
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

77 | P a g e
www.ijacsa.thesai.org

Early Development of UVM based Verification

Environment of Image Signal Processing Designs

using TLM Reference Model of RTL

Abhishek Jain
1Imaging Group and 2Jaypee Business School

1STMicroelectronics and 2Jaypee Institute of Information

Technology Greater Noida, India

Sandeep Jana

SDS Group

STMicroelectronics Greater Noida,

India

Dr. Hima Gupta

Jaypee Business School

Jaypee Institute of Information Technology

Noida, India

Krishna Kumar

SDS Group

STMicroelectronics Greater Noida,

 India

Abstract—With semiconductor industry trend of “smaller the

better”, from an idea to a final product, more innovation on

product portfolio and yet remaining competitive and profitable

are few criteria which are culminating into pressure and need for

more and more innovation for CAD flow, process management

and project execution cycle. Project schedules are very tight and

to achieve first silicon success is key for projects. This

necessitates quicker verification with better coverage matrix.

Quicker Verification requires early development of the

verification environment with wider test vectors without waiting

for RTL to be available.

In this paper, we are presenting a novel approach of early

development of reusable multi-language verification flow, by

addressing four major activities of verification –

1. Early creation of Executable Specification

2. Early creation of Verification Environment

3. Early development of test vectors and

4. Better and increased Re-use of blocks

Although this paper focuses on early development of UVM

based Verification Environment of Image Signal Processing

designs using TLM Reference Model of RTL, same concept can
be extended for non-image signal processing designs.

Keywords—SystemVerilog; SystemC; Transaction Level

Modeling; Universal Verification Methodology (UVM); Processor

model; Universal Verification Component (UVC); Reference Model

I. INTRODUCTION

Image signal processors (ISP) address different markets,
including high-end smartphones, security/surveillance, gaming,
automotive and medical applications. The use of industry
standard interfaces and rich set of APIs makes the integration

Fig. 1. Verification Environment of Image Signal Processing Design

of image processors a straightforward process and helps to
reduce end-product time to market.

Image signal processing algorithms are developed and
evaluated using C/Python models before RTL implementation.
Once the algorithm is finalized, C/Python models are used as a
golden reference model for the IP development. To maximize
re-use of design effort, the common bus protocols are defined
for internal register and data transfers.

SystemL

SCOREBOARD

DATA

BUS UVC

(Monitor)

AMBA AXI UVC

Register Sequences

SystemVerilog

Test Case

Virtual platform with

AMBA Transactor

C Test Case

DATA BUS

UVC

(Driver)

RTL

UVM_REG Register
and Memory model

Core

Virtual

Register

Interface

Processor Model

SystemVerilog TestBench

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

78 | P a g e
www.ijacsa.thesai.org

A combination of such configurable image signal
processing IP modules are integrated together to satisfy a wide
range of complex image signal processing SoCs [1].

In Verification Environment of Image Signal Processing
design as shown in figure 1, Host interface path is used to do
programming of configurable blocks using SystemVerilog
UVM based test cases. UVM_REG register and memory
model [20] is used to model registers and memories of DUT.
DUT registers are written/read via control bus (AXI3 Bus here)
UVC. RTL control bus interface acts as target and control bus
UVC acts as initiator. The target control interface of the ISP
RTL is driven by control bus UVC (configured as
initiator).After register programming is done, image
data(random/user-defined) is driven to the data bus interface by
the data bus UVC and the same data is also driven to the
reference model. Output of the ISP RTL is received by the
receiver/monitor of the data bus UVC. Scoreboard compares
the output of RTL and reference model and gives the status
saying whether the both output matches or not.

‘C’ test cases are used for programming of RTL
registers/memories via CPU interface. C test cases control the
SystemVerilog Data Bus UVC using Virtual Register Interface
(VRI) [15], [18]. VRI layer is a virtual layer over verification
components to make it controllable from embedded software. It
gives flexibility to Verification Environment users to use the
Verification IPs without knowing SystemVerilog.

Generally, development of Verification Environment for
verification of designs is started after availability of the RTL.
Thus, significant time is spent for setup and debugging of
verification environment after release of RTL which results in
delay in start and completion of verification of the designs. It is
required to find ways to start developing the Verification
Environment much before the arrival of the RTL so that when
RTL is available, Verification Environment can be easily plug
and play and verification of the designs can be started quickly.
Use of TLM reference model of RTL for development of
Verification Environment much before arrival of RTL proves
to be good solution for the above mentioned problem.

