
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

118 | P a g e
www.ijacsa.thesai.org

Improved Generalization in Recurrent Neural

Networks Using the Tangent Plane Algorithm

 P May

K College, Brook Street,

Tonbridge, Kent, UK

E Zhou

Applied Engineering and Science

Academic Group,University of

Bolton, UK

C. W. Lee

Applied Engineering and Science

Academic Group University of

Bolton, UK

Abstract—The tangent plane algorithm for real time

recurrent learning (TPA-RTRL) is an effective online training

method for fully recurrent neural networks. TPA-RTRL uses the

method of approaching tangent planes to accelerate the learning

processes. Compared to the original gradient descent real time

recurrent learning algorithm (GD-RTRL) it is very fast and avoids

problems like local minima of the search space. However, the

TPA-RTRL algorithm actively encourages the formation of large

weight values that can be harmful to generalization. This paper

presents a new TPA-RTRL variant that encourages small weight

values to decay to zero by using a weight elimination procedure

built into the geometry of the algorithm. Experimental results

show that the new algorithm gives good generalization over a

range of network sizes whilst retaining the fast convergence speed

of the TPA-RTRL algorithm.

Keywords—real time recurrent learning; tangent plane;

generalization; weight elimination; temporal pattern recognition;

non-linear process control

I. INTRODUCTION

It is usually the case that smaller networks generalize
better than larger ones. To limit the size of the network, it can
either use additive [1 - 3], subtractive [4 - 6] or weight decay
techniques [7 - 9]. A common feature is that they try to
balance the representational capacity of the network against
the information criterion in the training data. Weight decay
techniques are considered here.

The principal idea of weight decay is to have the network
remove the superfluous weights by itself. This can be achieved
by giving each weight connection a tendency to decay to zero
so that connections disappear unless they are reinforced. The
simplest method is to subtract a small proportion of a weight
after it has been updated. This is equivalent to adding a
penalty term to the original error function and performing
gradient descent on the resulting total error. While this method
clearly penalizes more connection weights than necessary, it
overly discourages large weights. May et al [7] have shown
that using a weight elimination procedure which forces small
weight values to decay faster than the large ones is an
effective method for removing superfluous weights from a
neural network whilst causing minimal disturbance to the
learning process. Simulation results show that it out performs
weight decay in back propagation learning. Williams [8] have
shown that the method of maximum entropy indicates a
Laplace prior and proposes a penalty term based on the L1
norm of weights. A further refinement of this approach

involves using a sparseness measure based on the L1 and L2
norm of weights [9]. Experiments with Hoyer’s method
indicate that it performs well in comparison with weight decay
and weight elimination.

Fig. 1. An example of a fully recurrent neural network with one output unit,

two hidden units, and two input units. In this figure the dotted lines represent
connections that have been removed from the network

Pruning techniques reduce the number of free parameters
in a neural network by removing redundant units and
connections. If applied properly this approach often improves
generalization. Giles et al [4] have made a comparison of
pruning and weight decay in a second order recurrent neural
network. Simulations were carried out on strings generated by
two regular grammars, a randomly generated 10 state grammar
and an 8 state triple parity grammar. These experiments show
that pruned networks outperform networks with weight decay
in cases where the starting weights were close to a solution.
However, in situations where the original network was not
well trained weight decay was shown to improve
generalization. The convergence time for training with weight
decay increased with the learning rate. Leung et al [5] have
used a recursive least squares (RLS) algorithm to train the
weights of a recursive neural network (RNN). After training the
error covariance matrix of the RLS algorithm was used to
remove unimportant weights from the network. Simulations
show that this new approach is an effective joint learning-

1
(t-1) 2

(t-1) 3
(t-1) x1

(t-1) x2
(t-2) …

xm
(t-m)

1u 2u
3u

1z 1z

1z

1
(t) 2

(t)

3
(t) 3

(t)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

119 | P a g e
www.ijacsa.thesai.org

pruning method for recurrent neural networks. Ahmed et al [6]
have used the ‘Lempel-Ziv’ complexity (LZC) measure to
prune artificial neural networks (ANNs). The silent pruning
algorithm (SPA) prunes ANNs causing minimal disturbance to
the network. SPA prunes hidden units during the training
process according to their ranking computed from the LZC.
Simulation tests carried out on standard benchmarking neural
network problems show that SPA can produce simplified ANNs
with good generalization ability.

