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Abstract—The tangent plane algorithm for real time 

recurrent learning (TPA-RTRL) is an effective online training 

method for fully recurrent neural networks. TPA-RTRL uses the 

method of approaching tangent planes to accelerate the learning 

processes. Compared to the original gradient descent real time 

recurrent learning algorithm (GD-RTRL) it is very fast and avoids 

problems like local minima of the search space.  However, the 

TPA-RTRL algorithm actively encourages the formation of large 

weight values that can be harmful to generalization.  This paper 

presents a new TPA-RTRL variant that encourages small weight 

values to decay to zero by using a weight elimination procedure 

built into the geometry of the algorithm.  Experimental results 

show that the new algorithm gives good generalization over a 

range of network sizes whilst retaining the fast convergence speed 

of the TPA-RTRL algorithm. 
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I. INTRODUCTION 

It is usually the case that smaller networks generalize 
better than larger ones.  To limit the size of the network, it can 
either use additive [1 - 3], subtractive [4 - 6] or weight decay 
techniques [7 - 9].  A common feature is that they try to 
balance the representational capacity of the network against 
the information criterion in the training data.  Weight decay 
techniques are considered here.   

The principal idea of weight decay is to have the network 
remove the superfluous weights by itself. This can be achieved 
by giving each weight connection a tendency to decay to zero 
so that connections disappear unless they are reinforced. The 
simplest method is to subtract a small proportion of a weight 
after it has been updated. This is equivalent to adding a 
penalty term to the original error function and performing 
gradient descent on the resulting total error. While this method 
clearly penalizes more connection weights than necessary, it 
overly discourages large weights.  May et al [7] have shown 
that using a weight elimination procedure which forces small 
weight values to decay faster than the large ones is an 
effective method for removing superfluous weights from a 
neural network whilst causing minimal disturbance to the 
learning process.  Simulation results show that it out performs 
weight decay in back propagation learning.  Williams [8] have 
shown that the method of maximum entropy indicates a 
Laplace prior and proposes a penalty term based on the L1 
norm of weights. A further refinement of this approach 

involves using a sparseness measure based on the L1 and L2 
norm of weights [9]. Experiments with Hoyer’s method 
indicate that it performs well in comparison with weight decay 
and weight elimination.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. An example of a fully recurrent neural network with one output unit, 

two hidden units, and two input units.  In this figure the dotted lines represent 
connections that have been removed from the network 

Pruning techniques reduce the number of free parameters 
in a neural network by removing redundant units and 
connections.  If applied properly this approach often improves 
generalization. Giles et al [4] have made a comparison of 
pruning and weight decay in a second order recurrent neural 
network.  Simulations were carried out on strings generated by 
two regular grammars, a randomly generated 10 state grammar 
and an 8 state triple parity grammar. These experiments show 
that pruned networks outperform networks with weight decay 
in cases where the starting weights were close to a solution.  
However, in situations where the original network was not 
well trained weight decay was shown to improve 
generalization. The convergence time for training with weight 
decay increased with the learning rate.  Leung et al [5] have 
used a recursive least squares (RLS) algorithm to train the 
weights of a recursive neural network (RNN). After training the 
error covariance matrix of the RLS algorithm was used to 
remove unimportant weights from the network. Simulations 
show that this new approach is an effective joint learning-
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pruning method for recurrent neural networks. Ahmed et al [6] 
have used the ‘Lempel-Ziv’ complexity (LZC) measure to 
prune artificial neural networks (ANNs). The silent pruning 
algorithm (SPA) prunes ANNs causing minimal disturbance to 
the network. SPA prunes hidden units during the training 
process according to their ranking computed from the LZC. 
Simulation tests carried out on standard benchmarking neural 
network problems show that SPA can produce simplified ANNs 
with good generalization ability.   

