
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 2, 2014

44 | P a g e

www.ijacsa.thesai.org

New Technique to Insure Data Integrity for Archival

Files Storage (DIFCS)

Mohannad Najjar

Computer and Information Technology

University of Tabuk

Tabuk, Saudi Arabia

Abstract—In this paper we are developing an algorithm to

increase the security of using HMAC function (Key-Hashed

Message Authentication) to insure data integrity for exchanging

archival files. Hash function is a very strong tool used in

information security. The algorithm we are developing is safe,

quick and will allow the University of Tabuk (UT) authorities to

be sure that data of archival document will not be changed or

modified by unauthorized personnel through transferring in the

network; it will also increase the efficiency of network in which

archived files are exchanged. The basic issues of hash functions

and data integrity will be presented as well.

In this research: The developed algorithm is effective and

easy to implement using HMAC algorithm to guarantee data

integrity for archival scanned documents in the document

management system.

Keywords—cryptography; hash functions; data integrity;

authentication; HMAC; file archiving

I. INTRODUCTION

Information and data security in the different systems at UT
are one of the most critical issues for the university authorities.
Ensuring data in these systems are not modified in an
unauthorized fashion is a fundamental goal. UT departments
use different kinds of information systems: the academic
system, the ERP system, document management system etc.
All of these systems don’t have any tool to guarantee the
integrity of their data.

Data Integrity is one of the fundamental components of
information security. Data integrity is a tool used to insure that
data (documents, messages, emails, files, etc.) can't be changed,
modified, deleted by unauthorized personnel, thereby insuring
accuracy and consistency.

 When a message is sent through the local network or
Internet to a Receiver; data integrity tools are used to insure
that the message was not altered and that it is identical to that
sent from the Sender. There are many tools to insure data
integrity, such as: parity bit, checksum, encryption and hash
functions. Hash functions are one of the most used tools
because of simplicity, speed and being free of charge.

Insuring Data Integrity is already an important tool used in
data exchange in telecommunications and networking systems.
For UT the use of DIFCS (Data Integrity File Checking
System) algorithm will guarantee that data stored in all
applications will be safe and reliable. This solution also will

increase the safety of the university information systems, in a
convenient and effective method. Additionally the DIFCS
algorithm will increase the effectiveness of the whole files
archive system.

We depend in our improved DIFCS algorithm on using
HMAC function to insure data integrity, authentication and we
will add additional improved techniques to increase the
effectiveness of the algorithm in the local network.

List of important symbols used in the paper:

II. HASH FUNCTIONS

Hash function is a function h: MY that has, as a
minimum, two properties:

 it compresses a sequence mM of bits of arbitrary
length, including the empty sequence, into a sequence

h(m)Y of the constant (fixed) length,

 for any mM it is easy to compute h(m).

The hash function transformation of the message
m = m1||m2||…||mt divided into fixed length blocks m1,m2,…,mt
can be described as follows (see Fig. 1):

H0 = IV,

Hi =


(mi, Hi–1) for i = 1,2,…,t;

H The hash function, MD5 or SHA-1

B The number of bits in the block in the hash function

IV The initial value for the hash function

M The data input to HMAC

Yi The i
th
 block of m, 0≤i≤(l-1)

L The number of blocks in m after padding

N The length of hash code

K The secret key, if K length is greater than b then

K=h(K)

K+ The K padded with zeros on the left so the result has b

bits

ipad The inner pad; the byte 36 (in hexadecimal) repeated

b/8 times

opad The outer pad; the byte 5c (in hexadecimal) repeated

b/8 times

h(m) The value of the HMAC; the length of the data is n

bits, where the maximum value for n depends on the

hash function used, MD5 or SHA-1

Y Set of all possible hash results

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 2, 2014

45 | P a g e

www.ijacsa.thesai.org

Where; IV is an initial value, Hi is a chaining variable,


 is
a compression function (also called a round function) and ψ is
an output transformation. As a result we obtain h(m) of fixed
length. In cryptographic literature [2,5] the resulting sequence
h(m) has been given a wide variety of names: hash result, hash
code, hash total, imprint, fingerprint, message digest,
cryptographic checksum, authenticator, authentication tag,
compression, compressed encoding, condensation, Message
Integrity Code (MIC), etc. In the sequel h(m) will be called
hash result.