Other techniques for improving generalization in a neural
network include injecting synaptic noise [10], regularisation
[11] and early stopping [12]. Hirasawa [11] have used a
regularisation term for calculating second order derivatives in
a Universal Learning Network (ULN) that decreases the
degrees of freedom of the network. A ULN is a fully
connected recurrent neural network with multiple nodes and
multiple branches with arbitrary time delays. Simulation
results for a hydraulically controlled robot arm have shown
that the proposed method can improve generalization and
avoids problems like local minima. In Giles et al [10] synaptic
noise was injected into a high order recurrent neural network.
Additive, multiplicative and cumulative noise was injected
into the weights of a neural network where cumulative is taken
to mean accumulated over time. Simulation results on the
dual parity automaton problem [4] show that these methods
can improve generalization and convergence simultaneously

II. OBJECTIVES

In this paper a weight elimination procedure is used to
improve generalization in recurrent neural networks. The
algorithm has been developed from one described elsewhere
and referred to as iTPA [7]. Unlike other implementations of
the weight elimination procedure, the method used here is
built into the geometry of the algorithm. There are currently
no implementations of the weight elimination procedure for
recurrent neural networks.

The rest of the paper is organized as follows: in section III
and IV, a detailed derivation of the algorithm and an
evaluation of weight sensitivity methods are presented. In
section V and VI, the results of computer simulations are
considered and the differences in the results tested for
statistical significance. Finally, the conclusions are presented
in section VII.

III. DESCRIPTION OF THE ALGORITHM

In May et al [7], a fast tangent plane method is described
for training feed-forward multilayered neural networks. This
method uses the training data to define a surface in weight
space. The weights are updated by moving from the current
position to a point nearby the foot of the perpendicular to this
surface, biased in the direction that forces small weights
values to decay faster than large ones. The principal advantage
of the algorithm is that it self regulates the size of the network
by removing superfluous weights which can be harmful to
generalization. Unlike other implementations of the weight
elimination procedure, the method used here is built into the
geometry of the algorithm and causes minimal disruption to
the learning process. Experimental results show that a weight
elimination strategy is a more effective method for improving

the generalization performance of the tangent plane algorithm
than a weight growth strategy. This paper describes an
equivalent implementation of the tangent plane algorithm for
recurrent neural networks. A tangent plane variant of the real
time recurrent learning algorithm referred to as TPA-RTRL has
already been described elsewhere [13]. The detailed derivation
of the algorithm follows

Consider a FRNN of units { ju
} (see Fig 1). For unit ju

,
T
jw

 = [1jw
, 2jw

, ... , 1mnjw ,] denotes a 11mn)(

vector of weights, where n are the number of processing

units, m the number of external inputs, with one remaining

input being for the fixed input bias. Let j and j
 denote the

net input and output of ju
, and f the unit’s activation

function, typically tanh)(x . The following equations describe

the FRNN at time instant t

ft
j)((

 t
j), n21j ,...,, (1)

1mn

1i

t
i

t
ji

t
j zw (2)

[
 t
iz]T [

 mt
m

1t
1

1t
n

1t
1 xx1 ,...,,,,...,] (3)

For the non-linear time series prediction paradigm, there is
only one output unit of the FRNN. Let this output unit be

denoted by 1u , with)(t
1 at time step t being trained to mimic

the teaching value)(t
1y . For a given set of inputs it

ix

{ ,

},, m1i , we can consider t
1 to be a function of the

weights, t
1 : RR 1mnn)(. Thus the equation

)(

)(t
1

1t
1 yf defines a n 11mn)(surface in

)(1mnnR . The aim of this training procedure is to move

from the current position)(1mnnR a in weight space to the
foot of the perpendicular to the tangent plane of this surface

(see Fig 2)

Fig. 2. Movement from the present position a to the point d inclined at an

angle β to the perpendicular ac to the tangent plane to the constraint surface

)(
,

ˆ t
1n1 e

o

b

)()()(t
1

1t
1 yf

)(ˆ t
n

)(t
a

)(t
u

a

d

c

)(t
v

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

120 | P a g e
www.ijacsa.thesai.org

)
)(

(
)(t

1
y1f

t
1

 at point b in weight space R n x (m+n+1)
. The vector u represents

the projection of the weight elimination vector v orthogonally onto the normal
n to the constraint surface at b

Let i,j
ji

t'
ji

t ˆw ea be the current vector of weights,

where jiê is a unit vector in the direction of the jiw axis. Use

the equation 1f ()t(
1y)

1ni

)t(
i

)t(
i,1

)t(
1n,1 zww to find a

particular value t"
1n,1w for the constant input weight 1n,1w

from the values
 t'

jiw of the other weights, so that the

constraint surface
)(

t
1

1t
1 yf contains the point t

b

1n1ij
ji

t
ji1n1

t
1n1 ww

,,

'
,

"
,

ˆˆ ee . Now, if we use the

equations
)(

t
1

1 yf

1ni

t
i

t
i1

t
1n1 zww

'"
, and

)(t
1

1f

1ni

t
i

t
i1

t
1n1 zww

''
, , and from the definition of t

b ,

we have

 tt
ab [t

1n1
t

1n1 ww
'
,

"
,] 1n1 ,ê

)]()([t

1
1t

1
1 fyf 1n1 ,ê (4)