Other techniques for improving generalization in a neural 
network include injecting synaptic noise [10], regularisation 
[11] and early stopping [12].  Hirasawa [11] have used a 
regularisation term for calculating second order derivatives in 
a Universal Learning Network (ULN) that decreases the 
degrees of freedom of the network.  A ULN is a fully 
connected recurrent neural network with multiple nodes and 
multiple branches with arbitrary time delays.  Simulation 
results for a hydraulically controlled robot arm have shown 
that the proposed method can improve generalization and 
avoids problems like local minima.  In Giles et al [10] synaptic 
noise was injected into a high order recurrent neural network.  
Additive, multiplicative and cumulative noise was injected 
into the weights of a neural network where cumulative is taken 
to mean accumulated over time.   Simulation results on the 
dual parity automaton problem [4] show that these methods 
can improve generalization and convergence simultaneously 

II. OBJECTIVES 

In this paper a weight elimination procedure is used to 
improve generalization in recurrent neural networks.  The 
algorithm has been developed from one described elsewhere 
and referred to as iTPA [7].  Unlike other implementations of 
the weight elimination procedure, the method used here is 
built into the geometry of the algorithm.  There are currently 
no implementations of the weight elimination procedure for 
recurrent neural networks.   

The rest of the paper is organized as follows:  in section III 
and IV, a detailed derivation of the algorithm and an 
evaluation of weight sensitivity methods are presented.  In 
section V and VI, the results of computer simulations are 
considered and the differences in the results tested for 
statistical significance.  Finally, the conclusions are presented 
in section VII.   

III. DESCRIPTION OF THE ALGORITHM 

In May et al [7], a fast tangent plane method is described 
for training feed-forward multilayered neural networks. This 
method uses the training data to define a surface in weight 
space. The weights are updated by moving from the current 
position to a point nearby the foot of the perpendicular to this 
surface, biased in the direction that forces small weights 
values to decay faster than large ones. The principal advantage 
of the algorithm is that it self regulates the size of the network 
by removing superfluous weights which can be harmful to 
generalization. Unlike other implementations of the weight 
elimination procedure, the method used here is built into the 
geometry of the algorithm and causes minimal disruption to 
the learning process. Experimental results show that a weight 
elimination strategy is a more effective method for improving 

the generalization performance of the tangent plane algorithm 
than a weight growth strategy. This paper describes an 
equivalent implementation of the tangent plane algorithm for 
recurrent neural networks. A tangent plane variant of the real 
time recurrent learning algorithm referred to as TPA-RTRL has 
already been described elsewhere [13]. The detailed derivation 
of the algorithm follows 
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Fig. 2. Movement from the present position a to the point d inclined at an 

angle β to the perpendicular ac to the tangent plane to the constraint surface 
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Thus, the adjustment to weight jiw  is given by 
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and from May (2012)  
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Equation (14) holds for all units ku , k  = n1 .  Thus, we 

can create a dynamical system with the dynamics given by  
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Since we assume that the initial state of the recurrent 

neural network has no functional dependence on the weights, 

we have ji
tt

k w0 
 )(

 = 0, njnk  , , 1mni1  .   

The training procedure described above is a tangent plane 
variant of the real time recurrent learning algorithm (RTRL) 
proposed by Williams and Zipser [14] for online training of 
recurrent neural networks.  The GD-RTRL algorithm utilises the 
gradient information to guide the search towards the minimum 
training error.  However, it is sensitive to the choice of a 
learning rate that requires careful tuning.  The TPA-RTRL 
algorithm proposed by May et al [13] differs to the original 
algorithm by automatically calculating the correct step size in 
weight space using the method of approaching tangent planes.  
The improved TPA-RTRL algorithm described here includes a 
weight elimination procedure built into its geometry that 
suppresses the formation of large weight values 