The structural model of the hash function is presented in
Figure 1. [2]. It works well if the length of mt is of the same
length as each previous block m1,m2,…,mt–1. If it is not a case
then extra bits must be appended to an input string before
hashing to make mt as long as m1,m2,…,mt–1.

Compression

function φ

Output

transformation

(optional) ψ

Input data m

Hash result

h(m)

Hi

Hi–1

H0=IV

Fig. 1. General model of the hash function h

III. DATA INTEGRITY

Any information system is deemed secure if it has at least
three properties: Confidentiality, Data Integrity and
Availability. So data integrity is one of the most important
aspects of security according to data.

It insures the accuracy and consistency of data stored or
transmitted from one point to another. There are many methods
for insuring data integrity: physical and logical.

Physical tools like RAID (Redundant Array of Independent
Disks). And logical like parity bit, CRC, Checksum,
Encryption and Hash functions. In our paper we will improve a
logical tool that will use hash function to insure data integrity
of archived documents and files.

We will focus on insuring data integrity by using hash
functions. And we will explain some algorithms that use hash
functions (by using SHA-256 hash algorithm) to insure data
integrity and (something more like) authentication and
confidentiality.

Algorithm1:

Process file mj by using a hash function SHA-256 h to
calculate hash result h(mj). Save file mj in the archive folder
and save yj=h(mj) in the secure folder of hash results. When
you want to read mj from its original folder then hash mj by the
same hash function h to calculate actual xj=h(mj). If yj=xj then
the file was not changed, if not then the file was changed.

Fig. 2. Algorithm1

In this algorithm it is required to download the original file
and hash result each time from the files storage and the hash
storage, which are usually located on server decreasing the
effectiveness of the whole reading process. Also there is no
confidentiality for the files, or authentication for the source of
the file where Man in the Middle attack can be a big threat.

Algorithm2:

Process file mj by using a hash function h to calculate hash
result h(mj) and encrypt it by using private key kd. Save file mj
in the archive folder and save kd(yj)= kd(h(mj)) in the secure
folder of hash results. When you want to read mj from its
original folder then hash mj by the same hash function h to
calculate actual xj=h(mj). and decrypt kd(yj) by using system
public key ke to recover yj. If yj=xj then the file was not changed
if not then the file was changed.

Fig. 3. Algorithm 2

Algorithm 3:

Process file mj by using a hash function h to calculate hash
result h(mj) and encrypt it by using secret symmetric key k.
Save file mj in the archive folder and save k(yj)= k(h(mj)) in the
secure folder of hash results. When you want to read mj from
its original folder then hash mj by the same hash function h to

Fig. 1. A

lgo

rith

m
2

xj

yj

kRead Process k(yj)Write

Process

If yj=xj OK
ELSE

If yj ≠ xj NOT

mj

h

yjhj(m)

h
mj mj

Files

storage

Hash

storage

kd

kd(yj)
E D

ke

kd(yj)

xj

yj

Read Process Write Process

If yj=xj OK

ELSE

If yj ≠ xj NOT

m

mj

h

h
mj mj

Files

storage

Hash

storag
e

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 2, 2014

46 | P a g e

www.ijacsa.thesai.org

calculate actual xj=h(mj). Decrypt k(yj) by using same
symmetric key k to recover yj. If yj=xj then the file was not
changed, if not then the file was changed.

In this algorithm it is required to download the original file
and hash result each time from the files storage and the hash
storage, which are usually located on server decreasing the
effectiveness of the whole reading process. Also there is no
confidentiality for the files. In the other hand, authentication of
file source is insured.

