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Abstract—We investigate infeasibility issues arising along net-
work design for information-theoretically secure cryptography.
In particular, we consider the problem of communication in
perfect privacy and formally relate it to graph augmentation
problems and the P-vs-NP-question. Based on a game-theoretic
privacy measure, we consider two optimization problems related
to secure infrastructure design with constraints on computational
efforts and limited budget to build a transmission network.
It turns out that information-theoretic security, although not
drawing its strength from computational infeasibility, still can
run into complexity-theoretic difficulties at the stage of physical
network design. Even worse, if we measure (quantify) secrecy
by the probability of information-leakage, we can prove that
approximations of a network design towards maximal security
are computationally equivalent to the exact solutions to the same
problem, both of which are again equivalent to asserting that
P = NP. In other words, the death of public-key cryptosystems
upon P = NP may become the birth of feasible network
design algorithms towards information-theoretically confidential
communication.

Index Terms—Complexity; NP; Privacy; Security; Game The-
ory; Graph Augmentation

I. INTRODUCTION

Encryption is a standard mean to establish private com-
munication channels. Mostly, security rests on intractability
assumptions (as for public-key cryptography) or empirical
investigations (as for many symmetric encryptions). This
intractability-based paradigm is opposed by techniques that
use properly designed communication infrastructures to pro-
vide confidential data transmission channels. Notable exam-
ples of the latter are quantum key distribution (QKD) [1], [2]
or multipath transmission (MPT) [3], [4], [5], [6], [7]. Contrary
to conventional cryptography, these techniques do not hinge
on computational intractability, whose related assumptions
may become invalidated by increasing computational power,
novel computer architectures (such as quantum- or DNA-
computing [8], [9]), or new scientific discoveries (e.g., if
P = NP, then most public-key cryptography is essentially
insecure). Such resilience is the main motivation to look
at quantum- or MPT techniques. However, the price for
independency on intractability is often expensive infrastructure
design, whose complexity-theoretic quantification is our goal
in this work. Specifically, we investigate the (in)tractability of
network graph design for the sake of running secure multipath
transmission (which QKD also requires to achieve end-to-end

security from point-to-point unless quantum repeaters become
reality [10]).

A. Related Work and Contribution

In the quantum cryptography area, the problem network
topology design to optimally support QKD has received
attention in [11], [12], [13], [14]. Such considerations are
justified and substantiated by previous findings [3] that mul-
tipath transmission is actually a necessity for confidential
conversation (cf. theorem II.4) in the absence of classical
cryptography or special-purpose channels (say quantum or
wire-tap [15]). On the pure classical road, [4], [5] have
identified graph connectivity as a necessary and/or sufficient
criterion for secure communication. Related protocols like
[6] then simply presume multiple paths to be available in
a network infrastructure; a luxury that hardly any real-life
network will provide. More importantly, most of the prior
literature on MPT neglects complexity issues that arise in the
necessary network construction. That gap motivated this work,
as it poses the question for the minimal extension to a given
graph to permit MPT in the sense as [6], [5], [7] and others
attempt it. References [12], [13], [14] studied and classified
the problem as at least NP-hard, which in turn motivates our
search for approximations rather than exact solutions.

The contribution of this article is the unfortunate observation
that even finding an approximate network design is already
equivalent to proving that P = NP. While the problem
of whether one can build a secure cryptosystem on the
assumption that P 6= NP is still unanswered ([16] provides
an interesting discussion, unfortunately leaving the initial
question essentially open), the confidence in the strength of
nowadays public-key encryption seems well justified, based on
the evidence at hand. Still, the work of [17] presents evidence
against the well-established conjecture that one-way permu-
tations (based on computational intractability) alone would
suffice to set up a secret key agreement. We approach the
same problem here via graph-connectivity based techniques
(i.e., multipath transmission).

Hence, insofar secure communication avoids intractabil-
ity by switching from encryption to multipath transmission
based techniques (which also covers some implementations
of quantum networks), intractability arises again, yet only in
a different form. The good news, detailed in the concluding
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section, is nevertheless the observation that for secure commu-
nication, we can safely use encryption if we assume P 6= NP,
or otherwise construct network infrastructures for perfectly
secure multipath transmission, which is feasible if ultimately
P = NP is proven.

B. Organization

In order to make this work as self-contained as possible, we
use Section II to introduce the notation, network, adversary
and security models. Subsection II-D sketches the general
approach to private communication by MPT, upon which the
game-theoretic privacy measure is defined in Section II-E. The
network design problems are stated in Section III, with the
analysis and main results following in Section IV.

II. MODELS AND NOTATION

Vectors are printed as bold-face letters, complexity classes
are written in small caps, sets are denoted by upper-case
letters, matrices are upper-case bold-printed. For a discrete
set X , we write |X| for its cardinality. Whenever x is a
string representation (encoding) of a problem, we write |x|
to denote its length, and whenever x is a real variable, then
|x| is its absolute value. The distinction will always be clear
from the context. The symbol poly(n) denotes an existing
yet not further specified polynomial in the given variable (or
expression) n.

A. Network Model

Let the network infrastructure consist of a set of V devices,
and a set E ⊆ V × V of (bidirectional) communication chan-
nels between these devices. Without loss of generality, we can
assume that channels cannot be attacked, because a vulnerable
channel u−v can be emulated by adding an intermediate
vulnerable device w and inserting the two (invincible) channels
u−w and w−v to the network model. Our representation for
a network infrastructure is thus an undirected graph G(V,E),
where V is the set of nodes (devices) and E is the set of edges
(point-to-point connections).