This paper is focusing on early development of UVM based
Verification Environment of Image Signal Processing designs
using TLM Reference Model of RTL before availability of the
RTL. Early development of Verification Environment of Image
Signal Processing designs is described in detail in Section II.

II. EARLY DEVELOPMENT OF UVM BASED

VERIFICATION ENVIRONMENT

A. Modeling of ISP designs

A loosely timed high level model of the ISP block is generated
at algorithmic functional level using C/C++/SystemC and

with TLM-2 interface.

The SCML – SystemC Modeling Library, an open source
SystemC library from Synopsys Inc. [26] is being used here.

The purpose of this model generation is to use this as a
reference model. We may say it as a “Golden Reference
Model” or “Executable Functional Specification” of the ISP

designs. From functional and structural perspective this model
can be divided in two major spaces.

First space - the algorithmic computational part, is mainly

responsible for image processing using various algorithms
involved for image manipulation from the incoming image
stream data.

The second space – a TLM interface, is responsible for all
kinds of communication to external IPs and other system
blocks.

Register interface of this model is generated using IP-
XACT tools. And algorithmic part is manually implemented.

B. Testing of Executable Spec only

To test the TLM ISP model, an environment is developed
using Python (an open source scripting language) and
Synopsys Pa-Virtualizer Tool Chain.

The test environment has following major components:

 Test bench in Python

 Configuration file reader in Python

 Raw Data Reader

 ISP model

 Input data injector in Python

 Output data receiver in Python

 Output data checker in Python

 Synopsys Pa-Virtualizer Tools Chain for GUI,
debugging, and simulation

XML file format is used for test bench configuration and
passing other parameter to the testing environment.

Fig. 2. ISP Model Testing Environment

Raw Input Reader

Test Bench

ISP
TLM

Model

XML

config file
reader

Raw Input
Reader

Data

Injector to

Model

Model

Output Data

Grabber

Output
Checker

Model Configurator

Scoreboard
Generator

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

79 | P a g e
www.ijacsa.thesai.org

C. Use of TLM ISP Model for early development of RTL

Verification Environment

After the ISP model is proved to be functionally correct, the
same model is used for early development of RTL functional
verification environment.

A suitable TLM sub-system is designed. This TLM sub-
system consists of various models namely; ISP functional
model, AXI BFM, configurable clock generators model,
configurable reset generator model, memory model,
configurable interconnect etc. All these are pure SystemC
models. AXI BFM is provided to interact with other part of the
world.

ISP RTL block needs exhaustive verification, which is
possible only when the RTL is ready. But, development of
RTL design takes time, which means verification of RTL
design can’t be possible before it becomes available. To
shorten this sequential activity, functional model of ISP is used
to prepare the early verification environment.

A SystemVerilog test bench wrapper is created over
SystemC/TLM ISP sub-system. This SystemVerilog test bench
interface with the RTL verification environment.

D. Virtual Platform Sub-system

When all components of platform are in TLM/C, means
C/C++ are used as modeling language; we call it a Pure Virtual
platform. In typical verification environment, generally all
verification components are not only TLM based but also of
different verification languages thus making it a Multi-
language heterogeneous simulation environment. For
developing early verification environment, TLM based sub-
system is developed which consists of every block in TLM/C.
This TLM based Sub-system is model of RTL.

In the above mentioned RTL verification environment, a
processor model is used which enables us to early develop ‘C’
test cases for programming of RTL registers/memories via
CPU interface. The challenge is to keep the verification
environment independent of “C” test cases. We don’t wish to
compile every time whenever there is change in application
code. To be able to achieve this, a sub-system is designed
which consists of models of bus interfaces, like AXI BFM, a
“generic” processor model, model of memory, etc. an
independent “C” program/test case is written to do all the
programming and configuration, which in turn runs on
processor model of this sub-system. This sub-system is active
element in programming phase, but becomes passive once the
programming is complete.

Virtual platform sub-system can be represented in
following block diagram.

Fig. 3. Virtual Platform Sub-system

E. Virtual Register Interface (VRI)

Today, most of the embedded test infrastructure uses some
adhoc mechanism like “shared memory” or synchronization
mechanism for controlling simple Bus functional models
(BFMs) from embedded software.

