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Abstract—One of the current limits of laparosurgery is the
absence of a 3D sensing facility for standard monocular laparo-
scopes. Significant progress has been made to acquire 3D from
a single camera using Visual SLAM (Simultaneous Localization
And Mapping), however most of the current approaches rely
on the assumption that the observed tissue is rigid or undergoes
periodic deformations. In laparoscopic surgery, these assumptions
do not apply due to the unpredictable and elastic deformation
of the tissues.

We propose a new sequential 3D reconstruction method
adapted to reconstructing organs in the abdominal cavity. We
draw on recent computer vision methods exploiting a known
3D view of the environment at rest position called a template.
However, no such method has ever been attempted in-vivo.
State-of-the-art methods assume that the environment can be
modeled as an isometric developable surface: one which deforms
isometrically to a plane. While this assumption holds for paper
and cloth-like surfaces, it certainly does not fit human organs and
tissue in general. Our method tackles these limits: it uses a non-
developable template and copes with natural 3D deformations
by introducing quasi-conformal prior. Our method adopts a new
two-phase approach. First the 3D template is reconstructed in-
vivo using RSfM (Rigid Shape-from-Motion) while the surgeon
is exploring – but not deforming – structures in the abdominal
cavity. Second, the surgeon manipulates and deforms the envi-
ronment. Here, the 3D template is quasi-conformally deformed to
match the 2D image data provided by the monocular laparoscope.
This second phase only relies on a single image. Therefore it copes
with both sequential processing and self-recovery from tracking
failures.

The proposed approach has been validated using: (i) in-vivo
animal data with ground-truth, and (ii) in-vivo laparoscopic
videos of a real patient’s uterus. Our experimental results
illustrate the ability of our method to reconstruct natural 3D
deformations typical in real surgery.

Index Terms—Laparoscopy, monocular 3D reconstruction, ex-
tensible surface.

I. INTRODUCTION

Over the last few years significant efforts have been made
toward developing systems for computer aided laparosurgery.
The main goal is to assist the surgeon during the intervention
in order to improve their perception of the intra-operative envi-
ronment as described by [1]. 3D sensing can aid laparosurgery

by providing different view points of the abdominal cavity
and is one of the major possible improvements to the current
technology.

Various methods for intra-operative 3D sensing have been
recently proposed. they can be classified as active and passive.
The active approach consists of techniques that acquire depth
information by emitting calibrated wave beams (visible like
structured light or invisible like infra-red). [2], [3] have
proposed an approach based on the detection of a laser
beam line is described. This approach requires the insertion
of two monocular endoscopes: one for projecting the laser
beam and one for observing the projected laser beam. [4]
have proposed a prototype of ToF (Time-of-Flight) endoscope
for which [5] has set up an incremental algorithm for 3D
reconstruction which has shown promising results for the
use of ToF endoscopes. Active approaches require one to
modify the endoscope’s hardware and may alter the surgeon’s
view. The passive approaches use only ‘regular’ images from
the laparoscopes: both stereo and monocular endoscopes are
concerned. [6], [7], [8] have proposed a set of methods
based on disparity map computation for stereo-laparoscopy.
A Visual SLAM method for dense surface reconstruction
using a stereo-laparoscope has been proposed by [9]. In the
context of monocular laparoscopy, very few methods were
attempted: Visual SLAM with soft deformations by [10], and
RSfM by [11]. The accuracy of reconstructed 3D shapes for
these methods depends on the ability of the state model to
account for complex phenomena occurring in the environ-
ment such as the use of surgery tools which may introduce
unpredictable deformations. Errors may accumulate through
navigation and produce artifacts in the reconstructed 3D shape.
Some further developments have been made in the specific
context of periodic deformations. Recently, [12] and [13] have
proposed a method for 3D reconstruction of the beating heart
and deforming liver under cyclic respiration respectively. The
cyclic deformation was modeled as a linear combination of
basis shapes. These methods cannot be used in laparoscopy
where the cyclic deformation assumption does not hold.