Let n̂ be the unit normal to the surface at b , so

11 n̂ . The length of the perpendicular from a to the

tangent plane at b is nab ˆ)(. . If c is the foot of the

perpendicular from a to the tangent plane at b ,

)()(
,

)()()()(ˆ)ˆˆ())()((tt
1n1

t
1

1t
1

1tt fyf nn.eac
 (5)

The vector that is directed towards the origin and biased

along the axes of the weights jiw that have small weight

values relative to some small positive constant aw is)(t
v

 ij

t
jia

t
ji ww

,

)()(ˆ)(e / (2
a

t
ji ww1)(

)(
). The projection of

)(t
v onto the tangent plane is given by

)()()()()(ˆ)ˆ(ttttt
nn.vvu (6)

Thus, if)(t
d is the point of intersection with the tangent

plane of a line from)(t
a inclined at angle to the

perpendicular ac, then

)()(

)(

)(
)()()()(tt

t

t
tttt tan ac

u

u
acad (7)

Let)()(
)()()(t

1
1t

1
1t fyf be the error in the input to

1u at time t. Hence, using equations (5), (6) and (7) yields

)(

)(
)(

,
)()()(

,
)()()()ˆˆ(ˆ)ˆˆ(

t

t
t

1n1
ttt

1n1
ttt βtan

u

u
n.enn.ead (8)

However

)(

,

)()(

,
)(

,

)(

)(

,

)(

)(
,,

ˆˆˆˆ

t
1

ij

t
i

t
ji

1n1
t

1
1n1

t
1

t
1

ji

ij ji

t
1

t
1

1n11n1

1

zw
w

1

w

1

w

1
e

 e.en.

 (9)

Therefore,

)(

)(

)(

)(

)()(

)(

)()(

t

t

t
1

t

t
1

t

2
t

1

tt tan
1

u

u
ad

 (10)

Thus, the adjustment to weight jiw is given by

ji

t
1

qp pq

t
1t

pq2
t

1

t
ji

tt
1

t

ji

t
1t

2
t

1

t
ji

ww
v

1
v

1
tan

w

1
w

)(

,

)(
)(

)(

)(

)()(

)(
)(

)(

)(

)(

 u

 (11)

where

ij

2

ji

t
12t

1
w

,

)(
)(

 (12)

and

ij

2

qp pq

t
1t

pq
ji

t
1

2t
1

t
ji

2
t

w
v

w

1
v

, ,

)(
)(

)(

)(

)()(

u (13)

and from May (2012)

 t

i1j

n

1m

t
m11t

ji

1t
m1t

mt
ji

t
1 zw

w
f

w

)(' (14)

where

1j

otherwise0

1jif1

,

,

Equation (14) holds for all units ku , k = n1 . Thus, we

can create a dynamical system with the dynamics given by

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

121 | P a g e
www.ijacsa.thesai.org

 t

ijk

n

1m

t
kmt

ji

1t
m1t

mt
ji

t
k zw

w
f

w

)(' (15)

Since we assume that the initial state of the recurrent

neural network has no functional dependence on the weights,

we have ji
tt

k w0
)(

 = 0, njnk , , 1mni1 .

The training procedure described above is a tangent plane
variant of the real time recurrent learning algorithm (RTRL)
proposed by Williams and Zipser [14] for online training of
recurrent neural networks. The GD-RTRL algorithm utilises the
gradient information to guide the search towards the minimum
training error. However, it is sensitive to the choice of a
learning rate that requires careful tuning. The TPA-RTRL
algorithm proposed by May et al [13] differs to the original
algorithm by automatically calculating the correct step size in
weight space using the method of approaching tangent planes.
The improved TPA-RTRL algorithm described here includes a
weight elimination procedure built into its geometry that
suppresses the formation of large weight values

The angle parameter , which gives the angle between the

movement vector and the perpendicular to the tangent plane,
requires setting to an appropriate value. Its value is preferred
to be small, typically tan 0.005. Tests showed that the

performance of the algorithm deteriorated rapidly when tan β
was greater than 0.1. Network training times are much longer
and the number of failures to converge more frequent. The
reason for the failure to converge was that the weights became
clustered too closely about the origin with average weight
values < 0.01. In these circumstances individual weight

updates
)(t

jiw are no longer based on the values of previous

derivatives ji
t

k w
)(, n1k ,, over the whole trajectory

from t = 0t to 1t but are driven by the training data, thus the

trajectory will not follow a steepest descent path

The weight sensitivity parameter aw , which determines

the size of the push towards the origin that an individual

weight
)(t

jiw will receive, also requires setting to an appropriate

value. aw is preferred to be small, typically 0.5, so that

weights with small values are selected for removal from the

network. An individual term
)(t

jiv)(
)(

a
t
ji ww /

))((
)(2

a
t
ji ww1 in)(t

v varies according to (
)(t

jiw / aw) in an

anti-symmetric fashion. When)(t
jiw < aw , the directional

term for that weight is approximately linear. On the other

hand, when)(t
jiw > aw , the directional term quickly

approaches to zero. Thus a weight will receive a large push

when
)(t

jiw equals aw .