The angle parameter  , which gives the angle between the 

movement vector and the perpendicular to the tangent plane, 
requires setting to an appropriate value.  Its value is preferred 
to be small, typically tan 0.005. Tests showed that the 

performance of the algorithm deteriorated rapidly when tan β 
was greater than 0.1.  Network training times are much longer 
and the number of failures to converge more frequent.  The 
reason for the failure to converge was that the weights became 
clustered too closely about the origin with average weight 
values < 0.01. In these circumstances individual weight 
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derivatives ji
t

k w
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value.  aw  is preferred to be small, typically 0.5,  so that 

weights with small values are selected for removal from the 

network.  An individual term 
)(t

jiv )(
)(

a
t
ji ww /

))((
)( 2

a
t
ji ww1   in )(t

v  varies according to (
)(t

jiw / aw ) in an 

anti-symmetric fashion.  When )(t
jiw  < aw , the directional 

term for that weight is approximately linear.  On the other 

hand, when )(t
jiw  > aw , the directional term quickly 

approaches to zero.  Thus a weight will receive a large push 

when 
)(t

jiw  equals aw .   

The iTPA-RTRL algorithm uses the gradient vector to do a 

linear extrapolation of the constraint surface 1t
1 f 

)( ( )(t
1y ) in 

order to gain a new weight vector that is hoped to be on, or at 

least close, to this surface.  However, 1t
1 f 

)( ( )(t
1y ) is a non-

trivial function of the weights, the recursive feedback 

activations  1t
i
 , n1i ,, , themselves being a function of 

the weights.  Thus the basic approximation that the surface can 
be locally approximated may only be limited to certain regions 
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superfluous weight from the network using a weight 
elimination procedure will have the effect of constraining the 

weight vector to a subspace of )( 1mnnR  .  This in turn will 
have a smoothing effect on the constraint surface 
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A potential difficulty with the iTPA-RTRL algorithm is that 
while learning from a large amount of data the weight change 

between the start of the learning phase ( t  = 0t ) and the end of 

the learning phase ( t  = 1t ) will not be small.  The reason is 

that the weight update )(t
jiw  is based upon the value of the 

derivatives ji
t

k w
)( , n1k ,,  over the whole trajectory 

from t  = 0t  to 1t .  These derivatives are calculated 

recursively using a relationship that is dependent on the 
weights and the weights are not constant.   Thus, the iTPA-
RTRL algorithm can move far from the steepest descent 
trajectory and never return.  Constraining the FRNN to small 
weight values might actually improve convergence behaviour 
as small weight values will lead to small fluctuations in the 
gradient vector.  This in turn might lead to a more robust 
implementation of the TPA-RTRL algorithm as the computation 

of the partial derivatives ji
t

k w
)(  is prone to arithmetic 

overflow errors 

IV. ESTIMATING WEIGHT SENSITIVITY VALUES 

The effectiveness of the weight elimination procedure can 
be measured by calculating the importance of each weight 
with the expectation that weights with low importance are 
redundant in the network.  There are several methods for 
calculating the importance of the weights [15, 16], optimal 
brain damage [17], and optimal brain surgeon [18].  In the 
case of OBD, the saliency of removal of a weight is estimated 
by using the second derivative of the error function.  Low 
saliency means low importance of the weights.  OBS avoids the 
drawbacks of approximating the second derivatives by 
computing them exactly [18].  The last two methods have the 
disadvantage of requiring training down to the error minimum.   
The method adopted here is autoprune [7, 19], which avoids 
the disadvantage of training down to the error minimum.  
Autoprune uses a statistic t  to allocate an importance 
coefficient to each weight based upon the assumption that a 
weight becomes zero.  It can be computed at any time during 
the training process   
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In the above formula, sums are over all training examples t 
of the training set, and the overline means arithmetic mean 

over all examples.  A large value of jit  indicates high 

importance of weight jiw .  May et al [7] have demonstrated 

using autoprune the effectiveness of the weight elimination 
procedure in a multi-layer feed forward neural network. 

V. COMPUTER SIMULATIONS 

Comparative tests were performed on the iTPA-RTRL and 
TPA-RTRL algorithms, and the original GD-RTRL algorithm 
using different network sizes and initial conditions.  In order 
to assess the generalization performance of the iTPA-RTRL 
algorithm, a weight decay procedure was utilized with the 
original GD-RTRL algorithm, which has been shown to improve 
generalization in second order recurrent neural networks [4].    