Let s, t be two distinct nodes in the graph G. An s−t-path
π in G is a set of consecutive vertices starting at s and ending
in t. We denote the set of vertices in π as V (π). Two s−t-
paths π1, π2 are said to be node-disjoint, if their only common
points are s, t, i.e. if V (π1) ∩ V (π2) = {s, t}. The s−t-vertex
connectivity of G is the cardinality of the smallest set of nodes
whose removal renders s unreachable from t in G. The vertex
connectivity of G is the size of the smallest set of nodes such
that after deletion, the graph becomes either disconnected or
trivial [18]. We write G(V \ U,E) to denote the subgraph
induced by V \U and the remaining edges in E. We say that
a graph is k-connected, if its vertex connectivity is k. The
vertex-connectivity number is directly linked to the existence
of node-disjoint paths:

Theorem II.1 ([18, Thm.5.17]). A nontrivial graph G(V,E)
is k-connected for some integer k ≥ 2 if and only if for each
pair s, t ∈ V of distinct nodes, there are at least k node-
disjoint s−t-paths in G.

This justifies calling a graph biconnected if it is 2-
connected, or as equivalently used in [19], G cannot be
disconnected by removing a single vertex.

B. Adversary Model

In many practical environments, flaws in some security
system might concern a whole set of devices rather than only
a single machine (e.g. exploits found in the firmware of a
particular router might apply to a set of routers throughout the
infrastructure, or also a buffer-overflow exploit in the operating
system (OS) might apply to many machine running on the
same OS in the same version). As we are after perfectly
private communication, we must not assume any bound on the
adversary’s computational capabilities. Following the common
practice in information-theoretic security, we model compu-
tationally unbounded adversaries via monotonous adversary
structures.

Motivated by the above considerations, we represent an
adversary A by a family of subsets A ⊂ P(V ), where P(V )
denotes the power-set of V . Such sets within A may, for
example, be characterized by common vulnerabilities. The
family A thus is a collection of potentially compromised
sets of devices within the network, each of which represents
another possible attack scenario. The set A is called an
adversary structure.

We call A monotonous if Y ∈ A implies Z ∈ A for any
Z ⊆ Y . This captures the adversary’s option to compromise
less than the maximal number of nodes, or equivalently, covers
situations in which not all of the adversary’s servant nodes
deliver useful information. A threshold adversary is a special
case of a monotonous structure, in which all entries have equal
cardinality k. Taking a fixed such threshold k, the structure
has to no more than |A| =

(|V |
k

)
∈ O(|V |k) = poly(|V |)

elements, hence is polynomial. On the contrary, assuming that
the adversary can conquer up to, say any fraction of dp · |V |e
nodes for 0 < p < 1 makes |A| =

( |V |
dp|V |e

)
= 2O(|V | log |V |),

which is exponential. In the following, we will exclusively
deal with polynomial size monotonous adversary structures.

It should be noted that a threshold adversary might not
always be an appropriate model. As [3] points out, the assumed
threshold might yield a gross overestimation of the required
graph connectivity, hence working with the more general
concept of a monotonous structure adds flexibility. The work
of [4] is an explicit account for minimal connectivity models,
which partially helps to mitigate this issue. With the aid of
game-theory, we can further generalize these previous views
on perfectly private communication from a discrete yes/no-
classification towards a continuous quantitative risk assess-
ment. Details follow in Section II-E.

The physical adversary is assumed capable of capturing
any set Y ∈ A. Those captured nodes are entirely under
the adversary’s control, meaning that he is free to block,
insert, modify or passively read any message passing through
nodes in Y . Such an adversary is said to be k-active, if he
can conquer any union of up to k sets from A. Contrary to
this, a k-passive adversary is only allowed to extract (read)
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information, but otherwise strictly follows the protocol without
any active fiddling. Moreover, any adversary (regardless of
active or passive) is assumed to know the entire protocol
specification, message space, topology of the network, and
any inputs except for Alice’s secret message m and the coin
flips r used for transmission by Alice if the protocol uses
randomness (such as most cryptographic protocols do).

C. Security Model

We will use the security model put forth in [4]: at the
beginning, the adversary chooses the plain text distribution Pr
and the nodes to conquer from the adversary structure A. For
the actual transmission of a secret message m, the sender Alice
uses a randomized protocol, taking the random coins r as an
input that is unknown to the attacker. The adversary’s view is
the information acquired from eavesdropping on the protocol.
It is denoted as A(m, r), whenever he extracts the message m
from the information in his possession. For ε > 0, we say that
the transmission is ε-private, if for every two messages m0 6=
m1 and every r,

∑
c |Pr[A(m0, r) = c]− Pr[A(m1, r)]| ≤

2ε. The probabilities are taken over the coin flips of the
honest parties, and the sum is over all possible values of the
adversary’s view. For δ > 0, we call the protocol δ-reliable,
if with probability at least 1− δ, Bob terminates the protocol
with the correct result m. The probability is over the choices
of m and the coin flips of all internal transmission nodes in
V and the adversary. We call a protocol (ε, δ)-secure, if it
is ε-private and δ-reliable. It is said to be efficient, when the
round complexity and bit complexity are both polynomial in
the size of the network, log 1

ε and log 1
δ if ε > 0, δ > 0.

Any (0, 0)-secure protocol is called perfectly secure, and a
communication having this performance guarantee is called
perfectly secure message transmission (PSMT). In this work,
we will consider a slightly weaker notion, which we will call
arbitrarily secure message transmission (ASMT).

Definition II.2 (arbitrarily secure message transmission). A
communication protocol is called arbitrarily secure, if for any
(small) ε > 0, δ > 0, we can efficiently run it in a way that
achieves efficient (ε, δ)-security.

Remark II.3. Note the kind of “duality” between
intractability-based and information-theoretic security:
for computational (intractability-based) security, we must
assume limited computational power of the adversary, while
allowing the attacker to listen to all conversation over the
channel. Likewise, information-theoretic security imposes no
limits on the computational power, yet must assume that not
the entirety of the conversation can be eavesdropped. The
latter limitation will manifest itself as a polynomial bound on
the cardinality of the adversary structure (permitting infinite
computational power for the analysis of whatever information
the attacker acquires).