The iTPA-RTRL algorithm uses the gradient vector to do a

linear extrapolation of the constraint surface 1t
1 f

)(()(t
1y) in

order to gain a new weight vector that is hoped to be on, or at

least close, to this surface. However, 1t
1 f

)(()(t
1y) is a non-

trivial function of the weights, the recursive feedback

activations 1t
i
 , n1i ,, , themselves being a function of

the weights. Thus the basic approximation that the surface can
be locally approximated may only be limited to certain regions

of weight space close to 1t
1 f

)(()(t
1y). Removing

superfluous weight from the network using a weight
elimination procedure will have the effect of constraining the

weight vector to a subspace of)(1mnnR . This in turn will
have a smoothing effect on the constraint surface

)(
)()(t

1
1t

1 yf making a tangent plane approximation to this

surface viable.

A potential difficulty with the iTPA-RTRL algorithm is that
while learning from a large amount of data the weight change

between the start of the learning phase (t = 0t) and the end of

the learning phase (t = 1t) will not be small. The reason is

that the weight update)(t
jiw is based upon the value of the

derivatives ji
t

k w
)(, n1k ,, over the whole trajectory

from t = 0t to 1t . These derivatives are calculated

recursively using a relationship that is dependent on the
weights and the weights are not constant. Thus, the iTPA-
RTRL algorithm can move far from the steepest descent
trajectory and never return. Constraining the FRNN to small
weight values might actually improve convergence behaviour
as small weight values will lead to small fluctuations in the
gradient vector. This in turn might lead to a more robust
implementation of the TPA-RTRL algorithm as the computation

of the partial derivatives ji
t

k w
)(is prone to arithmetic

overflow errors

IV. ESTIMATING WEIGHT SENSITIVITY VALUES

The effectiveness of the weight elimination procedure can
be measured by calculating the importance of each weight
with the expectation that weights with low importance are
redundant in the network. There are several methods for
calculating the importance of the weights [15, 16], optimal
brain damage [17], and optimal brain surgeon [18]. In the
case of OBD, the saliency of removal of a weight is estimated
by using the second derivative of the error function. Low
saliency means low importance of the weights. OBS avoids the
drawbacks of approximating the second derivatives by
computing them exactly [18]. The last two methods have the
disadvantage of requiring training down to the error minimum.
The method adopted here is autoprune [7, 19], which avoids
the disadvantage of training down to the error minimum.
Autoprune uses a statistic t to allocate an importance
coefficient to each weight based upon the assumption that a
weight becomes zero. It can be computed at any time during
the training process

)(jiwt log

t

2
ji

t
ji

t

t
jiji

ww

ww

))((
 (16)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

122 | P a g e
www.ijacsa.thesai.org

In the above formula, sums are over all training examples t
of the training set, and the overline means arithmetic mean

over all examples. A large value of jit indicates high

importance of weight jiw . May et al [7] have demonstrated

using autoprune the effectiveness of the weight elimination
procedure in a multi-layer feed forward neural network.

V. COMPUTER SIMULATIONS

Comparative tests were performed on the iTPA-RTRL and
TPA-RTRL algorithms, and the original GD-RTRL algorithm
using different network sizes and initial conditions. In order
to assess the generalization performance of the iTPA-RTRL
algorithm, a weight decay procedure was utilized with the
original GD-RTRL algorithm, which has been shown to improve
generalization in second order recurrent neural networks [4].

 The comparison was done based on the performance
for the following benchmark neural network datasets; the
Henon map time series [20], the continuous stirred tank
reactor [21], and the non-linear dynamic plant [22]. The
Henon map time series was used to analyse the effect of
changing the weight sensitivity parameter wa on the ability of
a single layer FRNN to generalize. The continuous stirred tank
and non-linear dynamic plant problems were chosen to
establish the degree to which each learning algorithm used in
this study has succeeded in removing superfluous weights
from the network.

A. Simulation Problems

The Henon map problem is a chaotic time-series prediction
problem. The time series is computed by

 1t2t1t xbxc1x)((17)

Where b = 0.3, c = 1.4, and x(1) = x(2) =

0.6313354. The

objective of the simulation is to train a single layer FRNN with
one input and one output to model the chaotic series generated
by (17). Since xmax = 1.272967 and xmin = -1.284657, the input
values were scaled in the range [-1, 1].