 The comparison was done based on the performance 
for the following benchmark neural network datasets; the 
Henon map time series [20], the continuous stirred tank 
reactor [21], and the non-linear dynamic plant [22].  The 
Henon map time series was used to analyse the effect of 
changing the weight sensitivity parameter wa on the ability of 
a single layer FRNN to generalize.  The continuous stirred tank 
and non-linear dynamic plant problems were chosen to 
establish the degree to which each learning algorithm used in 
this study has succeeded in removing superfluous weights 
from the network.   

A. Simulation Problems 

The Henon map problem is a chaotic time-series prediction 
problem.  The time series is computed by  

     1t2t1t xbxc1x   )(  (17) 

Where b = 0.3, c = 1.4, and x(1) = x(2) =
 
0.6313354.  The 

objective of the simulation is to train a single layer FRNN with 
one input and one output to model the chaotic series generated 
by (17). Since xmax = 1.272967 and xmin = -1.284657, the input 
values were scaled in the range [-1, 1].   

The non-linear dynamic plant problem is a high order non-
linear system introduced in Narendra and Parthasarathy [22].  
It is modeled by the following discrete time equation 
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Where y(t) is the model output at time t.   A single layer 

FRNN with one output unit and two input units was trained.  
The training data was generated using a random input signal 
uniformly distributed over the interval [-1, 1].   

The Van de Vusse reaction in a continuous stirred tank 
reactor (CSTR) can be modelled by the following discrete-
time nonlinear system introduced by Hernandez and Arkun 
[21] 
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Here y(t) is the product concentration and u(t) the scaled 

reactant at time step t.  The input u(t) has been normalized to   

0 ≤ u(t) ≤ 1, and the parameters of the system are c1 = 0.558,  c2 
= 0.538, c3 = 0.116, c4 = -0.127, and c5 = -0.034.  A single 
layer FRNN with one output unit and two input units was 
trained.  The training data was generated using a random input 
signal uniformly distributed over the interval [0, 1].   

B. Network Initialization 

The GD-RTRL algorithm requires two parameters that need 
to be set, the learning rate η and weight decay rate λ.   
Preliminary tests showed that the best results with the Henon 
map problem were obtained with η = 0.01 and λ = 0.000001.  
For the continuous stirred tank and non-linear plant problems, 
η = 0.1 and λ = 0.00001.  The iTPA-RTRL algorithm also 
requires two parameters to be set: the angle parameter β and 
the weight sensitivity parameter wa.  For the Henon map 
problem: tan β = 0.01.  The weight sensitivity parameter was 
set to different values in {0.5, 1.0, 2.0}.  For the continuous 
tank and non-linear plant problems, tan β = 0.05 and wa = 1.0.  
Both algorithms require the weight connections of the neural 
network to be set.  In all the tests carried out the weight 
connections were initialized to random values in the range     
[-0.5, 0.5].   

C. Discussion of Results 

Henon map time series.  The first test is a classical 
deterministic one-step-ahead prediction problem. The network 
used was a single layer FRNN with the number of processing 
units varied according to [8, 21, 26]. 20 trials were made with 
any failed trials excluded from the results.  The error metric 
used was the mean square error obtained by averaging the 
square error over 1000 time steps.  Network training was 
terminated when the mean square error on the training set was 
reduced to below 0.001 or 500,000 time steps trained.  The 
ability of the network to generalize was measured over 1000 
time steps after convergence had occurred.   