Fig. 4. Algorithm 3

Algorithm 4:

Pad secret p serial of bits to mj and then process file mj||p by
using a hash function h to calculate hash result h(mj||p). Save
file mj in the archive folder and save yj= h(mj||p) in the secure
folder of hash results. When you want to read mj from its
original folder then pad secret p serial of bits to mj and hash
mj||p by the same hash function h to calculate actual
xj=h(mj||p). If yj=xj then the file was not changed, if not then the
file was changed.

Fig. 5. Algorithm 4

In this algorithm it is required to download the original file
and hash result each time from the files storage and the hash
storage, which are usually located on server decreasing the
effectiveness of the whole reading process. Also there is no
confidentiality for the files but the authentication of file source
is insured. Additional powerful cryptographic characteristic is
fulfilled, where for m1= m2 then h(m1)≠ h(m2).

If we want to make the saved files secret we can apply an
additional operation where we encrypt mj by using symmetric
or asymmetric encryption algorithm.

In this paper we will use a special case of the fourth
algorithm, where we will use HMAC (Key-Hashed Message
Authentication code), which is used as an authentication
cryptographic tool.

IV. HMAC

The main goals behind the HMAC construction [20] are:

 To use available hash functions without modifications;
in particular, hash functions that perform well in
software, and for which the code is freely and widely
available.

 Preserve the original performance of the hash function
without incurring a significant degradation.

 Use and handle keys in a simple way.

 Gain a well-understood cryptographic analysis of the
strength of the authentication mechanism based on
reasonable assumptions on the underlying hash
function, and to allow easy replacement ability of the
underlying hash function if it will be faster or more
secure.

HMAC requires a cryptographic hash function, which we
denote by h, and a secret key K. We assume h to be a
cryptographic hash function where data is hashed by iterating a
basic compression function on l blocks of data. We denote by b
the bit-length of such blocks (where l*b equal to the length of
m in bits after padding), and by n the bit-length of hash outputs
(n=128 bits for MD5, n=160 bits for SHA-1). The
authentication key K can be of any length up to b, the block
length of the hash function. Applications that use keys longer
than b bits will first hash the key using h and then use the
resultant n bit string as the actual key to HMAC. In any case
the minimal recommended length for K is n bits (as the hash
output length).

HMAC can be calculated as follows (Fig. 6):

HMACK(m) = h(K
+
 XOR opad, h(K

+
 XOR ipad, m))

It can be done in 7 steps:

1) Append zeros to the left end of K to create a b-bit

string K+.

2) XOR (bitwise exclusive-OR) K+ with ipad to

produce the b-bit block Si.

3) Append m to Si.

4) Apply h to the stream generated in step 3.

5) XOR K+ with opad to produce the b-bit block S0.

6) Append the hash result calculated in Step 4 to S0.

7) Apply h to the stream calculated in step 6 and

output the result.

Because of using such different fixed values of ipad and

opad and doing two times hashing function we avoid the
situation where the XORing operation between K

+
 and ipad or

K
+
 and opad to have zero’s value.

Keys

k

k(yj)
E D

k(yj)

xj

yj

Read Process Write Process

If yj=xj OK

ELSE

If yj ≠ xj NOT

m

mj

h

h
mj

Hash

storage

h

p

h(mj||p)
)

xj

yj

Read Process Write Process

If yj=xj OK

ELSE

If yj≠xj NOT

m

mj

mj||p

mj||p

mj mj

Files

storage

Hash

storage

h

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 2, 2014

47 | P a g e

www.ijacsa.thesai.org

The key for HMAC [21] can be of any length (keys longer
than b bits are first hashed using h). However, less than n bits is
strongly discouraged as it would decrease the security strength
of the function. Keys longer than n bits are acceptable but the
extra length would not significantly increase the function’s
strength. A longer key may be advisable if the randomness of
the key is considered weak.

Keys need to be chosen randomly (or using a
cryptographically strong pseudo-random generator seeded with
a random seed), and periodically refreshed. Current attacks do
not indicate a specific recommended frequency for key changes
as these attacks are practically infeasible. However, periodic
key refreshment is fundamental security practice that helps
against potential weaknesses of the function as well as the
keys, and therefore limits the damage of an exposed key.