The non-linear dynamic plant problem is a high order non-
linear system introduced in Narendra and Parthasarathy [22].
It is modeled by the following discrete time equation

23t22t

t3t1t3t2t1t

t

yy1

u1yuyyy
y

][][

][

)()(

)()()()()(

)(

 (18)

Where y(t) is the model output at time t. A single layer

FRNN with one output unit and two input units was trained.
The training data was generated using a random input signal
uniformly distributed over the interval [-1, 1].

The Van de Vusse reaction in a continuous stirred tank
reactor (CSTR) can be modelled by the following discrete-
time nonlinear system introduced by Hernandez and Arkun
[21]

)()()()()()(][2t1t2t
5

31t
4

1t
3

1t
21

t uuycucycuccy (19)

Here y(t) is the product concentration and u(t) the scaled

reactant at time step t. The input u(t) has been normalized to

0 ≤ u(t) ≤ 1, and the parameters of the system are c1 = 0.558, c2
= 0.538, c3 = 0.116, c4 = -0.127, and c5 = -0.034. A single
layer FRNN with one output unit and two input units was
trained. The training data was generated using a random input
signal uniformly distributed over the interval [0, 1].

B. Network Initialization

The GD-RTRL algorithm requires two parameters that need
to be set, the learning rate η and weight decay rate λ.
Preliminary tests showed that the best results with the Henon
map problem were obtained with η = 0.01 and λ = 0.000001.
For the continuous stirred tank and non-linear plant problems,
η = 0.1 and λ = 0.00001. The iTPA-RTRL algorithm also
requires two parameters to be set: the angle parameter β and
the weight sensitivity parameter wa. For the Henon map
problem: tan β = 0.01. The weight sensitivity parameter was
set to different values in {0.5, 1.0, 2.0}. For the continuous
tank and non-linear plant problems, tan β = 0.05 and wa = 1.0.
Both algorithms require the weight connections of the neural
network to be set. In all the tests carried out the weight
connections were initialized to random values in the range
[-0.5, 0.5].

C. Discussion of Results

Henon map time series. The first test is a classical
deterministic one-step-ahead prediction problem. The network
used was a single layer FRNN with the number of processing
units varied according to [8, 21, 26]. 20 trials were made with
any failed trials excluded from the results. The error metric
used was the mean square error obtained by averaging the
square error over 1000 time steps. Network training was
terminated when the mean square error on the training set was
reduced to below 0.001 or 500,000 time steps trained. The
ability of the network to generalize was measured over 1000
time steps after convergence had occurred.

TABLE I. FINAL TEST ERROR AND NUMBER OF STEPS TO

CONVERGENCE FOR DIFFERENT VALUES OF THE PARAMETER WA

 Table 1 shows the mean square error and the average

number of steps to converge for different values of the weight
sensitivity parameter wa in the iTPA-RTRL algorithm. It was
found that the generalization performance of the FRNN
improved with decreasing values of wa, except in the smallest
network where it was found to be worse. This result is not
surprising as selective pruning of weights in a small network
structure is unlikely to improve the representational capacity
of the network. It was also found that generalization
performance declined with the size of the network. This was
particularly noticeable for values of the weight sensitivity
parameter greater than 0.5. Generalization was found to be

 Units = 6 Units = 9 Units = 12

wa
MSE

x10
2

Steps

x10
3

MSE

x10
2

Steps

x10
3

MSE

x10
2

Steps

x10
3

0.5 1.27 65 1.05 63 1.26 61

1.0 0.98 65 1.07 63 1.33 64

2.0 1.02 60 1.36 66 1.39 76

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

123 | P a g e
www.ijacsa.thesai.org

independent of the size of the network for the smallest value
of wa. This result suggests that selective pruning of weights
implemented using small values of the parameter wa have
produced parsimonious networks capable of good
generalization behavior.

A further test was carried out to assess the effectiveness of
using a weight elimination procedure to produce ‘good’
network architectures. Weight sensitivity values based on tji
statistic were computed during the last 1,000 time steps
trained. Weights were considered to have low sensitivity
values if their corresponding tji statistic was 50% of the mean
value, which has been adapted from the pruning schedule
iPrune [19]. Network training was terminated after 5,000,000
time steps. The ability of the network to generalize was
measured over 1,000 time steps after convergence had
occurred

TABLE II. FINAL TEST ERRORS AND % NUMBER OF WEIGHTS WITH

LOW SENSITIVITY VALUES IN DIFFERENT SIZE NETWORKS FOR THE HENON

MAP.