Graph connectivity has been used in [4] with the aim
of judging various network types for their suitability for
perfectly secure message transmission in the sense of the

above security models. An interesting classification that serves
as partial motivation here too has been given by [3]. Their
characterization relies on a refined graph-connectivity crite-
rion, which explicitly refers to a given adversary structure A.
More precisely, the graph G is called A(k)(s, t)-subconnected,
if for any k sets Y1, . . . , Yk ∈ A the deletion of the nodes in⋃k
l=1 Yl from G does not disconnect s and t within G. A graph

G is said to be A(k)-connected, if it is A(k)(s, t)-connected for
all pairs s, t ∈ V where s 6= t. With this, we have the following
security criterion, referring to perfect secure communication in
the above sense.

Theorem II.4 ([3]). Perfectly secure message transmission
from the sender s to the receiver t in the network G is possible,
if and only if G is A(2)(s, t)-subconnected.

So, it suffices to consider a 2-active adversary in order to
decide whether or not PSMT is possible in the given graph.
This approach can indeed be improved to better match a
real-life setting, using the concepts of channel- and network-
vulnerability [20], which we briefly recap in section II-E later.
The next section is devoted to a closer look at the ideas of how
to achieve perfectly secure communication within Theorem
II.4 and related results (e.g. [6], [5]).

D. Transmission Model

The general idea underlying all (secure) multipath trans-
missions schemes between a sender s and receiver (target)
t is the following: the sender s chooses a set P of node-
disjoint s−t-paths, and encodes the message m into n packets.
Let the entirety of nodes that are used to convey m be
denoted as V (P ) =

⋃
π∈P V (π). The attacker takes over a

set Y ∈ A of nodes in an attempt to learn everything that
flows through the nodes in V (P ) ∩ Y . The sender performs
the transmission by encoding m into |P | pieces c1, . . . , c|P |,
and sending those to t over their own individual paths in P .
In the simplest case, this can be done by conventional XOR-
secret-sharing, i.e. m = c1 ⊕ c2 ⊕ · · · ⊕ c|P |, where ⊕ is
the bitwise XOR, and all but one of the ci’s are random
strings. The message is protected from discovery unless the
attacker intercepts all paths in P . Since such encoding is prone
to transmission errors and blows up the overall transmission
overhead, practical schemes [6], [5] employ more flexible and
efficient encodings (e.g., based on polynomial secret sharing
to add error correction capabilities and thus gain robustness)1.

Perfectly secure message transmission demands some en-
coding and transmission paths P such that every attack sce-
nario Y ∈ A gives insufficient information to recover m. For
example, the above XOR-secret-sharing over n = |P | paths
displays a one-round PSMT scheme against an attacker with
|Y | < n for every Y ∈ A (see figure 1; and note that the case
n = 2 is essentially equivalent to symmetric encryption).

Towards the weaker goal of arbitrarily secure message
transmission, we can use randomly chosen (and changing)

1Feedback rounds can as well be used to gain efficiency and security [7],
however, we confine ourselves to one-round protocols here.
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Fig. 1. Basic approach to perfectly secure message transmission

paths to deliver the packets c1, c2, . . . , cn, in an attempt to
minimize the attacker’s chances to learn enough information to
discover m. Like for PSMT, we attempt to bypass the attacker,
however unlike in PSMT, the randomly chosen paths are not
fixed a-priori, thus making ASMT possible even in some
cases where the attacker (e.g., thanks to a sufficient threshold)
could break the respective PSMT scheme. Moreover, ASMT
is doable even using (a sequence of) single-path transmissions,
which cannot be used to run PSMT.

E. Channel- and Network-Vulnerability

Security of multipath transmission hinges on the existence
of at least one path that bypasses all hostile nodes in the
network. Consequently, it is the sender’s (player 1) intention
to optimize his path choices against an attacker (player 2)
who seeks optimal spots to sniff the network traffic. This
optimization can be done using game-theory.

To this end, take the collection of all existing s−t-paths, and
group them together into a polynomial number of poly(|V |)
different bundles P1, P2, . . . (note that the full enumeration of
paths would have exponentially many entries, hence we must
work with a feasibly small selection of these). Condense all
these bundles in the strategy set PS1. With this set, the game
is about the sender taking his best randomized choice of a
path set for communication. The opponent strategy set PS2 is
exactly the adversary structure A. The game’s payoff matrix
A = (aij) can be defined in binary terms as

aij =

{
1, if the s−t-transmission remained secret;
0, otherwise, (1)

if i ∈ PS1 is the chosen pair of paths π1, π2, and j ∈ A
is the compromised set Y ⊂ V of adversarial nodes within
the network G(V,E). We note aij = 1 if the compromised
set was insufficient to extract the secret from the adversary’s
view (transcript). Note that this decision strongly depends
on the chosen encoding of m, so the evaluation of equation
(1) depends on the particular instantiation of the framework
protocol (examples are found in [5], [6]).

The game’s solution is the saddle-point value v(A) =
maxx∈S(PS1) miny∈S(A) x

TAy, where S(PS1), S(A) de-
note the set of (discrete) probability distributions over the
player’s strategy sets. The equilibrium is the pair (x∗,y∗) ∈

S(PS1) × S(A), at which the saddle-point value v(A) =
(x∗)TAy∗ is attained. The definition of v(A) directly for-
malizes the aforementioned competition: the sender tries to
maximize his chances of keeping the message secure (maxi-
mization over all randomized choices x ∈ S(PS1)), while the
attacker tries his best to discover the message (minimization
of the sender’s benefit over all randomized choices y ∈ S(A)
of nodes to conquer from A).

Such modeling might be inaccurate in a real-life scenario
because assuming a zero-sum competition can be a misjudg-
ment of the adversary’s intentions. However, as eloquently
noted in [21], presuming a zero-sum regime is a valid worst-
case approach, since with the binary valuation as above and
with v(A) denoting the saddle-point value of the zero-sum
game induced by the matrix A, it is easy to prove that

Pr[successful attack] ≤ 1− v(A),

which holds regardless of how the adversary actually behaves,
provided that the sender and receiver act according to their
zero-sum equilibrium strategy. Notice that the matrix A specif-
ically models the communication between s and t. In [20], the
upper bound 1− v(A) =: ρ(s, t) has been assigned the name
vulnerability, since it measures the degree to which an attack
will be successful.