Fig. 6. HMAC function

V. DATA INTEGRITY FILE CHECKING SYSTEM (DIFCS)

We will focus in our research on insuring data integrity by
using HMAC [19]. As HMAC is open to use any hash function
with it. So in our paper we recommend to use at least SHA-
256, which still secure against brute-force attack. In the future
we recommend using even hash results with 1024 bits length.
In any document management system, each department in the
organization has to archive its uploaded files in a central
archival warehouse. In the implementation of such solution we
will face two important issues: the insuring of data integrity
for archived files through transmission and the performance of
the network where the transfer of these files is done from the
server to the local computers.

Usually each department has an access to its own archived
files only and not to the files of the whole archival warehouse.
The improved algorithm we developed depends on this factor,
that most of the retrieved files requested by the department's
user are usually uploaded by the same department.

Fig. 7. Sending and saving process of file F to SAV

In this paper we are implementing an efficient algorithm to
insure data integrity and authentication for the archived files
and at the same time to insuring better performance for the
network. HMAC algorithm will be used to insure data integrity
and authentication and a temporary local storage on local PC of
most used archival files, which will increase the efficiency of
the network.

In the proposed solution uploaded files will be saved in two
storage devices: in the local PC of the uploaded user (LPC)
and in the Central Archive Server (SAV). Additionally in SAV
and LPC we will apply HMAC with a secret key.

Uploading process:

When the user uploads F on his LPC, this file is saved in
the temporary matrix storage on LPC and it is also sent and
saved in SAV server. This saving process is explained in fig. 7,
where each file F will have unique identifier fid identifying F in
a unique way on LPC and SAV. LPC will calculate hash result
hkid(F) for F by using HMAC algorithm and random secret

Hash

S0

Hash

Opad K

IV

IV

n bits

b bits

n bits

n bits

n bits

HMACk(M)

Pad to b bits

H(Si ||M)

Si Y0 Y1 YL-1

Ipad K

h

Write

Process

F

(F, fid,
kid)

Hash
storage

SAV

ki

d

hk(F
)
)

Files

storage

SAV

h

(F, fid,
kid)

Hash

storage

LPC

hk(F

)
)

Files
storage

LPC

 (a)
Fig. 7. Sending and saving process of file F to SAV

h

LPCke

h'k(F)
F

SAVkd

hk(F)mj

SAV

hk(F)||ki

d

LPC

If h'k(F)=hk(F) 

Save

ELSE

If h'k(F)≠hk(F) 

Resend

m

F

E

F||c

D

LPCkd

h
'

SAVke

E D

kid

kid

(b)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 2, 2014

48 | P a g e

www.ijacsa.thesai.org

unique key kid then it will encrypt hkid(F) and kid by using User
public key LPCkd to insure authentication and then result is
encrypted by SAV public key SAVke to insure confidentiality.

Encrypted result c and F together are sent through network
to SAV.

On SAV encrypted c is decrypted by using SAV private
key SAVkd and then again decrypted by using LPC public key
LPCke to recover hkid(F) and kid. By using kid recovered from c
SAV calculates hash result h'kid(F) for F by using HMAC with
key kid. SAV compares recovered sent hash result hkid(F) of F
with the calculated one h'kid(F), If they are equal then F and fid
and kid are saved on SAV else SAV must sent a request to
retransmit all again from LPC.

Downloading process:

We will have two situations, when file F with fid and kid exist
on LPC, where only LPC will request for hkid(F) from SAV, fig
8. (a). And second one when you have only fid, Where we need
file F with fid and kid and hkid(F), fig. 8. (b).