The computer vision community has recently established
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interesting techniques in template-based monocular 3D re-
construction of deformable surfaces. Template-based methods
provide a dense geometric description of the surface rather
than just a sparse or partially dense description as in the
previously cited methods. This allows one to render the surface
from a new viewpoint, recover self-occluded parts, and opens
applications based on Augmented Reality. We propose a novel
approach to DSfM (Deformable SfM) that is well-adapted to
the laparoscopic setting. Specifically, we extend recent 2D-
template-based deformable methods for developable (paper-
like) surfaces proposed by [14], [15], [16]. These methods
reconstruct a 3D surface from sparse feature matches between
the known template and a single view. Existing methods
were designed for inextensible-developable surfaces. However,
inextensibility is not a property generally satisfied by living
tissue, and so these methods cannot be applied in laparoscopy.
Our contribution is to extend these works to handle the
reconstruction of tissues and organs in the abdominal cavity.
Our work is based on introducing a deformable prior which
handles elastic deformations. It is based on the assumption that
for such surfaces, deformations tend to locally preserve angles
and tolerate minor changes in area. This type of deformation
is called quasi-conformal, and generalizes isometric deforma-
tions by allowing local isotropic stretching to happen. While
classical NRSfM (Non-Rigid SfM) methods reconstruct soft
or cyclic deformations our method reconstructs complex and
unpredictable deformations. Moreover the fact that our method
is based on the usage of a monocular single view prevents
the reconstruction from accumulating errors like sequential
NRSfM methods.

This paper extends our previous work, [17], in several
directions: (i) we provide a variational formulation of the
quasi-conformal 3D reconstruction approach, (ii) we propose
a new initialization step specifically designed for extensible
surfaces using SOCP (Second Order Cone Programming),
(iii) we provide results with 3D reconstruction of in-vivo
organs with comparison to ground-truth 3D data, and (iv)
all the results are compared to template-based isometric 3D
reconstruction from a single view.

Paper organization. Section II presents the related work.
Section III describes our 3D reconstruction system. Section IV
presents the 3D template reconstruction. Section V gives a
geometric characterization of smooth surfaces. Section VI
gives our variational formulation of the 3D reconstruction of
quasi-conformal surfaces. Section VII presents a discretization
of the variational problem. Finally section VIII reports exper-
imental results and section IX concludes. Our notation will be
introduced throughout the paper.

II. RELATED WORK

In the absence of priors, the problem of template-based
monocular 3D shape recovery is ill-posed because there is
an infinite number of 3D surfaces that can project to the same
image data. It is then of critical importance to constrain the
problem to have a unique consistent solution or at least a
small set of plausible solutions. Over the years, different types

of constraints have been proposed which can be categorized
in statistical and physical constraints. Statistical constraints
often model the deformation as a linear combination of basis
vectors which can be learned offline or online. These have
been used either for human face reconstruction in the works
by [18], [19], [20] or for generic shapes in the works by [21],
[22], [23]. Non-linear learning methods were applied in human
tracking by [24], [25] and then extended for more generic
surfaces by [26]. NRSfM methods also rely on learned linear
models to constrain the relative motion of 3D points. Early
approaches proposed by [27] used known basis vectors, but
the idea was extended to simultaneously recover shape and
deformation modes from image sequences as shown in [28],
[29].

Early approaches in physics-based modeling involve mini-
mizing the sum of an internal energy representing the physical
behavior of the surface and an external energy derived from
image data as proposed by [30]. Many variations have been
proposed, such as balloon forces as used by [31], deformable
quadrics and thin-plates under tension as proposed by [32].
In works by [33], physical constraints are used as priors
within a coarse-to-fine shape basis statistical model. Recently,
an important physical prior, the isometry constraint, has been
introduced by [14], [15] within a robust framework. It imposes
that any surface geodesic distance is preserved after deforma-
tion.

In our work, we propose a reconstruction method which
handles extensible, complex and unpredictable deformation.
We propose to introduce a quasi-conformal constraint to
model the deformation of the abdominal cavity organs as
being locally isotropic with low tolerance to changes in
local areas. While this models quite well the environment, a
direct consequence is that the template cannot be taken as
flat anymore, as was assumed by most previous methods.
Our method thus reconstructs a 3D template shape using
classical RSfM by taking advantage of the exploration phase
where the surgeon navigates with the laparoscope inside
the abdominal cavity. The reconstructed model is deformed
afterwards at the surgery phase to fit the different shapes
taken by the tissues, thereby providing 3D shape at run-time
from a single image. Our algorithm is here dubbed DSfM
(Deformable SfM). The technical part consists of three
major improvements over state-of-the-art: (i) dealing with
quasi-conformal instead of isometric surfaces, (ii) using a 3D
instead of a flat 2D template and (iii) creating a custom 3D
template using RSfM. This paper introduces template-based
3D reconstruction methods to 3D vision in laparoscopy.