Applications in which the outcome of the transmission
cannot be classified in binary terms as in (1) or perhaps is even
random, can arise in infrastructures that use security measures
like firewalls, intrusion detection systems, etc., all of which
have some positive rate of failure. A straightforward way to
recover a deterministic valuation from a random outcome in
a transmission scenario is taking expectations of the random
outcome. This changes the game’s payoff structure from a 0-
1-matrix to a matrix with real values, but does no inherent
change to the model nor its solution procedure. Since random
or more general than binary outcomes can be treated with the
very same framework, we avoid unnecessary complications
here by leaving this direction aside. Respective details and
examples can be found in [20], but are not needed for our
upcoming considerations.

Definition II.5. Let a graph G(V,E), an integer k ≥ 1 and a
pair of distinct nodes s, t ∈ V be given. Assume that an s−t-
communication runs over k paths in the presence of an adver-
sary (structure) A. The vulnerability of this s−t-communication
is defined as ρ(s, t) = 1 − maxx∈S(PS1) miny∈S(A) x

TAy,
where A ∈ {0, 1}|PS1|×|A| models the zero-sum communica-
tion game with the payoffs as defined through (1).

As not all nodes in a network might be actively commu-
nicating, it makes sense to restrict the attention to only a
certain set of pairs U ⊆ V × V that will eventually attempt
a private conversation. We call the entirety of these pairs a
communication relation, whose vulnerability is our measure
of overall security in the network G(V,E).

Definition II.6. For a communication relation U ⊆ V × V ,
the network G(V,E) has the vulnerability
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ρ(G,U) := max
s,t∈U

ρ(s, t). (2)

Convention (2) is justified by the maximum-principle that
is common practice in security audits: the overall security of
a system is determined by the vulnerability of its weakest
component (similarly to a chain being as strong as its weakest
element). In the following, we will use the following charac-
terization of ASMT based on the vulnerability.

Theorem II.7 ([20]). Let Alice and Bob set up their game
matrix with binary entries aij ∈ {0, 1}, where aij = 1 if and
only if a message can securely and correctly be delivered by
choosing the i-th pure strategy, and the adversary uses his j-th
pure strategy for attacking. Then ρ(A) ∈ [0, 1], and

1) If ρ(A) < 1, then for any ε > 0 there is a protocol so
that Alice and Bob can communicate with an eavesdrop-
ping probability of at most ε and a chance of at least
1− ε to deliver the message correctly.

2) If ρ(A) = 1, then the probability of the message being
extracted and possibly modified by the adversary is 1.

F. How ASMT Relates to PSMT and Risk Management

It is worth noting that in case of a pure binary valuation,
ASMT becomes PSMT if the vulnerability is either 0 or 1, in
which case the incident of zero vulnerability directly implies
a certain graph connectivity. We will exploit this fact later.

Moreover, Theorem II.7 remains valid under a modified
setting in which the outcome of a transmission is uncer-
tain. More specifically, while PSMT usually presumes all-
or-nothing adversarial access to a node, ASMT can be used
with probabilistic security models and uncertain behavior
of a node’s defense (e.g., a firewalls, virus scanners, etc.).
The above characterization of (im)possible ASMT still holds.
As a further generalization unlike PSMT, ASMT based on
games permits using different scales than zero-one, especially
nominal or scales used in qualitative risk management. Since
the vulnerability is the expected product of likelihood and
damage in terms of the given scale, it is nothing else as a
risk. So, the security guarantees made by ASMT are much
better compatible with quantitative (and under a mapping
of the vulnerability onto a nominal scale, also qualitative)
risk management issues. PSMT is not explicitly designed for
integration in such processes. This means that the general
problems stated in the next section equivalently refer to the
search for a network design that minimizes (general) risk of
communication in perhaps even monetary units. Unfortunately,
this particular task of risk management will be proven infea-
sible unless P = NP.

III. GRAPH AUGMENTATION FOR SECRET
COMMUNICATION

Theorems II.4, II.7 as well as the results of [4] and [5]
indicate that – on classical grounds, i.e., in the non-quantum
setting – multiple paths are inevitable for perfectly and arbi-
trarily secure communication. This raises the natural question
of graph augmentation in order to meet these needs. Using

Problem III.1 MIN-VULNERABILITY-AUGMENTATION

INSTANCE: A graph G(V,E), an adversary structure A ⊂ 2V ,
a set of pairs U ⊆ V × V that can communicate and a set Ẽ
of additional (candidate) edges with costs c : Ẽ→Z+, and a
budget limit B ∈ Z.
SOLUTION: An edge augmentation E+ ⊆ V × V \ E within
the budget limit c(E+) ≤ B.
MEASURE: The vulnerability ρ(G(V,E ∪ E+), U) =
max(u,v)∈U ρ(u, v), where ρ(x, y) is the vulnerability of an
x−y-communication in G

the aforementioned game-theoretic framework and Theorem
II.7 in particular, the problem boils down to asking for an
augmentation that yields a vulnerability ρ(G,U) ≤ ε < 1
for a given network G, communication relation U and risk
threshold ε. Besides the decision-version of the problem, our
main interest in the following lies in the respective search
problem. Suppose that the network is insufficiently connected
so that perfectly and arbitrarily secure transmission are both
ruled out by any known conventional criterion (e.g. [3], [4],
[5]). Then we seek the smallest (cheapest) edge-augmentation
to G that would at least give ρ(G,U) ≤ ε, so that at least
ASMT is possible, even if PSMT might still be out of reach.
This is problem III.1.

Towards formulating optimization problems, we let Ẽ ⊂
V × V \ E be a set of candidate edges not yet existing in
the graph G(V,E). Furthermore, let a function c : Ẽ→Q+

measure the costs for any of these edges. For reasons of
tractability (theoretical as well as computational), we assume
that c(E+) can be computed in poly(|E+|) time by a Turing-
machine that leaves an encoding of c(E+) = a

b ∈ Q
+ on

its output tape of the form #a#b#, where a, b are natural
(radix-based) encodings of the integers a and b.