TABLE I.  FINAL TEST ERROR AND NUMBER OF STEPS TO 

CONVERGENCE FOR DIFFERENT VALUES OF THE PARAMETER WA  

 
 Table 1 shows the mean square error and the average 

number of steps to converge for different values of the weight 
sensitivity parameter wa in the iTPA-RTRL algorithm.  It was 
found that the generalization performance of the FRNN 
improved with decreasing values of wa, except in the smallest 
network where it was found to be worse.  This result is not 
surprising as selective pruning of weights in a small network 
structure is unlikely to improve the representational capacity 
of the network. It was also found that generalization 
performance declined with the size of the network.  This was 
particularly noticeable for values of the weight sensitivity 
parameter greater than 0.5.  Generalization was found to be 

 Units = 6 Units = 9 Units = 12 

wa 
MSE 

x10
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Steps 
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x10
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0.5 1.27 65 1.05 63 1.26 61 

1.0 0.98 65 1.07 63 1.33 64 

2.0 1.02 60 1.36 66 1.39 76 
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independent of the size of the network for the smallest value 
of wa.  This result suggests that selective pruning of weights 
implemented using small values of the parameter wa have 
produced parsimonious networks capable of good 
generalization behavior.  

A further test was carried out to assess the effectiveness of 
using a weight elimination procedure to produce ‘good’ 
network architectures.  Weight sensitivity values based on tji 
statistic were computed during the last 1,000 time steps 
trained.  Weights were considered to have low sensitivity 
values if their corresponding tji statistic was 50% of the mean 
value, which has been adapted from the pruning schedule 
iPrune [19].  Network training was terminated after 5,000,000 
time steps.  The ability of the network to generalize was 
measured over 1,000 time steps after convergence had 
occurred 

TABLE II.  FINAL TEST ERRORS AND % NUMBER OF WEIGHTS WITH 

LOW SENSITIVITY VALUES IN DIFFERENT SIZE NETWORKS FOR THE HENON 

MAP.  

 

 Table 2 shows the mean square error and the percentage 
number of weights with low sensitivity values eligible for 
removal from the network.  It was found that the new iTPA-
RTRL algorithm gave the best generalization performance 
except in the smallest network where it was no better than the 
TPA-RTRL algorithm. The TPA-RTRL algorithm gave the worst 
performance.  The poor generalization of both tangent plane 
algorithms in the smallest network is probably due to 
oscillatory behavior near a solution caused by a large step size.  
It was also found that networks trained by the iTPA-RTRL 
algorithm had the smallest percentage number of weights with 
low sensitivity values.  The results suggest that a weight 
elimination strategy effectively discriminates between active 
and inactive weights in the network thus improving 
generalization performance.  Figures 3 and 4 show the fit for 
the iTPA-RTRL and GD-RTRL algorithms using an FRNN with 12 
processing units after 500,000 time steps.  Clearly the fit is not 
exact but this is quite reasonable considering the type of input 
data used. 

Continuous stirred tank reactor.  The second test is a 
discrete-time nonlinear system introduced by Hernandez and 
Arkun [21].   The network used was a single layer FRNN with 
the number of processing units varied according to [8, 21, 26].  
The error metric used was the mean square error obtained by 
averaging the square error over 100 time steps.  Weight 
sensitivity values based on the tji statistic measured over the 
last 100 time steps trained.  Weights were considered to have 
low sensitivity values if their corresponding tji statistic was 
50% of the mean value.  Network training was terminated 
after 50,000 time steps.   

 
 

Fig. 3. Typical convergence behavior of the new iTPA-RTRL algorithm on 

the Henon map time series problem.   

 

Fig. 4. Typical convergence behavior of the original GD-RTRL algorithm on 

the Henon map time series problem   

Table 3 shows the mean square error and the percentage 
number of weights with low sensitivity values.  It was found 
that the iTPA-RTRL algorithm gave improved generalization 
relative to the GD-RTRL algorithm.  The TPA-RTRL algorithm 
gave the worst performance.  Generalization was found to be 
independent of the size of the network.  It was also found that 
the iTPA-RTRL and GD-RTRL algorithms produced networks 
with the smallest number of weights with low sensitivity 
values.  The results suggest that training networks with weight 
regularisation is better than training without weight 
regularisation.  Fig 5 and 6 show the fit for the iTPA-RTRL and 
GD-RTRL algorithms using an FRNN with 12 processing units 
after 50,000 time steps.  Clearly the fit of the iTPA-RTRL 
algorithm is very good despite the type of the input data used. 