When LPC requires a file F with fid identifier from SAV,
the following steps will be done:

1) Check if file F with fid and kid exist on LPC, If yes

then go to 2 else go to 7,

2) Send a request to the SAV with fid to retrieve hash

result hkid(F),

3) SAV Search for hkid(F) according to fid,

4) SAV sends hash result hkid(F) and fid to LPC m=

hkid(F) || fid),

5) LPC retrieve kid and calculates hash result

h'kid(F) for F,

6) If hkid(F)= h'kid(F) then retrieve F from LPC and

Fig. 8. Downloading process from SAV

end, else go to 7,

7) LPC sends request to the SAV with fid to retrieve

8) SAV Search for F according to fid ,

9) SAV sends F and hash result hkid(F) and fid and

secret kid encrypted by LPC public key LPCke, (m= F ||

hkid(F) || fid || LPCke(kid)),

10) LPC receives m= F || hkid(F) || fid || LPCke(kid)

and recovers kid by using the private key of LPCkd,

11) User application on LPC calculates the hash

result h'kid(F) for F,

12) If hkid(F)= h'kid(F) then retrieve F from LPC and

save F and hkid(F) and fid and kid on LPC, else file is

corrupted and resend again.
If additional security is required like confidentiality then

symmetric key algorithm is used to insure confidentiality to F.
Public key algorithm will be used to exchange the secret key
between SAV and user working on the LPC.

In our improved algorithm DIFCS we increased the
cryptographic characteristics of the whole process of saving the
file and its hash result on server and reading the files and their
hash results from the same server. If we will compare the
developed algorithm cryptographic characteristics with the
other mentioned algorithms in this paper we can easily
conclude the following:

a. In DIFCS algorithm the original file is saved on the

local machine so it is not required to download each time the

original file from the files storage located usually on server,

which increases the effectiveness of the whole archive file

retrival process.

b. Authentication of file source is insured.

(b)

h

SAVke

h'kid(F)
F

LPCkd

Hkid(F)

LPC

hk(F)||kid

SAV

If h'kid(F) = hkid(F)  Retrieve

ELSE

If h'kid(F) ≠ hkid(F)  Resend

m

F

E

F||c

D

SAVkd

h'

LPCke

E D
kid

kid

LPC

fid

h'kid(F) F

kid

hk(F) || fid

SAV LPC

If h'kid(F) = hkid(F)  Retrieve

ELSE

If h'kid(F) ≠ hkid(F)  Resend

m

 h'

hkid(F) fidFiles

storage

LPC

(a)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 2, 2014

49 | P a g e

www.ijacsa.thesai.org

c. Additional powerful cryptographic characteristic is

fulfilled, where for if we have two messages m1 and m2, where

m1= m2 then h(m1)≠ h(m2).

d. Confidentiality for the files or hash results can be

implemented according to the user requirements

VI. CONCLUSIONS

In this research we developed a new algorithm called
DIFCS, which uses HMAC function to insure data integrity
and authentication for archival file systems. DIFCS also uses a
new technique for retrieving and checking if the archive files
are authentic. The main function of DIFCS is to increase the
efficiency of the files archival system and the local network.
Such an algorithm insures data integrity for archived files and
makes them immune against unauthorized manipulation and
Man in the Middle attack. It also insures authentication
between LPC and SAV.

In future work, we will develop the algorithm to make it a
distributed algorithm: where archival files will be distributed
and saved in different places according to a known mechanism.
Such a development will increase the efficiency of the system.

REFERENCES

[1] R.C. Merkle, A Certified Digital Signature. In proceedings of Advances
in Cryptology, Lecture Notes in Computer Science (435), Springer-
Verlag, California, USA, 1989, pp. 218-238.

[2] Menezes A. J., van Oorschot P.C., Vanstone S. A., Handbook of Applied
Cryptography. CRC Press, Boca Raton, FL, 1997.

[3] Pieprzyk J., Sadeghiyan B., Design of Hash Algorithms. LNCS 756,
Springer, Berlin, 1993.

[4] Wayner P., Digital Cash. AP Professional, Bostan, 1996.

[5] Preneel B, The state of the cryptographic hash functions. Damgård I.
(ed.), Lectures on Data Security. Modern Cryptology in Theory and
Practice. LNCS 1561, Springer, Berlin, 1999, 158182.