III. OVERVIEW OF DSFM

As depicted in figure 1, our DSfM system has two main
phases:

1) 3D template reconstruction. In this phase the 3D struc-
ture of the environment is recovered, by assuming that
the scene remains approximately rigid as the surgeon
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Fig. 1. Principle of our DSfM (Deformable Shape-from-Motion) approach. In the first phase the surgeon explores the abdominal cavity without deforming
it; RSfM (Rigid Shape-from-Motion) is used to find the 3D shape called the 3D template. In the second phase, the 3D template is used to infer the 3D shape
deformed as observed from only a single laparoscopic view. This makes the approach resistant to registration and tracking errors and well-adapted to live
sequential processing.

explores it with the laparoscope. Using a camera self-
calibrating RSfM algorithm ([34]), a 3D point cloud
representing the organ’s shape is reconstructed. The 3D
point cloud is then meshed to provide a dense 3D
surface, parameterized on the 2D plane via conformal
flattening as ([35], [36]). Because this step takes thirty
seconds in general, it has no major impact on surgery
workflow.

2) Deformable 3D shape reconstruction. The surgeon
is free to proceed and manipulate the target surface,
and consequently induces non-rigid deformations with
the surgery tools. Here, the template reconstructed in
phase 1 is used to perform 3D reconstruction from
raw laparoscopic images. The 3D shape is computed
by conformally deforming the template such that its
2D projection in the laparoscopic image minimizes the
template-to-image registration error.

IV. 3D TEMPLATE RECONSTRUCTION

At this stage, the surgeon explores the environment without
manipulating it with tools. It is thus assumed that in this phase
the environment remains approximately rigid. We capture the
exploratory video and we track a set of feature points with the
KLT tracker ([37]). Since in the exploration phase the laparo-
scope is moving around the area of interest, we can have a set
of frames where features which were not visible either because
of specularity or because of occlusion become visible and then
trackable. Note that a feature does not need to be tracked over
the whole image set gathered in the exploration phase. We
use RSfM to get the cameras intrinsic parameters and a 3D
sparse point cloud from the tracked points. Specifically, we use
the so-called stratified approach; we first compute a projective
reconstruction from detected and tracked interest points. Then
we self-calibrate the camera by upgrading the projective to
a metric reconstruction. Details and variants of the stratified
approach can be found in the literature in [34], [38], [39].

For the projective reconstruction, we combine the fundamental
matrices estimated between consecutive views from the point
tracks. We finally launch bundle adjustment to finely tune the
reconstruction. This process outputs N 3D points (xj , yj , zj),
j = 1, ..., N . We then reconstruct a dense 3D surface from
the point cloud. Assuming that the surface is smooth and well
represented by the point cloud, this can be achieved well by
Moving Least Squares ([40]). The surface is bounded by a
manually marked region of interest in one of the images, and
texture mapped using that image. The surface is triangulated
to form a mesh with Nf faces F and Nv vertices V . Finally,
we map the mesh to the 2D plane via a conformal transform
([35], [36]). The results of applying this method on an in-
vivo video sequence from laparosurgery on a uterus is shown
in figure 2. The 3D template mesh was reconstructed using a
real in-vivo sequence acquired by a Karl Storz HD laparoscope
during a hysterectomy surgery. In the exploratory phase, where
the operator navigated the laparoscope over the uterus, 300
frames of 1280× 720 pixels resolution were captured over 12
seconds. 300 correspondences were tracked over the sequence,
and the corresponding point cloud was used to reconstruct
a dense surface via Moving Least Squares (MLS) surface
reconstruction ([40]). The resulting 3D mesh has 500 faces
and 285 vertices. Note that the number of frames for template
reconstruction does not have any bounded values as far as a
decent 3D point cloud representing the 3D shape is obtained.
Finally, a quasi-conformal transform is applied to flatten the
3D surface. In the next section, we introduce some basic
concepts of differential geometry which will be used in our
formulation.
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Fig. 2. 3D template reconstruction during the exploration phase using RSfM. (a): feature points are tracked through the video frames. (b): a sparse point
cloud is extracted. (c): the 3D points are meshed and texture-mapped. (d): the resulting surface is conformally flattened.