In order to provide full controllability to the “C” test
developer over these verification components, a virtual register
interface layer is created over these verification environments
which provides the access to the sequences of these verification
environment to the embedded software enabling configuration
and control of these verification environments to provide the
same exhaustive verification at SoC Level.

This approach addresses the following aspects of
verification at SoC Level:

 Configuration and control of verification components

from embedded software.

 Reusability of verification environments from IP to

SoC.
 Enables reusability of testcases from IP to SoC.

 Providing integration testcases to SoC team which is

developed by IP verification teams.

TLM Processor
Model

TLM

Router

Memory Block

AXI

to

TLM

t

o

T

L

M

TLM blocks

BFM TLM Interface

Signal Interface

Configuration
Block

Other SystemC

Model

 Other SystemC
Model

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

80 | P a g e
www.ijacsa.thesai.org

It has been achieved by using Virtual Register Interface
(VRI) layer over Verification components [18]. VRI layer over
verification components is –

 A virtual layer over verification environment to make
it controllable from embedded software

 Provides high level C APIs hiding low level

implementation

Fig. 4. Virtual Register Interface (VRI)

An example of C test case using VRI interface is as follows
–

vr_enet_packet pkt;

vr_enet_packet rx_pkt;

rx_pkt.data = new vri_uint8_t[2000]; //create buffer for

receiving data

pkt.packet_kind = ETHERNET_802_3;

pkt.data_length = 0; //RANDOM DATA

pkt.dest_addr_high = 0x11ff;

pkt.src_addr_high = 0x2288;

pkt.tag_kind = UNTAGGED;

pkt.tag_prefix = 0x1234;
pkt.s_vlan_tag_prefix = 0x5678;

pkt.err_code = 0;

for (int i=0;i<100;i++) {

 pkt.dest_addr_low = i;

 pkt.src_addr_low = i+1;

 enet_send_pkt(0,&pkt); //send packet to ENET UVC

instance0 (MAC)

 enet_recv_pkt(1,&rx_pkt); //receive packet from ENET UVC

instance1 (PHY)

 compare_pkt(pkt,rx_pkt);

 };

F. Flow used for Design Verification

Much before arrival of RTL, C/Python model of image
signal processor designs is developed for algorithm evaluation.
Then, TLM/SystemC model of the design is created from
C/Python model. After proper exhaustive validation of the
model with required test vectors, the model qualifies as an
Executable Golden Model or Executable Specification means a
‘living’ benchmark for design specification. Enabling the use
of TLM Model as DUT expedites development and better
proofing of the verification environment with wider test
vectors without waiting for RTL to be available.

Standard ‘interfaces’ are used to enable the reuse of
verification components. In addition to standard method of
bus-interface or signals level connectivity, UVM Multi-
Language Open Architecture is used to connect System
Verilog TLM port directly to SystemC TLM port which gives
advantage of better simulation speed and better
development/debug cycle in addition of clean, better and easy
connectivity/integration of blocks. Presence of TLM
components gives us flexibility to make backdoor direct access
to the DUT registers and memories.

Fig. 5. Early development of Verification Environment using TLM Model

A processor model is used which enables us to early
develop ‘C’ test cases for programming of RTL
registers/memories via CPU interface. Same ‘C’ test cases are
used for controlling the SystemVerilog UVC’s using Virtual
Register interface (VRI) layer. In our verification environment,
alternative Host interface path is used to do programming of
configurable blocks using SystemVerilog UVM based test
cases.

VRI Layer

VIP (eVC, UVC)

Registers

Platform

User Test Code

VRI C-APIs

UVM_REG Register and

Memory model

Register Sequences

SystemVerilog

Test Case

Virtual platform with

AMBA Transactor

C Test Case

SCOREBOARD

DATA

BUS UVC

(Monitor)

AMBA AXI UVC

AXI3

BFM

TLM IP

(C + Python)

DATA BUS

UVC

(Driver)

TLM2
Transaction

Virtual

Register

Interface

Processor

Model

SystemVerilog TestBench

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

81 | P a g e
www.ijacsa.thesai.org

In both above cases, control/data flows across both TLM
and bus interface boundaries. This method enhances the
chances of re-using different already existing blocks in flow.
IP-XACT based tools are also used for automatically
configuring the environment for various designs.

By the time RTL arrives, complete verification
environment and test-vectors are ready with sufficient sanctity,
thus eliminating the number of verification environment issues
which may arise when actual RTL verification is started. When
RTL arrives, the TLM/SystemC model is simply replaced with
RTL block with reuse of maximum of other verification
components. This enhances the rapid/regress testing of design
immediately. Also same C test cases can be run on actual core.