 Table 2 shows the mean square error and the percentage
number of weights with low sensitivity values eligible for
removal from the network. It was found that the new iTPA-
RTRL algorithm gave the best generalization performance
except in the smallest network where it was no better than the
TPA-RTRL algorithm. The TPA-RTRL algorithm gave the worst
performance. The poor generalization of both tangent plane
algorithms in the smallest network is probably due to
oscillatory behavior near a solution caused by a large step size.
It was also found that networks trained by the iTPA-RTRL
algorithm had the smallest percentage number of weights with
low sensitivity values. The results suggest that a weight
elimination strategy effectively discriminates between active
and inactive weights in the network thus improving
generalization performance. Figures 3 and 4 show the fit for
the iTPA-RTRL and GD-RTRL algorithms using an FRNN with 12
processing units after 500,000 time steps. Clearly the fit is not
exact but this is quite reasonable considering the type of input
data used.

Continuous stirred tank reactor. The second test is a
discrete-time nonlinear system introduced by Hernandez and
Arkun [21]. The network used was a single layer FRNN with
the number of processing units varied according to [8, 21, 26].
The error metric used was the mean square error obtained by
averaging the square error over 100 time steps. Weight
sensitivity values based on the tji statistic measured over the
last 100 time steps trained. Weights were considered to have
low sensitivity values if their corresponding tji statistic was
50% of the mean value. Network training was terminated
after 50,000 time steps.

Fig. 3. Typical convergence behavior of the new iTPA-RTRL algorithm on

the Henon map time series problem.

Fig. 4. Typical convergence behavior of the original GD-RTRL algorithm on

the Henon map time series problem

Table 3 shows the mean square error and the percentage
number of weights with low sensitivity values. It was found
that the iTPA-RTRL algorithm gave improved generalization
relative to the GD-RTRL algorithm. The TPA-RTRL algorithm
gave the worst performance. Generalization was found to be
independent of the size of the network. It was also found that
the iTPA-RTRL and GD-RTRL algorithms produced networks
with the smallest number of weights with low sensitivity
values. The results suggest that training networks with weight
regularisation is better than training without weight
regularisation. Fig 5 and 6 show the fit for the iTPA-RTRL and
GD-RTRL algorithms using an FRNN with 12 processing units
after 50,000 time steps. Clearly the fit of the iTPA-RTRL
algorithm is very good despite the type of the input data used.

TABLE III. FINAL ERROR AND % NUMBER OF WEIGHTS WITH LOW

SENSITIVITY VALUES IN DIFFERENT SIZE NETWORKS FOR THE CONTINUOUS

STIRRED TANK

 Units = 6 Units = 9 Units = 12

MSE

x10
2 n %

MSE

x10
2 n %

MSE

x10
2 n %

 iTPA-RTRL 0.037 20.87 0.035 9.97 0.036 7.05

 TPA-RTRL 0.054 21.69 0.055 13.27 0.054 9.25

 GD-RTRL 0.041 17.75 0.040 9.58 0.043 7.96

 Units = 6 Units = 9 Units = 12

MSE

x10
2 n%

MSE

x10
2 n%

MSE

x10
2 n%

iTPA-RTRL 0.039 21.87 0.008 13.03 0.013 12.28

TPA-RTRL 0.039 24.46 0.012 13.15 0.036 13.80

 GD-RTRL 0.024 26.49 0.013 12.68 0.022 12.61

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

124 | P a g e
www.ijacsa.thesai.org

Fig. 5. Typical convergence behavior of the new iTPA-RTRL algorithm on
the continuous stirred tank problem

Fig. 6. Typical convergence behavior of the original GD-RTRL algorithm on

the continuous stirred tank problem

Non-linear dynamic plant. The final test is a discrete-time
nonlinear system introduced by Narendra and Parthasarathy
[22]. Once again the network used was a single layer FRNN
with the processing units varied according to [8, 21, 26]. The
error metric used was the mean square error obtained by
averaging the square error over intervals of 100 time steps.
Network training was terminated after 50,000 time steps
trained. Weight sensitivity values based on tji statistic were
computed during the last 100 time steps of the training phase.

Table 4 shows the mean square error and percentage
number of weights with low sensitivity values. It was found
that the iTPA-RTRL algorithm gave good generalization
performance across a range of network sizes. The GD-RTRL
algorithm gave the worst performance. Generalization
performance was found to deteriorate with the size of the
network. This was particularly noticeable in networks trained
by the TPA-RTRL algorithm. It was also found that the iTPA-
RTRL algorithm produced networks with fewer redundant
weights compared with the original algorithm. The results
suggest that using a weight elimination procedure during
training is better than not using it at all. Fig 7 and 8 show the
fit for the iTPA-RTRL and GD-RTRL algorithms using an FRNN
with 12 processing units after 50,000 time steps. Clearly the

fit of both algorithms is very good considering the input data
used (high spectral content).