The “reverse” problem III.2, which asks for the cheapest
augmentation that undercuts a given vulnerability limit, is
treated later.

In the following sections, we will investigate the complexity
of both problems, and discover the existence of efficient exact
solution algorithms as equivalent to P = NP. Both problems
are known to be NP-hard [13], but even despite this fact, there
is no point in looking for approximation algorithms.

Before getting to the complexity-theoretic details, let us
consider the obvious variants of the above problems; why not
consider vertex-augmentations or mixed (vertex- and edge-)

Problem III.2 MIN-COST-SECURITY

INSTANCE: A graph G(V,E), an adversary structure A ⊂ 2V ,
a set of pairs U ⊆ V × V that can communicate and a set Ẽ
of additional (candidate) edges with costs c : Ẽ→Z+, and a
vulnerability limit ε.
SOLUTION: An edge augmentation E+ ⊆ V × V \ E that
achieves the vulnerability limit ρ(G(V,E ∪ E+), U)) ≤ ε.
MEASURE: The total cost c(E+) of the augmentation E+.
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augmentations? It is easy to see that adding only vertices does
no change to the vulnerability, since the nodes are all isolated.
Adding vertices and edges is equivalent to adding the vertices
in first place (leaving the problem’s solution unchanged), and
afterwards consider a pure edge-augmentation only. So, edge
augmentations cover both of these cases.

Example

Problem MIN-VULNERABILITY-AUGMENTATION and
MIN-COST-SECURITY both admit representations as
mixed-integer programming problems [22]. Therefore,
solutions for small networks might be feasible in a
practical setting. Moreover, the representation of either
problem is trivially converted into a representation of the
other, so that linear programming software (e.g. Cplex
or lp_solve) can be applied to both. For example,
consider the network shown in Figure 2a, being the yet
unaugmented graph. We solve the respective instance of
MIN-VULNERABILITY-AUGMENTATION for an adversary
structure A = {U ⊂ V : |U | = 3} and two-path transmission
from s to t, where the encoding of the message m is by a
(2, 2)-XOR-secret sharing of the form m = r1 ⊕ r2, where
r1 is random and r2 = m ⊕ r1 (one-time pad symmetric
encryption under key r1). Consequently, the transmission is
perfectly private unless both, r1 and r2 are intercepted by the
attacker. Finally, let the budget limit be B = 18 and take the
set Ẽ of candidate edges along with edge weights as given
by Figure 2c.

Observe that Ycut = {1, 8, 6} ∈ A so that no communication
from s−t is possible without traversing a node in Ycut in the
unaugmented network shown in Figure 2a (another cut would
be {1, 5}). Consequently, a fraction of v = 0 messages can be
delivered secretly and hence the vulnerability is ρ = 1−v = 1
for the unaugmented network. Contrary to this, the fully
augmented network including all edges in Ẽ permits 141
different s−t-paths, from which we can form a set PS1 having
295 pairs of node-disjoint paths. The adversary has – in either
case – |PS2| = |A| =

(
8
3

)
= 56 possible attack strategies

(where attacks on s or t are excluded for obvious reasons).
Setting up the full game matrix results in a (295×56)-tableau,
from which we can iteratively and alternatingly delete rows
and columns whose payoff is uniformly worse than for another
column (in game-theory terminology, we delete the dominated
strategies). This reduction leaves us with a 6×4 payoff matrix
A, shown in Figure 3b, along with the remaining strategies for
both players, listed in Figure 3a. All other existing strategies
are either redundant (i.e., yield duplicate rows or columns
in the matrix) or give less or equal revenue than another
strategy (i.e., are dominated). Solving the linear program (in
polynomial time [23]) gives v(A) = 0.5 at the full cost of
c(Ẽ) = 22. Our goal is finding the minimal augmentation
obeying the cost limit of 18.

Figure 2b displays the solution E+ = {t−6, 4−s} for MIN-
VULNERABILITY-AUGMENTATION, having ρ = 0.5 as the
maximal attack probability, as opposed to ρ = 1 in the
unaugmented graph. Seeking the minimal cost augmentation
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Fig. 2. Example graph augmentation

PS1 A = PS2

(pairs of paths) (compromised)

st
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gy
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m

be
r 1 s−4−2−t s−1−t 1, 5, 6

2 s−6−t s−1−t 1, 4, 6
3 s−6−t s−4−2−t 1, 4, 5
4 s−7−8−5−t s−1−t 4, 5, 6
5 s−7−8−5−t s−4−2−t
6 s−7−8−5−t s−6−t

(a) Strategy sets
attacker

1 2 3 4
se

nd
er

1 1 0 0 1
2 0 0 1 1
3 1 0 1 0
4 0 1 0 1
5 1 1 0 0
6 0 1 1 0

(b) Payoff matrix A

Fig. 3. Game-theoretic model for our example

to achieve at least ρ = 0.5, i.e. solving MIN-COST-SECURI-
TY with ε = 0.5 gives the same solution shown in Figure 2b,
coming at price c(E+) = 8, and proving that the previous
solution E+ is as well the cheapest for this security demand.

Unfortunately, any heuristic approximation to the general
problem (i.e. not all equal edge costs) is doomed to unbounded
relative errors, unless P = NP, as we prove in the sequel.

IV. COMPLEXITY OF GRAPH AUGMENTATION FOR ASMT

To answer the question whether or not it is feasible to
create suitable networks for multipath transmission efficiently,
we will use some complexity classes for search problems,
besides the decision-problem classes P, NP, and the set NPC
of problems that are complete for NP. The class FP is the set
of all binary relations P (x, y) such that there is an algorithm
A that runs in time poly(|x|) and outputs some y such that
P (x, y) holds. The class FPNP is defined in exactly the same
way, except that A is allowed to make queries to an NP-oracle,
where a call to the oracle takes only one step.
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An instance of an optimization problem is denoted by I . By
A(I), we denote the result of the algorithm A when applied
to the instance I of the (general) optimization problem (e.g.,
MAX-CLIQUE). For many computationally hard problems
efficient approximations are known (one example is MAX-
CUT, for which an astonishingly good approximation has been
found by [24]). An excellent account is given in [25], from
which we will repeatedly draw in the following. Here we give
our definitions only for minimization problems.

