
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 5, No. 2, 2014 

142 | P a g e  
www.ijacsa.thesai.org 

TCP I-Vegas in Mobile-IP Network

Nitin Jain  

Electronics & Communication Engineering 

BBDESGI 

Lucknow, India 

Dr. Neelam Srivastava 

Electronics Engineering 

IET 

Lucknow, India 

 

 
Abstract—Mobile Internet Protocol (Mobile-IP or MIP) 

provides hosts with the ability to change their point of 

attachment to the network without compromising their ability to 

communicate. However, when TCP Vegas is used over a MIP 

network, its performance degrades because it may respond to a 

handoff by invoking its congestion control algorithm. TCP Vegas 

is sensitive to the change of Round-Trip Time (RTT) and it may 

recognize the increased RTT as a result of network congestion. 

This is because TCP Vegas could not differentiate whether the 

increased RTT is due to route change or network congestion. 

This paper presents a new and improved version of conventional 

TCP Vegas, which we named as TCP I-Vegas (where “I”, stands 

for Improved). Vegas performs well when compared to Reno but 

when sharing bandwidth with Reno its performance degrades. I-

Vegas has been designed keeping in mind that whenever TCP 

variants like Reno has to share the bandwidth with Vegas then 

instead of using Vegas, if we use I-Vegas then the loss which 

Vegas would have to bear will not be more. We compared the 

performance of I-Vegas with Vegas in MIP environment using 

Network Simulator (NS-2). Simulation results show that I-Vegas 

performs better than Vegas in terms of providing better 
throughput and congestion window behavior.  
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I. INTRODUCTION  

A large number of heterogeneous computer networks 
interconnected together using TCP/IP protocol suite 
(Transmission Control Protocol/Internet Protocol) forms 
Internet. With the fast prevalence of Internet users demand the 
mobility of hosts, i.e., they expect that the hosts can change 
their locations continuously without interrupting current 
communication sessions.  

TCP is a reliable, connection-oriented protocol that ensures 
in-order delivery of a byte stream supplied by an application. 
It provides reliable service by implementing flow control, 
error detection, error recovery, in-order delivery, and 
removing duplicate data. Both the sending and the receiving 
node must keep state to support reliable delivery, therefore a 
connection is setup before data are transferred. 

MIP provides hosts with the ability to change their point of 
attachment to the network without compromising their ability 
in communications. The mobility support provided by MIP is 
transparent to other protocol layers so as not to affect those 
applications which do not have mobility features. MIP 
introduces three new entities required to support the protocol: 
the Home Agent (HA), the Foreign Agent (FA) and the 
Mobile Node (MN). The MIP Working Group of the Internet 
Engineering Task Force (IETF) has compiled a series of 
Internet Drafts and Request for Comments (RFC) to define 

MIP for providing an economical solutions which implements 
mobility support over the existing Internet infrastructure.  

There are several problems of using TCP Vegas in a MIP 
network. Since TCP Vegas is tuned to perform well in 
traditional wired networks in which most packet losses are due 
to congestion. However, in a wireless mobile network, packet 
losses usually occur due to either random loss or handoff. 
After a handoff, the throughput of TCP Vegas may be 
decreased due to a longer BaseRTT of the new routing path, 
which is usually caused by either triangular routing or route 
optimization.  

In this paper, we present a new and improved version of 
conventional TCP Vegas which we named as TCP I-Vegas 
(where “I” stands for Improved). I-Vegas proves to be better 
in terms of throughput and congestion window behavior, when 
compared with conventional Vegas. Simulation results proved 
that our proposed new and improved I-Vegas performs better 
than Vegas in MIP wired-cum-wireless network. 

The rest of paper is organized as follows: Section II 
presents background of TCP Vegas and Mobile-IP networks. 
Section III provides issues related with TCP Vegas. Section IV 
gives algorithm of TCP I-Vegas which we have made in order 
to improve the performance of TCP Vegas. Section V presents 
simulation results and discussions. We conclude in Section VI. 