TABLE IV. FINAL ERROR AND % NUMBER OF WEIGHTS WITH LOW

SENSITIVITY VALUES IN DIFFERENT SIZE NETWORKS FOR THE NON-LINEAR

DYNAMIC PLANT

 Units = 6 Units = 9 Units = 12

MSE

x10
2 n%

MSE

x10
2 n%

MSE

x10
2 n%

iTPA-RTRL 4.39 14.33 4.34 7.85 4.75 6.15

TPA-RTRL 4.33 15.42 4.35 9.78 4.85 7.74

GD-RTRL 4.65 13.11 4.88 7.99 4.74 6.02

Fig. 7. Typical convergence behavior of the new iTPA-RTRL algorithm on

the non-linear dynamic plant problem

Fig. 8. Typical convergence behavior of the original GD-RTRL algorithm on

the non-linear dynamic plant problem

VI. COMPARISON OF THE DIFFERENT ALGORITHMS

In order to determine whether the difference in the results
is statistically significant, we perform some hypothesis tests.
The test used was a standard t-test with the sample of test
errors from the iTPA-RTRL algorithm compared with the
corresponding sample from the original TPA-RTRL algorithm
for each dataset used in the study. A second test was carried

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

125 | P a g e
www.ijacsa.thesai.org

out by comparing these test results with the GD-RTRL
algorithm on the same set of problems. For the correct
application of the t-test, it was necessary to take the logarithm
of the test errors (since the test errors have log-normal
distribution) and remove any outliers, following the same
procedure in [19]. The resulting samples were tested for
normality using the Kolmogorov-Smirnov test.

TABLE V. RESULTS OF A T-TEST COMPARING THE MEAN TEST ERRORS

OF THE DIFFERENT ALGORITHMS

Note: The entries show differences that are statistically significant on a 10%

level and dashes mean no significance found. Column (a): iTPA-RTRL (“L”)

vs. TPA-RTRL (“T”). Column (b): iTPA-RTRL vs. GD-RTRL (“G”).

Column. (c): TPA-RTRL vs. GD-RTRL

The results are tabulated in Table 5. Dashes mean
differences that are not significant at the 10% level i.e. the
probability that the differences are purely accidental. Other
entries indicate the superior algorithm (e.g. new iTPA-RTRL
algorithm - L, TPA-RTRL algorithm – T, GD-RTRL algorithm -
G), and the value of the t statistic. Column (a) gives a
comparison between the new iTPA-RTRL algorithm and the
TPA-RTRL algorithm. The results show two times L is better
(Henon map and continuous stirred tank) and once no
statistical difference (non-linear dynamic plant). This suggests
that training using weight elimination is better than training
with no weight regularisation at all. Column (b) and (c) give
comparisons between the new iTPA-RTRL and original TPA-
RTRL algorithms, and the GD-RTRL algorithm. The results
show three times no statistical difference, twice L is better and
once G is better. This suggests that the generalization
performance of the new iTPA-RTRL algorithm is superior, and
that training RNN using weight elimination or weight decay is
better than training with none at all, which is the situation with
the TPA-RTRL algorithm.

VII. CONCLUSIONS

A new variant of the tangent plane algorithm referred to as
iTPA-RTRL is proposed for online training of recurrent neural
networks. This algorithm automatically adjusts the step size
by approaching tangent planes to constraint surfaces. A weight
elimination vector is projected onto the tangent plane with the
expectation that the algorithm will prune superfluous weights
from the network without causing much disturbance during
network training. The iTPA-RTRL algorithm requires two
parameter to set manually; the angle parameter β and the
weight sensitivity parameter wa. Small values of wa which
implement a weight elimination procedure are preferred in
large network structures. Increasing the value of wa > 1.0 has
a deleterious effect on generalization and produces slower
convergence.

Comparative tests were carried out using the new iTPA-
RTRL and TPA-RTRL algorithms and the GD-RTRL algorithm
with weight decay. The neural network benchmark datasets
used were the Henon map [23], the continuous stirred tank
[24] and the non-linear dynamic plant [25].

The results show that the iTPA-RTRL algorithm was two
times better (Henon map and continuous stirred tank) than the
TPA-RTRL algorithm, and two times better (Henon map and
continuous stirred tank) than the GD-RTRL algorithm with
weight decay. It was also found that the iTPA-RTRL algorithm
pruned the smallest percentage of weights from the network.
This result suggests that a weight elimination strategy is an
effective method for discriminating between active and
inactive weights and actually results in better generalization
performance.

VIII. FUTURE WORK

This paper shows that the newly developed improved
tangent plane algorithm for recurrent neural networks gives
improved generalization performance relative to the gradient
descent real time recurrent learning algorithm with weight
decay. In situations where time varying signals are required,
such as grammatical inference or process control modelling,
the sequential learning ability of the improved tangent plane
algorithm might be the preferred method.