[6] Qu C., Sebbery J., Pieprzyk J., On the symmetric properties of
homogeneous bent functions. Pieprzyk J., Safavi-Naini R., Seberry J.
(eds.), Information Security and Privacy. LNCS 1587, Springer, Berlin,
1999, 26−35.

[7] R. Tamassia, N. Triandopoulos, On the Cost of Authenticated Data
Structures. In Proc. European Symposium on Algorithms, LNCS (2832),
Budapest, Hungary, 2003.

[8] Y.H. Chen, E.J. Lu, Design of a secure fine-grained official document
exchange model for e-government, Information & Security 15(1), 2004,
pp. 55-71.

[9] J. Woerner, H. Woern, A security architecture integrated co-operative
engineering platform for organised model exchange in a Digital Factory
environment, Computers in Industry 56(4), 2005, pp. 347-360.

[10] G. Yee, Y. Xu, L. Korba, K. El-Khatib, Privacy and Security in
ELearning, Future Directions in Distance Learning and Communication
Technologies. Idea Group, Inc. 2006.NRC Publication Number: NRC
48120.

[11] IBM, 2008. Data integrity. Available at:

[12] http://publib.boulder.ibm.com/infocenter/tpfhelp/current/index.jsp?topic
=/com.ibm.ztpf-ztpfdf.doc_put.cur/gtps5/s5dint.html (Accessed 12
December 2008).

[13] H. Maruyama, K. Tamura, N. Uramoto, Digest Values for DOM (DOM-
HASH), RFC2803. Available at:
http://www.landfield.com/rfcs/rfc2803.html (Accessed 13 November
2008).

[14] Bret Mulvey, Evaluation of SHA-1 for Hash Tables, in Hash Functions.
Accessed April 10, 2009.

[15] Boritz, J. Efrim. "IS Practitioners' Views on Core Concepts of
Information Integrity". International Journal of Accounting Information
Systems. Elsevier.
http://www.fdewb.unimaas.nl/marc/ecais_new/files/boritz.doc.
Retrieved 12 August 2011

[16] Trust and Privacy in Digital Business: Third International Conference,
TrustBus 2006, Krakow, Poland, September 4-8, Springer 2006,
Proceedings (Lecture Notes in Computer Science / Security and
Cryptology, ISBN-13: 978-3540377504.

[17] RFC1321, The MD5 Message Digest Algorithm, R.Rivest, April, 1992.

[18] FIPS-180-1, SHA-1 Secure Hash standard algorithm, April, 1995.

[19] Mihir Bellare Ran Canettiy Hugo Krawczykz, "Keying Hash Functions
for Message Authentication", Crypto 96 Proceedings,Lecture Notes in
Computer Science Vol. 1109, N. Koblitz ed., Springer-Verlag, 1996.

[20] H. Krawczyk, M.Bellare, R. Canetti HMAC: Keyed-Hashing for
Message Authentication, RFC 2104, 1997.

[21] H. Krawczyk, M.Bellare, R. Canetti: Message Authentication using
Hash Functions – The HMAC Construction, CryptoBytes, Vol. 2, No. 1
Spring 1996.

[22] NIST FIPS PUB 198, The Keyed-Hash Message Authentication Code
(HMAC), Federal Information Processing Standards Publication Issued
March 6, 2002.

[23] RFC4868, Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-
SHA-512 with IPsec, S. Kelly, S. Frankel, May,2007.

http://publib.boulder.ibm.com/infocenter/tpfhelp/current/index.jsp?topi
http://home.comcast.net/~bretm/hash/9.html
http://home.comcast.net/~bretm/hash/
http://www.fdewb.unimaas.nl/marc/ecais_new/files/boritz.doc
http://www.fdewb.unimaas.nl/marc/ecais_new/files/boritz.doc
http://www.fdewb.unimaas.nl/marc/ecais_new/files/boritz.doc.%20Retrieved%2012%20August%202011
http://www.fdewb.unimaas.nl/marc/ecais_new/files/boritz.doc.%20Retrieved%2012%20August%202011