TABLE III.  FINAL ERROR AND % NUMBER OF WEIGHTS WITH LOW 

SENSITIVITY VALUES IN DIFFERENT SIZE NETWORKS FOR THE CONTINUOUS 

STIRRED TANK 

 Units = 6 Units = 9 Units = 12 

 
MSE 

x10
2 n % 

MSE 

x10
2 n % 

MSE 

x10
2 n % 

 iTPA-RTRL 0.037 20.87 0.035 9.97 0.036 7.05 

 TPA-RTRL 0.054 21.69 0.055 13.27 0.054 9.25 

 GD-RTRL 0.041 17.75 0.040 9.58 0.043 7.96 

 Units = 6 Units = 9 Units = 12 

 
MSE 

x10
2 n% 

MSE 

x10
2 n% 

MSE 

x10
2 n% 

iTPA-RTRL 0.039 21.87 0.008 13.03 0.013 12.28 

TPA-RTRL 0.039 24.46 0.012 13.15 0.036 13.80 

 GD-RTRL 0.024 26.49 0.013 12.68 0.022 12.61 
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Fig. 5. Typical convergence behavior of the new iTPA-RTRL algorithm on 
the continuous stirred tank problem 

 

Fig. 6. Typical convergence behavior of the original GD-RTRL algorithm on 

the continuous stirred tank problem 

Non-linear dynamic plant.  The final test is a discrete-time 
nonlinear system introduced by Narendra and Parthasarathy 
[22].   Once again the network used was a single layer FRNN 
with the processing units varied according to [8, 21, 26].  The 
error metric used was the mean square error obtained by 
averaging the square error over intervals of 100 time steps.  
Network training was terminated after 50,000 time steps 
trained.  Weight sensitivity values based on tji statistic were 
computed during the last 100 time steps of the training phase.    

Table 4 shows the mean square error and percentage 
number of weights with low sensitivity values.  It was found 
that the iTPA-RTRL algorithm gave good generalization 
performance across a range of network sizes.  The GD-RTRL 
algorithm gave the worst performance.  Generalization 
performance was found to deteriorate with the size of the 
network.  This was particularly noticeable in networks trained 
by the TPA-RTRL algorithm.  It was also found that the iTPA-
RTRL algorithm produced networks with fewer redundant 
weights compared with the original algorithm.  The results 
suggest that using a weight elimination procedure during 
training is better than not using it at all.  Fig 7 and 8 show the 
fit for the iTPA-RTRL and GD-RTRL algorithms using an FRNN 
with 12 processing units after 50,000 time steps.  Clearly the 

fit of both algorithms is very good considering the input data 
used (high spectral content).   

TABLE IV.  FINAL ERROR AND % NUMBER OF WEIGHTS WITH LOW 

SENSITIVITY VALUES IN DIFFERENT SIZE NETWORKS FOR THE NON-LINEAR 

DYNAMIC PLANT 

 Units = 6 Units = 9 Units = 12 

 
MSE 

x10
2 n% 

MSE 

x10
2 n% 

MSE 

x10
2 n% 

iTPA-RTRL 4.39 14.33 4.34 7.85 4.75 6.15 

TPA-RTRL 4.33 15.42 4.35 9.78 4.85 7.74 

GD-RTRL 4.65 13.11 4.88 7.99 4.74 6.02 

 

 
Fig. 7. Typical convergence behavior of the new iTPA-RTRL algorithm on 

the non-linear dynamic plant problem 

 

Fig. 8. Typical convergence behavior of the original GD-RTRL algorithm on 

the non-linear dynamic plant problem   

VI. COMPARISON OF THE DIFFERENT ALGORITHMS 

In order to determine whether the difference in the results 
is statistically significant, we perform some hypothesis tests.  
The test used was a standard t-test with the sample of test 
errors from the iTPA-RTRL algorithm compared with the 
corresponding sample from the original TPA-RTRL algorithm 
for each dataset used in the study.   A second test was carried 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 5, No. 3, 2014 

125 | P a g e  
www.ijacsa.thesai.org 

out by comparing these test results with the GD-RTRL 
algorithm on the same set of problems.   For the correct 
application of the t-test, it was necessary to take the logarithm 
of the test errors (since the test errors have log-normal 
distribution) and remove any outliers, following the same 
procedure in [19].  The resulting samples were tested for 
normality using the Kolmogorov-Smirnov test. 

