runs a mix of CPU, memory, 
and I/O-intensive applications. Hence the test workloads 
chosen for these experiments comprise several well-known 
standard benchmark tests. Passmark, a synthetic suite of 
benchmarks intended to isolate various aspects of workstation 
performance, was selected to represent desktop-oriented 
workloads. Disk I/O performance is measured using Passmark. 
CPU and Memory performance on the guest OS are measured 
using SIGAR Framework. SIGAR (System Information 
Gatherer and Reporter) is a cross-platform, cross-language 
library and command-line tool for accessing operating system 
and hardware level information in Java, Perl and .Net. In the 
experiment, Java program has written to gather system 
information using SIGAR API by deploying sigar-amd64-
winnt.dll for Windows. And for network performance Netperf 
is used in the experiment. Netperf was used to simulate the 
network usage in a datacenter. The objective of these 
experiments was to test the performance of the three 
virtualization hypervisors. The tests were performed using a 
Windows 2008 R2 64-bit as guest operating system. The 
benchmark test suites are used in these experiments only to 
illustrate performance of the three hypervisors. 

VI. RESULTS 

This section provides the detailed results for each of the 
benchmarks run. Disk I/O and Network Performance results 
have been normalized to native performance measures. Native 
performance is normalized at 1.0 and all other various 
benchmark results are shown relative to that number. Hence 
benchmark results of 90% of the native performance would be 
shown as 0.9 on the scale in the graph. Higher numbers 
indicate better performance of the particular virtualization 
platform, unless indicated otherwise. Near-native performance 
also indicates that more virtual machines can be deployed on a 
single physical server, resulting in higher consolidation ratios. 
This can help even if an enterprise plans to standardize on 
virtual infrastructure for server consolidation alone. CPU 
utilization tests indicate lower CPU utilization is better for a 
hypervisor, which is evaluated by using SIGAR API. In case of 
Memory tests, High available memory indicated better 
performance of a hypervisor which gathered using SIGAR. 

A. SIGAR 

CPU utilization on the guest Operating System is captured 
when it is running on the respective Hypervisor. CPU 
utilization details are captured through java program using 
SIGAR API on the guest OS for each hypervisor. As shown in 
Fig. 2, ESXi for its guest OS shows less utilization of CPU as 
compared to other hypervisors. Lower utilization CPU 
indicates the better performance for a hypervisor. XenServer 
also shows low utilization of CPU for its guest OS but little 
higher than ESXi hypervisor. On the other hand KVM’s CPU 
utilization is slightly high for its guest OS as compared to other 
two hypervisors. 

Memory performance is evaluated by considering the 
available memory in the respective hypervisor when the single 
guest Operating Systems is given full available memory. 
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Fig. 2. CPU Utilization captured using SIGAR (Lower value is better) 

Fig. 3 shows Available memory on the respective 
hypervisor when guest OS is running. Memory details are 
captured using Java program with SIGAR API on the guest OS. 
XenServer for its guest OS shows maximum available memory 
as compared to other hypervisors. Higher available memory 
indicates better performance for a hypervisor. ESXi also 
exhibits higher available memory only but slightly less 
compared to XenServer. KVM indicates marginally less 
available memory compare to other hypervisors. 

 
Fig. 3. Available Memory captured using SIGAR (Higher Value is better) 

B. PASSMARK 

The following Fig. 4 shows benchmark results for Passmark 
Disk I/O read write tests. Sequential Read and Sequential Write 
are the disk mark tests which were conducted on the three 
hypervisors in the private cloud environment. Both XenServer 
and ESXi perform almost equal to native performance. 

 

 

Fig. 4. Passmark – Disk I/O Read Write results compared to native (Higher 
values are better) 

In Sequential Read and Sequential Write XenServer slightly 
shows better performance than that of VMWare ESXi Server. 
In overall disk mark performance XenServer shows 2.7% 
overhead vs native whereas ESXi shows 3.4% overhead vs 
native. KVM significantly falls behind other two hypervisors 
and native as well. 

C. NETPERF 

For experiment, in the private cloud for all the three 
hypervisors, Netperf test involved running single client 
communicating with single virtual machine through a dedicated 
physical Ethernet adapter and port. All tests are based on the 
Netperf TCP_STREAM test. Fig. 5 shows the Netperf results 
for send and receive tests. XenServer and ESXi demonstrated 
near native performance in Netperf test, while KVM lags 
behind other hypervisors and native. 

 

Fig. 5. Netperf results compared to native (higher values are better) 
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VII. DISCUSSION ON RESULTS 

Performance results show convincingly that XenServer and 
ESXi Server both perform equally well in all experiments close 
to near native performance without showing the signs of any 
virtualization overhead except KVM falling behind other two 
hypervisors and native as well.  

In CPU utilization tests ESXi CPU utilization is 0.06% less 
than that of XenServer and 0.24% less than that of KVM thus 
exhibiting better performance in CPU utilization. In memory 
tests XenServer available memory is 1% more than that of 
ESXi Server and 6% more than that of KVM hence showing 
better memory performance among two other hypervisors. In 
I/O tests XenServer scores over ESXi and KVM, where 
XenServer shows 4% overhead in sequential read and 6% 
overhead in sequential write as compared to native. ESXi 
shows 5% overhead in sequential read and 7% overhead in 
sequential write as compared to native. And KVM shows 35% 
overhead in sequential read and 36% overhead in sequential 
write as compared to native. In Network performance tests both 
XenServer and ESXi gives near native performance and KVM 
falls marginally behind other two hypervisors. In Client-
Receive tests both XenServer and ESXi gives performance 
equal to native and in Client-Send tests XenServer gives equal 
to native performance but ESXi shows 3% overhead as 
compared to native. In Client-Send and Client-Receive tests 
KVM shows 22% overhead as compared to native.  

On overall XenServer and ESXi two hypervisors are 
reliable, affordable and offer the windows or any other guest 
operating system IT professional a high performance platform 
for server consolidation for production workloads. KVM needs 
to improve up on almost all fronts if it has to become on par 
with other two hypervisors. ESXi and XenServer are matured 
hypervisors as compare to KVM and their Reliability, 
Availability and Serviceability (RAS) is significantly higher 
than that of KVM. 

VIII. CONCLUSION AND FUTURE WORK 

The objective of this experiment is to evaluate the 
performance of VMWare ESXi Server, XenServer and KVM 
Hypervisors in the private cloud environment. After evaluation 
results indicate that XenServer and ESXi hypervisors exhibit 
impressive performance in comparison with KVM. 
Virtualization infrastructure should offer certain enterprise 
readiness capabilities such as maturity, ease of deployment, 
performance, and reliability. From the test results VMware 
ESXi Server and XenServer are better equipped to meet the 
demands of an enterprise datacenter than the KVM hypervisor. 
And KVM needs significant improvement to become an 
enterprise ready hypervisor. The series of tests conducted for 
this paper proves that VMware ESXi Server and XenServer 
delivers the production-ready performance needed to 
implement an efficient and responsive datacentre in the private 
cloud environment. 

The performance tests are conducted in the private cloud 
with 64-bit Windows guest operating system. While evaluating 
network performance, one client send and receive tests are 
performed on three hypervisors which are supported by 
CloudStack private cloud platform. The future work can 

include multiple client send and receive network tests for 
hypervisors. Experiments can also be carried out with 
paravirtualized Linux guest operating system as well. With 
more workloads scalability tests can be performed with other 
hypervisors which are not covered in the present experiment. 
And future work can also consider public cloud environment 
for experimentation.  
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