II. BACKGROUND: MOBILE-IP & TCP VEGAS 

A. Mobile-IP 

In order to achieve the mobility function, the Internet 
Protocol (IP) has extended to become the Mobile Internet 
Protocol (Mobile IP or MIP). MIP provides hosts with the 
ability to change their point of attachment to the network 
without compromising their ability to communicate. The 
mobility support provided by MIP is transparent to the other 
protocol layers so as not to affect the operation of applications 
which do not have the mobile capability. Among various IP 
mobility proposals, Mobile IPv4 [1] & [2] is the oldest and 
probably the most widely known mobility management 
proposal with IP. MIPv4 introduces three new entities required 
to support the protocol: the Home Agent (HA), the Foreign 
Agent (FA) and the Mobile Node (MN). HA and FA are 
introduced for mobility management. The basic idea is to use 
an authenticated registration procedure between a MN and a 
HA in its home network, and via a FA while MN is visiting a 
foreign network. Each time a mobile host connects to a 
network at a new location, it will obtain a temporary address, 
called Care-of Address (COA) from a foreign agent in the 
local network. Then the mobile host must inform its home 
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agent of the new address by a registration procedure, which 
begins when the mobile host, possibly with the assistance of 
the foreign agent, sends a registration request with the COA. 
When the home agent receives this request, it may typically 
add the necessary information to its routing table, approve the 
request, and send a registration reply back to the mobile host. 
Further information on MIP functionality can be found in [1] 
& [2]. 

B. TCP Vegas 

TCP Vegas, a conservative algorithm, which is delay 
based, first proposed by L.S. Brakmo and L.L. Peterson [3] 
ensures end-to-end integrity of data transfer, while IP 
performs datagram routing and internetworking functions. It 
achieves 37 to 71 percent higher throughput than most used 
TCP version called TCP Reno [4], which is loss based. S. 
Ahn, P.B. Danzig, Z. Liu and L. Yan [5] have evaluated the 
performance of Vegas and shown that it does achieve higher 
efficiency than Reno and causes much less packet 
retransmissions. However, they have also observed that Vegas 
when competing with other TCP variants like Reno, it does 
not receive a fair share of bandwidth, i.e., TCP Reno 
connections receive about 50 percent higher bandwidth. This 
incompatibility property is analyzed also by J. Mo and J. 
Walrand [6]. They show that due to the aggressive nature of 
Reno, when the buffer sizes are large, Vegas loses to Reno 
that fills up the available buffer space, forcing Vegas to back 
off. Hence, there is a need to improve the performance of 
Vegas, which is a conservative algorithm, so that whenever it 
shares the bandwidth with other TCP variants like Reno or 
New Reno [7], the loss which conventional Vegas bears 
should not be more.  

TCP throughput is inversely related to RTT, Vegas 
measure the difference between the expected and the actual 
throughput. The idea is that the actual throughput should 
match the expected throughput if there is no congestion along 
the network path. A lower actual throughput indicates 
increased delay, and hence congestion, on the network path. 
Similar to Reno, Vegas has slow start and congestion 
avoidance modes. 

C. 1)  Slow-Start 

During slow-start, Vegas maintains the threshold γ (the 

value of γ is generally set to 1). As long as diff, when 

comparing expected_thruput and actual_thruput is less than γ 

it increases the congestion window by 1 packet every other 

round trip time, rather than every RTT. Hence, during slow 

start the Vegas congestion window grows exponentially, 

though at a slower rate than in TCP Reno. At this point, Vegas 

needs correction so that it can be made somewhat aggressive.  
When either the congestion window reaches the slow start 

threshold (ssthresh) or diff is larger than γ, Vegas enters the 
congestion avoidance. Upon exiting slow-start, Vegas 
decreases the congestion window by one eighth of its current 
size in order to ensure that the network does not remain 
congested. 

D. 2)  Congestion-Avoidance 

During congestion-avoidance, Vegas maintains two 
threshold values α and β (the value of α and β are usually set 

as 1 and 3 respectively). The adjustment of congestion 
window is done based on the value of diff given as follows:  

 

 
Where, 

diff = (expected_thruput – actual_thruput).base_RTT 
 

expected_thruput = cwnd/base_RTT, where cwnd is the 
current congestion window size and base_RTT is the minimum 
round trip time of that connection. 

actual_thruput = cwnd/RTT, where RTT is the actual 
round trip time 

Vegas tries to keep at least α packets but no more than β 
packets in the queues. Roughly speaking, α and β in Vegas 
represent respectively the minimum and the maximum number 
of packets the source can pipe in the network buffers; 
therefore α and β represent the aggressiveness degree of the 
TCP Vegas sources. The higher their value, the more Vegas 
approaches the behavior of Reno. Vegas always attempts to 
detect and utilize the extra bandwidth whenever it becomes 
available without congesting the network. This mechanism is 
fundamentally different from that used by Reno. It always 
updates its window size to guarantee full utilization of 
available bandwidth, leading to constant packet losses, 
whereas Vegas does not cause any oscillation in window size 
once it converges to an equilibrium point. 