Definition IV.1. Given an instance I of a minimization (opti-
mization) problem, an algorithm A is called an approximation
algorithm, if its output A(I) is a feasible (not necessarily
optimal) solution of I . Given r ≥ 1, we call A an r-
approximation algorithm, if

opt(I) ≤ A(I) ≤ r · opt(I), (3)

where opt(I) denotes the optimal (minimal) value of the
optimization problem I .

The class APX includes all optimization problems for which
a polynomial-time r-approximation algorithm exists. Strictly
speaking, one would need to define APX in terms of the
class NPO, which is roughly the set of all “NP-optimization
problems”. Since we will not need these classes any further,
we refer the reader to [25] for details, and refrain from
granting APX a full-fledged formal definition (which would
unnecessarily complicate things here).

The next section contains a number of technical results
needed to establish the main contributions in Section IV.
First, we are concerned with the computational feasibility of
evaluating the vulnerability of a given network.

A. Computing Vulnerabilities

Lemma IV.2. Let G(V,E) be a graph modeling a commu-
nication network, and let A be an adversary structure of
size |A| = poly(|V |). Then it takes only polynomial time
to decide whether or not ASMT is possible over G and if
so, the respective channel- and network-vulnerabilities can be
computed in polynomial time.

Proof: Take any two arbitrary fixed and distinct vertices
s, t ∈ V . Observe that, if there is a set Y such that any
s−t-path π intersects Y , i.e. V (π) ∩ Y 6= ∅, then attacking
Y is a classical person-in-the-middle attack, which without
pre-shared secrets between s and t, trivially rules out any
private conversation between s and t (simply because t and
the adversary have exactly the same information, so t cannot
do anything to decrypt that the adversary could not do equally
well). So, fix any ordering of A = {Y1, . . . , Yn} and let us
iterate over all elements in A (note that |A| = poly(|V |) and
hence feasibly small to iterate over it). We will construct a
game-matrix modeling a single-path transmission from s to t
that attempts to circumvent the adversary as good as possible.
Moreover, observe that we cannot rely on any encryption
between s and t, since no (shared) keys are available (public-
key cryptography is ruled out by our demand for perfect

secrecy).
Each set Yj ∈ A makes yet another attack strategy, so

the game-matrix A will have exactly n = |A| = poly(|V |)
columns. We will iterate throughA and look for a path that lets
us securely communicate if the nodes in Yj are compromised.
Technically, we will choose a set of n transmission strategies
such that the diagonal of the payoff matrix is composed of all
1’s, which will ensure a positive saddle-point value and finally
enable ASMT by Theorem II.7.

So let Yj ∈ A be given, and look for an s−t-path that explic-
itly avoids using any node v ∈ Yj . This is easily accomplished
in polynomial time by running a shortest-path algorithm on
a transformed version of G. The required transformation is
known from the computation of maximal flows with vertex
capacities and can identically be re-used to find paths that
avoid certain nodes within a graph. We refer the reader to
[26] for a concise representation of this trick (where it has
been used for a quite different purpose though). Depending
on the outcome of the shortest-path algorithm, distinguish two
cases:
Case 1: There is no s−t-path without using nodes in Yj . Then
attacking Yj will intercept any communication from s to t, and
hence no private channel can be set up. In that case, ASMT
is ruled out for obvious reasons. Moreover, the vulnerability
of the network and the s−t-channel are both 1.
Case 2: There is a path πj such that V (πj) ∩ Yj = ∅. Then,
private transmission over πj is possible, and we can assert that
ajj = 1 in the game-matrix A, since player 1 wins the scenario
in which he uses πj for transmission and Yj is attacked.

In this way, we obtain a path πj that avoids Yj for all
j = 1, 2, . . . , |A|, so that at least on the diagonal of the final
game-matrix, we have all 1’s. Computing the value of this
special matrix game (i.e. a diagonal game) is easy, since it
is known from game-theory (see [27]) that a diagonal matrix
has the saddle-point value v(diag(1, . . . , 1)) = 1

n . So, even
if player 1 would lose the private transmission game in all
other scenarios except for the diagonal of the game-matrix,
we get v(A) > 0. Now, regardless of what the off-diagonal
entries in the actual game-matrix A actually do, we surely
have A ≥ diag(1, . . . , 1), where the inequality holds per
component. This inequality is preserved if we take averages
on either side, giving xTAy ≥ xT diag(1, . . . , 1)y > 0 for
all discrete probability distributions x,y. Hence, ASMT is
possible by Theorem II.7.

To compute the exact value of v(A), i.e. the s−t-channel
vulnerability, observe that the matrix A has exactly n2 = |A|2
entries. Computing the off-diagonal elements aij (with i 6= j)
is easy because row i corresponds to a path πi, column j
corresponds to a compromised set Yj , and the entry aij is
found as

aij =

{
1, if V (πi) ∩ Yj = ∅
0, otherwise.

The saddle-point value of the full game-matrix A can
then be computed in polynomial time by solving a linear
optimization program [23]. The overall network vulnerability
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can as well be computed in polynomial time, since there are
no more than O(|V |2) s−t-pairs to look at.

As a simple corollary, the following statement assures that
the vulnerability of any augmented graph and given commu-
nication relation can be computed in polynomial time.

Corollary IV.3. Let a graph G(V,E) and an adversary
structure A over V be given. Then, for any augmentation
E′ ⊆ V ×V , and any set U ⊆ V ×V , the network vulnerability
ρ(G(V,E∪E′), U) of the augmented graph can be calculated
in polynomial time.

The proof is immediate from the proof of Lemma IV.2,
when one considers the obvious generalization of the above
arguments to transmissions using more than one path and
perhaps a different encoding. In any such setup, the same
trick as above can be invoked provided that the payoffs can
be computed in polynomial time, which is trivially possible in
the settings that we consider.