TABLE V.  RESULTS OF A T-TEST COMPARING THE MEAN TEST ERRORS 

OF THE DIFFERENT ALGORITHMS 

 
Note:  The entries show differences that are statistically significant on a 10% 

level and dashes mean no significance found.  Column (a): iTPA-RTRL (“L”) 

vs. TPA-RTRL (“T”). Column (b): iTPA-RTRL vs. GD-RTRL (“G”).  

Column. (c): TPA-RTRL vs. GD-RTRL  

The results are tabulated in Table 5.  Dashes mean 
differences that are not significant at the 10% level i.e. the 
probability that the differences are purely accidental.  Other 
entries indicate the superior algorithm (e.g. new iTPA-RTRL 
algorithm - L, TPA-RTRL algorithm – T, GD-RTRL algorithm - 
G), and the value of the t statistic.  Column (a) gives a 
comparison between the new iTPA-RTRL algorithm and the 
TPA-RTRL algorithm.  The results show two times L is better 
(Henon map and continuous stirred tank) and once no 
statistical difference (non-linear dynamic plant). This suggests 
that training using weight elimination is better than training 
with no weight regularisation at all.  Column (b) and (c) give 
comparisons between the new iTPA-RTRL and original TPA-
RTRL algorithms, and the GD-RTRL algorithm.  The results 
show three times no statistical difference, twice L is better and 
once G is better. This suggests that the generalization 
performance of the new iTPA-RTRL algorithm is superior, and 
that training RNN using weight elimination or weight decay is 
better than training with none at all, which is the situation with 
the TPA-RTRL algorithm. 

VII. CONCLUSIONS 

A new variant of the tangent plane algorithm referred to as 
iTPA-RTRL is proposed for online training of recurrent neural 
networks.  This algorithm automatically adjusts the step size 
by approaching tangent planes to constraint surfaces. A weight 
elimination vector is projected onto the tangent plane with the 
expectation that the algorithm will prune superfluous weights 
from the network without causing much disturbance during 
network training.  The iTPA-RTRL algorithm requires two 
parameter to set manually; the angle parameter β and the 
weight sensitivity parameter wa.  Small values of wa which 
implement a weight elimination procedure are preferred in 
large network structures.  Increasing the value of wa > 1.0 has 
a deleterious effect on generalization and produces slower 
convergence.   

Comparative tests were carried out using the new iTPA-
RTRL and TPA-RTRL algorithms and the GD-RTRL algorithm 
with weight decay.  The neural network benchmark datasets 
used were the Henon map [23], the continuous stirred tank 
[24] and the non-linear dynamic plant [25].  

The results show that the iTPA-RTRL algorithm was two 
times better (Henon map and continuous stirred tank) than the 
TPA-RTRL algorithm, and two times better (Henon map and 
continuous stirred tank) than the GD-RTRL algorithm with 
weight decay.  It was also found that the iTPA-RTRL algorithm 
pruned the smallest percentage of weights from the network.  
This result suggests that a weight elimination strategy is an 
effective method for discriminating between active and 
inactive weights and actually results in better generalization 
performance. 

VIII. FUTURE WORK 

This paper shows that the newly developed improved 
tangent plane algorithm for recurrent neural networks gives 
improved generalization performance relative to the gradient 
descent real time recurrent learning algorithm with weight 
decay.  In situations where time varying signals are required, 
such as grammatical inference or process control modelling, 
the sequential learning ability of the improved tangent plane 
algorithm might be the preferred method. 
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