In congestion avoidance phase, two changes can be made 
in the algorithm of Vegas. Firstly, the values of α and β can be 
increased, because the aim is to make the algorithm of Vegas 
more aggressive. Secondly, when α < diff < β the size of the 
congestion window instead of keeping same, can be increased 
so that it will share the bandwidth more fairly as compared to 
other variants of TCP. 

E. 3)  Loss Recovery 

A packet loss can be detected via time out expiration or via 
three duplicated acks. In the first case, the ssthresh is set to 
half of the current congestion window value, the congestion 
window is set to 2, and Vegas performs again the slow-start. 
In second case, when Vegas source receives three duplicate 
acks, it performs Fast Retransmit and Fast Recovery as Reno 
does. Actually, Vegas develops a more refined fast retransmit 
mechanism based on a fine-grain clock. After fast retransmit 
Vegas sets the congestion window to ¾, instead of ½ of the 
current congestion window and performs again the congestion 
avoidance algorithm. 

III. ISSUES WITH TCP VEGAS 

A. Fairness 

Vegas uses a conservative algorithm to decide how and 
when to vary its congestion window. Reno, in an effort to fully 
utilize the bandwidth, continues to increase the window size 
until a packet loss is detected. Thus, when TCP Vegas and 
Reno connections shares a bottleneck link, Reno uses up most 
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of the link and router buffer space. Vegas, interpreting this as 
a sign of congestion, decreases its congestion window, which 
leads to an unfair sharing of available bandwidth in favor of 
Reno. This unfairness worsens when router buffer sizes are 
increased. G. Hasegawa, K. Kurata, M. Murata [8] proposed 
TCP Vegas+ as a method to tackle Vegas’s fairness issue. 
However, Vegas

+
 assumes that an increase in the RTT value is 

always due to the presence of competing traffic and rules out 
other possibilities like rerouting. We feel that this is not a 
reasonable assumption. Furthermore, performance of Vegas+ 
depends on the choice of optimal value for the new parameter 
Countmax introduced in the protocol, which is an open 
question. G. Hasegawa, K. Kurata, M. Murata [6] and 
Raghavendra and Kinicki [9] showed that by using RED 
routers in place of the tail-drop routers, the fairness between 
Vegas and Reno can be improved to some degree. But there 
exists an inevitable trade-off between fairness and throughput, 
i.e. if the packet dropping probability of RED is set to a large 
value, the throughput share of Vegas can be improved, but the 
total throughput is reduced. In [10-11] Feng, Vanichpun and 
Weigle showed that choosing values of α and β as a function 
of the buffer capacity of the bottleneck router could improve 
the fairness condition. However, they do not propose any 
mechanism to measure this buffer capacity and to set 
appropriate values for α and β. 

B. Rerouting 

In Vegas, the parameter baseRTT denotes the smallest 
round-trip delay the connection has encountered and is used to 
measure the expected throughput. When rerouting occurs in 
between a connection, the RTT of a connection can change. 
When the new route has a longer RTT, the Vegas connection 
is not able to deduce whether the longer RTTs experienced are 
caused by congestion or route change. Without this 
knowledge, TCP Vegas assumes that the increase in RTT is 
due to congestion along the network path and hence decreases 
the congestion window size [12].  

This is exactly opposite of what the connection should be 
doing. When the propagation delay increases, the bandwidth–
delay product (bw*d) increases. The expression (cwnd-bw*d) 
gives the number of packets in the buffers of the routers. Since 
the aim of Vegas is to keep the number of packets in the router 
buffer between α and β, it should increase the congestion 
window to keep the same number of packets in the buffer 
when the propagations delay increases. In [12] the authors also 
proposed a modification to the Vegas to counteract the 
rerouting problem by assuming any lasting increase in RTT as 
a sign of rerouting. Besides the fact that this may not be a 
valid assumption in all cases, several new parameters K, N, L, 
δ and γ were introduced in this scheme and finding appropriate 
values for these variables remain an unaddressed problem. 

IV. TCP I-VEGAS 

The algorithm of Vegas required making it little bit 
aggressive from conservative so that when compared with 
other TCP variants like Reno it should perform better than the 
conventional Vegas.   

Modifications in Vegas has been confined to the sender 
side only because of this our I-Vegas with proposed changes is 
easy to implement. 

Modifications does not introduce any further thresholds, 
generally hard to set, since it is completely adaptive to the 
status of the network; in this prospect our I-Vegas with 
proposed changes appears to be more efficient. 

I-Vegas, behavior is not much different from that of the 
original Vegas in presence of other Vegas sources; so it is able 
to preserve all the nice features of the original Vegas: good 
throughput and goodput performance and ability in network 
congestion avoidance. 