Fig. 6. : Reuse of early developed Verification Environment

III. RESULTS

Using TLM reference model of the RTL, UVM based
Environment for verification of design is developed without
waiting for RTL to be available. Significant reduction in
overall verification time of the design is achieved.

IV. CONCLUSIONS

TLM/SystemC reference model of the design is the key
component to enable the early development of Verification
Environment without waiting for RTL to be available. UVM
based early verification Environment is developed using
TLM/SystemC reference model of the design. Verification

Environment is developed both with Host interface and Core
using Virtual Register Interface (VRI) approach. IP-XACT
based tools are used for automatically configuring the
Verification Environment. Testing of features of Verification
Environment at TLM abstraction level runs faster and thus, it
overall speeds up functional verification. Same environment
can be reused from IP level to SOC level or from one SOC to
another SOC with no/minimal change. Verification
Environment is reusable both vertically and across projects
thus saving further time across projects.

ACKNOWLEDGMENT

The authors would like to specially thank to their
management Giuseppe Bonanno (CAD Manager, Imaging
Division, and STMicroelectronics) and Antoine Perrin
(Manager, SDS Team, STMicroelectronics) for their guidance
and support. We would also like to thank management and
team members of Imaging Division, STMicroelectronics;
Faculty members and peer scholars of JBS, Jaypee Institute of
Information Technology University and also Cadence team for
their support and guidance.

REFERENCES

[1] Abhishek Jain, Giuseppe Bonanno, Dr. Hima Gupta and Ajay Goyal,
“Generic System Verilog Universal Verification Methodology Based

Reusable Verification Environment for Efficient Verification of Image
Signal Processing IPs/SOCs”, International Journal of VLSI Design &

Communication Systems, 2012.

[2] Abhishek Jain, Piyush Kumar Gupta, Dr. Hima Gupta and Sachish Dhar,
“Accelerating System Verilog UVM Based VIP to Improve

Methodology for Verification of Image Signal Processing Designs
Using HW Emulator”, International Journal of VLSI Design &

Communication Systems, 2013.

[3] Abhishek Jain, Mahesh Chandra, Arnaud Deleule and Saurin Patel,

“Generic and Automatic Specman-based Verification Environment for
Image Signal Processing IPs”, Design & Reuse, 2009.

[4] Mark Glasser, “Open Verification Methodology Cookbook”, Springer,

2009.

[5] Iman, S., “Step-by-Step Functional Verification with SystemVerilog and
OVM”, Hansen Brown Publishing, ISBN: 978-0-9816562-1-2, 2008.

[6] Rosenberg, S. and Meade, K., “A Practical Guide to Adopting the

Universal Verification Methodology (UVM)”, Cadence Design Systems,
ISBN 978-0-578-05995-6, 2010.

[7] Stuart Swan, “An Introduction to System Level Modeling in SystemC

2.0”, Cadence Design Systems, Inc. May 2001.

[8] Adam Rose, Stuart Swan, John Pierce, Jean-Michel Fernandez,
“Transaction Level Modeling in SystemC”, Cadence Design Systems,

Inc., 2005.

[9] Frank Ghenassia, “Transaction Level Modeling with SystemC - TLM

Concepts and Applications for Embedded Systems”, ISBN: 978-0-387-
26232-1, 2010.

[10] Daniel D. Gajski,“System-Level Design Methodology”, www.

cecs.uci.edu /~gajski, 2003.

[11] Lukai Cai and Daniel Gajski, “Transaction Level Modeling: An
Overview”, {lcai, gajski}@cecs.uci.edu, 2003.

[12] Farooq Khalid Chughtai, “Accurate Performance Exploration of

System- on-Chip using TLM”, 2012.

[13] Thorsten, “System Design with SystemC”, Kulwar Academic Publishers
Group, 2002.

[14] Sandeep Jana, Geetika Agarwal and Kishore Sur, “Unique Approach for

System Level Verification Using Scalable and Reusable Verification IP
with TLM Infrastructure”. CDNLive 2010.