REFERENCES

[1] Shaohua Tanb, Ah Chung Tsoi, “Recurrent neural networks: a
constructive algorithm and its properties” , Neurocomputing, vol. 15,

1997, pp. 309 - 326

[2] Subrahmanya, N., Yung, C. Shin, “Constructive training of recurrent
neural networks using hybrid optimization”, Neurocomputing, vol. 73,

2010, pp. 2624 – 2631

[3] Puma-Villanuevaa, W.J., Santos, E.P., Zuben, F.J., “A constructive
algorithm to synthesize connected feedforward neural networks”,

Neurocomputing, vol. 75, 2012, pp. 14 – 32

[4] Giles, C.L., Omlin, C.W., “Pruning recurrent neural networks for

improved generalization performance”, IEEE transactions on neural
networks, 1992, vol. 5, no. 5, pp. 848

[5] Chi-Sing Leung, Lai-Wan Chan, “Dual extended Kalman filtering in

recurrent neural network,” Neural Networks, vol. 16, 2003, pp. 223-239

[6] Ahmed, S.U., Shahjahan, M.D., Kazuyuki, M., “A Limpel-Ziv
complexity based neural network pruning algorithm,” Int. J. Neur. Syst.

2011 (5), pp. 427 – 441

[7] May, P, Zhou, E., and Lee, C.W., “A comprehensive evaluation of
weight growth and weight elimination methods using the tangent plane

algorithm”, Advanced computer science and applications, 2013, vol. 4.
no. 6

[8] P.M. Williams, “Baysian regularisation and pruning using a Laplacian

prior,” Technical report, (312), 1994

[9] P.O. Hoyer, “Non-negative matrix factorisation with sparseness
constraints,” Journal of machine learning research, (5): 1457 – 1469.

2004

[10] Jim, K., K., Giles, C.L., Horne, B.G., “Synaptic noise in dynamically

driven recurrent neural networks: convergence and generalization”,
Technical report, UMIACS-TR-94-89 and CS-TR-3322 Institute for

advanced computer science, 1994, University of Maryland, College Park

[11] Hirasawa, K., Kim, S., Hu, J., Han, M., and Jin, C., “Improvements of
generalization ability for identifying dynamical systems by using

universal learning networks”, Neural Networks, vol 14 2001, pp1389 -
1404

[12] Giles, C.L, Lawrence, S, Ah Chung Tsio, “Noisy time series prediction

using recurrent neural networks and grammatical inference”, Journal of
machine learning, (44), 2001, pp 161-183

Problem
Processing

units
O I (a) (b) (c)

Henon map 9 1 1 L 3.54 L 2.33 -

Stirred tank 9 1 2 L 11.52 L 5.73 G 6.20

Non-linear

plant
9 1 2 - - -

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

126 | P a g e
www.ijacsa.thesai.org

[13] May, P, Zhou, E., and Lee, C.W, “Learning in fully recurrent neural

networks by approaching tangent planes to constraint surfaces”, Neural
Networks, vol 34, 2012, pp. 72-79.

[14] Williams, R.J, and Zipser, D., “A learning algorithm for continually
running recurrent neural networks”, Neural Computation, 1989, vol.1,

no. 2, pp.270-280.

[15] Mozer, M. C, and Smolensky, P., “Skeletonisation: a technique for
trimming the fat from a neural network via relevance assessment”,

Advances in neural information processing, 1989, (1), pp. 107-115

[16] Karnin, E., “A simple procedure for pruning back-propagation trained
neural networks”, IEEE trans on neural networks, 1990, vol. 1, no. 2,

pp. 329 – 242

[17] B. Hassibi, and D.G. Stork, “Second order derivatives for network
pruning,” Advances in neural information processing systems, vol.5,

1993, pp. 164-171.

[18] Y.L, LeCun, J.S., Denker,and S.A. Solla, “Optimal brain damage,”

Advances in neural information processing systems, vol.2, 1990, pp.
598-605.

[19] L. Prechelt, “Connection pruning with static and adaptive pruning
schedules,” Neurocomputing, Volume 16, Issue 1, 1997, pp. 49-61

[20] Mak, M.W., Ku, K.W., and Lu, Y.L., “On the improvement of the real

time recurrent learning algorithm for recurrent neural networks”,
Neurocomputing, 1999, vol 24, issues 1-3, pp. 13-36.

[21] Hernandez, E., and Arkun, T., “Stability of non-linear polynomial

ARMA models and their inverse”, International journal of control,
1996, 63, 885-906

[22] K.S Narandra, and K. Parthasarathy, “Identification and control of

dynamical systems using neural networks,” IEEE transactions on
neural networks, 1 (1), 4 1990.