A.   Algorithm 

Following changes we have made in the algorithm of 
Vegas in order to make it more aggressive so that its 
performance get improved as compared to Vegas and it will 
fairly share the bandwidth when competing with other TCP 
variants like Reno. 

During Slow-Start, we change the cwnd of Vegas more 
aggressively as Reno does. 

In the case of rerouting, Vegas should not decrease its 
cwnd, rather to increase the thresholds α and β to 3 and 
respectively.  

During RTO and on reception of Three dup ACKs, α and β 
are again set to 1 and 3 respectively.  

During congestion avoidance, when diff lies between α and 
β, instead of keeping cwnd unchanged, Vegas should change 
its cwnd as it is changing when diff < α.  

V. SIMULATION RESULTS AND DISCUSSION 

We have created wired-cum-wireless MIP environment in 
NS-2 [13] and compared the parameters like throughput and 
congestion window behavior at different packet error 
probabilities.  

A. Network Topology  

Fig. 1 shows the network topology which is a wired-cum-
wireless MIP network. In fig. 1, node 0 and node 1 are W(0) 
and W(1) wired nodes respectively, node 2 and node 3 are 
base station nodes behaves like a HA and FA respectively and 
node 4 behaves like MN that moves between its HA and FA. 
Table I gives the details. We set up a TCP flow between node 
0 to node 4 i.e. between W(0) and MH. As MH moves out 
from the domain of its HA, into the domain of FA, we observe 
how packets destined for MH is redirected by its HA to the FA 
as per MIP protocol definitions.  
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Fig. 1. Wired-cum-Wireless MIP Network 

TABLE I.  NODE DETAILS 

Node Nature TCP Connection 

Node 0 
Wired Node, W(0)  

(Source Node) 

Vegas/I-Vegas 

Node 1 Wired Node, W(1) 

Node 2 
Base Station Node 

Home Agent (HA) 

Node 3 
Base Station Node 

 Foreign Agent (FA) 

Node 4 
Mobile Node (MN) 

(Sink Node) 

B. Comparison Curves for TCP Vegas and TCP I-Vegas  

Fig. 2 to 9 shows the comparison curves in terms of 
congestion window behavior for TCP Vegas and TCP I-Vegas 
at different error probabilities. Similarly, fig. 10 to 17 shows 
the comparison curves in terms of throughput of TCP Vegas 
and TCP I-Vegas at different error probability.  

Figure shows that I-Vegas performs better than Vegas in 
terms of both congestion window behavior and throughput at 
different error probabilities.   

 
Fig. 2. Congestion Window for TCP Vegas at 0% Error 

 
Fig. 3. Congestion Window for TCP I-Vegas at 0% Error 

 
Fig. 4. Congestion Window for TCP Vegas at 1% Error 

 
Fig. 5. Congestion Window for TCP I-Vegas at 1% Error 

 

Fig. 6. Congestion Window for TCP Vegas at 5% Error 
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Fig. 7. Congestion Window for TCP I-Vegas at 5% Error 

 

Fig. 8. Congestion Window for TCP Vegas at 10% Error 

 

Fig. 9. Congestion Window for TCP I-Vegas at 10% Error 

 

Fig. 10. Throughput of TCP Vegas at 0% Error 

 

Fig. 11. Throughput of TCP I-Vegas at 0% Error 

 

Fig. 12. Throughput of TCP Vegas at 1% Error 

 

Fig. 13. Throughput of TCP I-Vegas at 1% Error 

 

Fig. 14. Throughput of TCP Vegas at 5% Error 
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Fig. 15. Throughput of TCP I-Vegas at 5% Error 

 

 

Fig. 16. Throughput of TCP Vegas at 10% Error 

 

Fig. 17. Throughput of TCP I-Vegas at 10% Error 

VI. CONCLUSION & FUTURE SCOPE 

In this paper, we have proposed a modified algorithm of 
Vegas and named it as I-Vegas, where “I” stands for 

“improved”. We have also shown that making the algorithm of 
Vegas from conservative to somewhat aggressive, the 
performance of I-Vegas becomes much better than 
conventional Vegas. Simulation results proved that 
performance of I-Vegas in terms of av. throughput and 
congestion window behavior becomes better than Vegas in 
MIP network.  

Mobile IP is a newly defined protocol which supports 
mobile users but also is compatible with the current IP. It is 
still in the process of being standardized, and there are still 
many items that need to be worked on and enhanced, such as 
the security issue and the routing issue. We are working on 
these issues.  
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