[15] Sandeep Jana, Krishna Kumar, Sonik Sachdeva, Swami Venkatasen and
Debjoyoti Mukherjee, “TLM Based software control of UVCs for

Vertical Verification Reuse:, CDNLive 2012

RT

L

SCORE

BOARD

DATA

BUS

UVC

(Moni

tor)

AMBA AXI UVC

Register

Sequences

SystemVerilog

Test Case

Virtual

platform

with

AMBA

Transactor
r

C Test

Case

DATA

BUS

UVC

(Driver

)

RTL

UVM_REG

Register and

Memory model

Core

VRI

Processor

Model

UVM_REG

Register and
Memory model

SystemVerilog

Test Case

Virtual

platform

with AMBA

Transactor

C Test

Case

SCORE

BOARD

DATA

BUS

UVC
(Monit

or)

AXI3

BFM

TLM IP

(C +

Python)

DATA

BUS

UVC

(Driver

)

TLM2

Transa

ction

VRI

Processor

Model

SystemVerilog

TestBench
SystemVerilog

TestBench

Register

Sequences

AMBA

AXI

UVC

http://link.springer.com/search?facet-author=%22Frank+Ghenassia%22
http://www.cecs.uci.edu/~gajski
mailto:gajski%7d@cecs.uci.edu

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

82 | P a g e
www.ijacsa.thesai.org

[16] Accellera Organization, Inc. Universal Verification Methodology

(UVM) May 2012.

[17] IEEE Computer Society. IEEE Standard for System Verilog-

Unified Hardware Design, Specification, and Verification Language -
IEEE 1800-2009. 2009.

[18] Virtual Register Interface Layer over VIPs from Cadence Design

System.

[19] Spirit information, http://www.spiritconsortium.org.

[20] Accellera VIP TSC, UVM Register Modelling Requirements,
www.accellera.org /activities/vip/

[21] www.ovmworld.org

[22] www.SystemVerilog.org

[23] www.uvmworld.org

[24] http://www.accellera.org/community/uvm/

[25] www.systemc.org

[26] www.synopsys.com

AUTHOR’S PROFILE

 Abhishek Jain, Technical Manager, STMicro-

electronics Pvt. Ltd.

Research Scholar, JBS, Jaypee Institute of Information

Technology, Noida, India.

Email: ajain_design@yahoo.co.in;

 abhishek-mmc.jain@st.com
Abhishek Jain has more than 11 years of experience in

Industry. He is driving key activities on Functional Verification Flow in
Imaging Division of STMicroelectronics. He has done PGDBA in Operations
Management from Symbiosis, M.Tech in Computer Science from IETE and
M.Sc. (Electronics) from University of Delhi. His main area of Interest is
Project Management, Advanced Functional Verification Technologies and
System Design and Verification especially UVM based Verification,
Emulation/Acceleration and Virtual System Platform. Currently, he is doing
Research in Advanced Verification Methods for Efficient Verification
Management in Semiconductor Sector. Abhishek Jain is a member of IETE
(MIETE).

Dr. Hima Gupta, Associate Professor, Jaypee Business

School (A constituent of Jaypee Institute of

Information Technology University), A – 10, Sector-

62, Noida, 201 307 India.

Email: hima_gupta2001@yahoo.com

Dr. Hima has worked with LNJ Bhilwara Group &

Bakshi Group of Companies for 5 yrs. and has been teaching for last 11 years
as Faculty in reputed Business Schools. She also worked as Project Officer

with NITRA and ATIRA at Ahmedabad for 5 years.

She has published several research papers in National & International
journals.

Sandeep Jana, Staff Engineer, STMicroelectronics Pvt.

Ltd.
Email: sandeep.jana@st.com

Sandeep Jana is Staff Engineer at STMicroelectronics
managing the TLM based Verification activities at Greater
Noida. He has an expertise of over seven years in various
aspects of ESL domain such as TLM modeling,

Architectural exploration, Platform Integration, Mixed language Platforms,
Advanced Verification Methodologies etc. He has been with ST since last 6
years and was previously working in VLSI group of HCL Technologies in their
ESL domain. He has a B.Tech degree in Electronics Engineering from MDU
Rohtak.

Krishna Kumar, STMicroelectronics Pvt. Ltd.

Email: krishna.kumar@st.com

Krishna Kumar with almost 12 years at STMicro-

electronics has experience in ESL and Placement and
Routing of FPGA software tool chain. He holds B.Tech

degree in Computer Engineering from Aligarh Muslim
University, India.

http://www.accellera.org/activities/vip/
http://www.uvmworld.org/
http://www.accellera.org/community/uvm/
http://www.systemc.org/
http://www.synopsys.com/