Theorem II.4 classifies perfectly secure transmission in
terms of network connectivity. Towards studying the hardness
of graph augmentation for security, we relate the problem
to graph augmentation for biconnectivity, which is known
to be NP-complete in certain variants [19]. If we use two-
path transmission and a special adversary structure, we can
establish a useful relation between biconnectivity and network
vulnerability.

Lemma IV.4. Let a graph G(V,E) be given. Put n = |V |
and define an adversary structure as

A = {{1} , {2} , . . . , {n}} . (4)

Then the following two statements hold for the vulnerability
of G w.r.t. A and any sender-receiver pair s, t ∈ V that
performs two-path transmission:

1) ρ ∈ {0, 1}, and
2) G is biconnected if and only if ρ = 0.

Proof: By theorem II.1, we know that G is biconnected
if and only if there are two node-disjoint paths between any
two vertices in G, i.e. two disjoint channels exist for any
pair in V × V . Since the adversary can attack at most one
node at a time, A cannot disconnect any pair that actually
has two channels between them. Since the vulnerability is
ρ = max(u,v)∈V×V ρ(u, v), and the adversary structure is
such that ρ(G,U) ∈ {0, 1}, we conclude that ρ = 0 if and
only if the adversary can mount a person-in-the-middle attack
between at least one pair in V × V . Otherwise, there is at
least one pair such that all paths between them run through a
node in A, and the graph has vulnerability ρ = 1 and is not
biconnected.

B. On the Existence of Approximations Towards ASMT

Having prepared the groundwork, we are ready to present
our main findings. Our first result rules out the existence of
efficient approximations for either problem if P 6= NP.

Theorem IV.5. Unless P = NP, there is no r-approximation
algorithm for MIN-VULNERABILITY-AUGMENTATION.

One could equivalently state that
MIN-VULNERABILITY-AUGMENTATION ∈ APX implies
P = NP. However, as Theorem IV.7 will later show, there
is no point in looking for an approximation algorithm at
all, since the existence would imply that there is as well a
polynomial-time exact solution algorithm for the problem!

Proof of Theorem IV.5: Suppose there were an r-
approximation algorithm A for MIN-VULNERABILITY-AUG-
MENTATION, and let an instance of the BICONNECTIVITY-
AUGMENTATION problem be given, which is known to be NP-
complete [19]. This instance is made up by a graph G(V,E),
a weight function w(u, v) ∈ Z+ for each unordered pair
{u, v} of nodes in V , and a positive integer B. The question
is to decide whether there is a set E′ of unordered pairs of
vertices from V such that

∑
e∈E′ w(e) ≤ B such that the

graph G(V,E∪E′) is biconnected, i.e. cannot be disconnected
by deleting a single vertex [19].

We can easily (almost directly) cast this problem into
an instance I of MIN-VULNERABILITY-AUGMENTATION as
follows: set the network to be G, and use the adversary
structure (4). Moreover, define U := V × V , and set the
additional edge weights to w(e) as given by the instance of
BICONNECTIVITY-AUGMENTATION for all Ẽ := (V ×V )\E.
The budget limit is also taken from the given instance of
BICONNECTIVITY-AUGMENTATION. Lemma IV.4 character-
izes biconnectivity in terms of the adversary structure A and
its implied vulnerability. So if we solve the MIN-VULNER-
ABILITY-AUGMENTATION problem under the given budget
constraints, Lemma IV.4 implies that G can be biconnected
within the budget limit if and only if the optimum vulnerability
is ρ∗ = 0. Now, since we have an r-approximation algorithm,
we conclude that

1) In case that A(I) = 0, (3) implies ρ∗ = 0 since
0 ≤ ρ∗ ≤ A(G), and hence there is a feasible edge-
augmentation to biconnect G.

2) Otherwise, if A(I) > 0, then again by (3), 0 < A(I) ≤
r · ρ∗, so ρ∗ 6= 0. Lemma IV.4(1) implies that ρ∗ = 1,
which means that there is at least one pair that can be
disconnected by removing a single node, and G cannot
be biconnected within the budget limit.

An analogous result holds for MIN-COST-SECURITY too.

Theorem IV.6. Unless P = NP, there is no r-approximation
algorithm for solving MIN-COST-SECURITY.

As before, one can equivalently state this by saying that
MIN-COST-SECURITY ∈ APX implies P = NP. Hence, by
the same token as above, looking for approximations to this
problem is useless.

Proof of Theorem IV.6: Assume an r-approximation
algorithm A for MIN-COST-SECURITY to be available, and let
an instance of a HAMILTONIAN-CIRCUIT problem be given,
which is a graph G(V,E) and the question of whether it has
a spanning circle. The reduction will be in two steps. We
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start by reducing the HAMILTONIAN-CIRCUIT to an instance
of the BICONNECTIVITY-AUGMENTATION problem, by mod-
ifying the construction of [28]. Consider the biconnectivity
augmentation problem on the set V , where the edge weights
are set to

w(u, v) =

{
1, if (u, v) ∈ E;
1 + rn, if (u, v) /∈ E,

and the budget limit is n = |V |. [28, Theorem 4] states that
G has a Hamiltonian circuit if and only if there is an edge
augmentation of cost less than or equal to |V |. Now, suppose
that we apply an r-approximation algorithm for MINIMUM-
COST-SECURITY to exactly this instance, with the adversary
structure being (4) again. So the condition ρ(G,U) ≤ 1

2 en-
forces the approximation algorithm to look at only biconnected
extensions of the network, by Lemma IV.4.

If G admits a Hamiltonian cycle, then the edge augmenta-
tion has cost ≤ n and our approximation algorithm returns at
most A(I) ≤ rn. On the other hand, if G does not admit a
Hamiltonian cycle, then the costs come back > n and at least
one edge with cost 1+rn must have been used (since G is not
Hamiltonian). The minimal costs found by the approximation
algorithm for MINIMUM-COST-SECURITY must therefore be
at least A(I) ≥ (n− 1) + (1 + rn) = (r + 1)n > rn.

Knowing that neither of the problems stated in section III
admit a polynomial time r-approximation, it is interesting
to notice that they indeed admit an exact solution using
polynomially many queries to an NP-oracle. The proof is based
on a discretization of the optimization measure function, which
uses Farey-sequences, and found in [14].

Theorem IV.7. MIN-VULNERABILITY-AUGMENTATION ∈
FPNP

As before, the same result (yet with a different proof)
holds for MIN-COST-SECURITY. This as well admits an exact
solution in polynomially many steps and calls to an NP-oracle.
The proof as well employs Farey-sequences and bisective
searching to discretize and narrow down the search space. A
different version of this result also appears in [14], however,
the proof given here is new and much simpler.

Theorem IV.8. MIN-COST-SECURITY ∈ FPNP

Proof: Let n be the size of the given instance of MIN-
COST-SECURITY. By definition, the measure function c :
V × V →Q+ can be computed in polynomial time, i.e. there
is a Turing-machine taking at most p(n) steps to leave an
encoding of c(E) = a

b on the tape. This encoding takes the
form #a#b#, where a and b are nonnegative integers with
radix encodings. Since this is printed within p(n) steps, it
follows that a, b ≤ 2q(n), for some polynomial q (in fact,
the polynomial q is proportional to the polynomial p, with a
constant that depends on the radix for the encoding of a, b).
Consider the normalized costs

0 ≤ a

2q(n)b
≤ 1. (5)

Since 2q(n)b ≤ 22q(n), we conclude that expression (5),

as having a bounded denominator, must lie within a Farey-
sequence of order 22q(n). Using Theorem 28 in [29], we
can lower-bound the distance between any two different such
fractions as

∣∣∣ a
2q(n)b

− a′

2q(n)b′

∣∣∣ ≥ 1
24q(n) . We multiply the last

inequality by 2q(n) to obtain∣∣∣∣ab − a′

b′

∣∣∣∣ ≥ 2−3q(n) = 2−O(p(n)) (6)

Since a, b ≤ 2q(n), we can bound the measure value as
|c(E)| ≤ 2O(p(n)). Now, we can continue as in the proof of
Theorem IV.8 by running a bisective search over the interval
[0, 2O(p(n))], which terminates as soon as the search space
has shrunk below the size of 2−O(p(n)). To this end, we
introduce problem IV.1 for the decision version of MIN-COST-
SECURITY in the analogous way as before.

Problem IV.1 CHEAP-SECURITY
INSTANCE: the same as for MIN-COST-SECURITY, with an
additional cost threshold C.
QUESTION: Is there an edge augmentation E+ achieving a
desired maximal vulnerability ρ(G(V,E ∪ E+), U) ≤ ε such
that the cost for E+ are limited as c(E+) ≤ C?

A nondeterministic Turing-machine can easily guess a so-
lution E+ and verify it in polynomial time, since by Lemma
IV.2, the vulnerability threshold can be checked efficiently,
and by definition of CHEAP-SECURITY, the measure can
as well be calculated within p(n) steps. It follows that
CHEAP-SECURITY ∈ NP.

For the bisective search, we make a call to a CHEAP-
SECURITY-oracle (i.e. an NP-oracle) in order to decide the
direction where to continue our search. The number of steps
until we may terminate is, by (6), no more than O(p(n)2),
since by then, the search space has been narrowed down to
contain at most one element. This element is obtained by a
final (nondeterministic) guess and returned as the result.

Finally, we can state the following relation between our
graph augmentation problems towards perfectly private trans-
missions and the P-vs-NP-question:

Corollary IV.9. The following statements are equivalent:
1) MIN-VULNERABILITY-AUGMENTATION can be solved

in polynomial time (i.e., the problem is in FP)
2) MIN-COST-SECURITY can be solved in polynomial time

(i.e., the problem is in FP)
3) P = NP.

Proof: Observe that FP = FPP obviously and that FPP =
FPNP if P = NP. Together with Theorem IV.7, this implies

MIN-VULNERABILITY-AUGMENTATION ∈ FP.

The claim for MIN-COST-SECURITY follows from Theo-
rem IV.8. On the other hand, if either problem admits a poly-
nomial time solution, then this is trivially an 0-approximation
too, so that P = NP by Theorems IV.5 or IV.6.
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V. DISCUSSION AND CONCLUSIONS

We stress that our treatment is entirely classical, in the sense
of leaving aside arbitrarily long distance secure communica-
tion via quantum repeaters [10], [30]. Until these techniques
have reached a level of maturity to see a wide range roll-
out, security is necessarily somewhat tied to computational
intractability. However, our treatment may be extended to-
wards further security goals failure resilience (availability) or
authenticity. Both are relevant in the quantum setting with and
without quantum repeaters. By a trivial change to the model-
ing, similar equivalences between P = NP and reputation-
based authentication [31] or network path redundancy may
be derived. One aspect of future considerations will thus be
looking for siblings of corollary IV.9 and its related approx-
imation problems for reliable and authentic communication.
Alas, the infeasibility of graph augmentation for perfectly
private transmissions is strong, since it implies that every
heuristic approach to the graph augmentation problem will
inevitably perform arbitrarily bad in infinitely many cases.
Hence, looking for good approximations for perfect security
graph augmentations is (unconditionally) pointless.

As prefigured in remark II.3, we have demonstrated that
information-theoretic security and computational security both
strongly relate to computational infeasibility, only in quite
different ways. The situation in which we would – in the
perfect security paradigm – permit the adversary an unlimited
number of compromised nodes is trivial, as there is no way
of perfectly secure communication without pre-shared secrets,
assuming the adversary to keep the transmission network fully
under his control.

The final conclusion is nevertheless a positive one: either
P 6= NP, then strong encryptions like McElice encryption [32]
or related will continue to provide a good protection against
eavesdropping. Otherwise, if P = NP, then we can feasibly
construct networks that permit communication in arbitrarily
strong privacy. So, no matter how P ?

= NP is ultimately settled,
confidentiality remains an achievable goal.
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