V. CHARACTERIZATION OF SMOOTH SURFACES

A. Parameterization of Smooth Surfaces

A smooth surface Γ can be parameterized by a continuous
C2-function Φ of two variables q = (u, v) ∈ Ω :

Φ : Ω ⊂ R2 → R3

(u, v) 7→ Q =

Φx(u, v)

Φy(u, v)

Φz(u, v)

 (1)

We do not make a distinction between the surface Γ and the
mapping Φ unless needed. The Jacobian matrix of Φ, denoted
JΦ, is given by:

JΦ =



∂Φx

∂u
∂Φx

∂v

∂Φy

∂u
∂Φy

∂v

∂Φz

∂u
∂Φz

∂v

 (2)

It is a 3 × 2 matrix which at each q = (u, v) ∈ Ω maps its
neighborhood to the tangent plane of Γ at Φ(u, v). The first
fundamental form IΦ is defined as:

IΦ = J>Φ JΦ (3)

It is a 2×2 matrix which locally maps distances from Ω to Γ.
The second fundamental form IIΦ characterizes the curvature
at different locations on the surface. It is a second order form
on the tangent plane defined as a 2× 2 matrix:

IIΦ =

(
Φuu ·N Φuv ·N
Φuv ·N Φvv ·N

)
(4)

where the dot stands for the scalar product. N(u, v) is the
vector normal to the surface at point Φ(u, v) and:

Φuu =
∂2Φ

∂u2
, Φuv =

∂2Φ

∂u∂v
and Φvv =

∂2Φ

∂v2
(5)

are 3-vectors.

B. Classical Surface Mapping

We may distinguish between three classic mappings which
do not change the surface topology: isometric, conformal, and
equi-areal. If Γ is an isometric surface, then IΦ is the identity.
If Γ is conformal, i.e. angle preserving, then IΦ is of the form:

IΦ =

(
ϕ 0

0 ϕ

)
(6)

where ϕ : Ω → R controls the amount of local isotropic
scaling. If Γ is equi-areal, i.e. area preserving, then:

det (IΦ) = 1 (7)

C. Surface Deformation Measurements

When the surface is deformed from Γ to Γ′ without chang-
ing its topology, the parameter space Ω does not change
while the surface function varies. Such a variation changes
some geometric properties of the surface like the length of
the geodesics, the area and the curvature. It is known from
differential geometry that the first and second fundamental
forms can be used to measure these deformations ([41]). For
instance, given two surfaces Γ and Γ′, the Frobenius norm of
the difference between the first fundamental forms of the two
corresponding surface functions Φ and Φ′:

Ee[Φ′] =

∫
Ω

‖IΦ − IΦ′‖2F dq (8)

measures the extensibility of the geodesics between the two
shapes. The norm of the difference between the second fun-
damental forms of these two deformations:

Eb[Φ′] =

∫
Ω

‖IIΦ − IIΦ′‖2F dq (9)

measures the change in curvature. Our variational formulation
of the 3D reconstruction of quasi-conformal surfaces is based
on these measures.

VI. DEFORMABLE 3D SHAPE RECONSTRUCTION: A
VARIATIONAL FORMULATION

A. Problem Statement

Given the template surface function Φ, our objective is
to retrieve the current surface function Φ′ given a single
image after deformation. Function Φ′ minimizes the norm of
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Fig. 3. Principle of the 3D reconstruction of a quasi-conformal surface.

the difference between the reprojected 3D points and their
corresponding 2D points in the image (see figure 3 for a non-
developable surface):

Ed[Φ′] =

∫
Ω

‖KΠ(Φ′)−W‖22 dq (10)

where K is the 3× 3 intrinsic matrix established in the explo-
ration phase. Π: R3 → R2: (x, y, z)> 7→ (xz ,

y
z )> is the pro-

jection of a 3D point to the image plane. W(u, v) establishes
a continuous mapping between points of the template surface
and their correspondences in the input image. In practice, such
a function is replaced by a discrete set of Nc 3D/2D point cor-
respondences {Φ(ui, vi) ↔ (u′i, v

′
i)

>}i=1,...,Nc
. Here (u′i, v

′
i)

is the pixel position in the deformed image corresponding to
the point Φ(ui, vi).

The formalization of the 3D reconstruction problem as the
minimization of the functional (10) is under-constrained and
we can obtain an infinite number of deformations as illustrated
in figure (4). Depending on the nature of the surface, additional
geometric priors are required. We use the surface’s first and
second fundamental forms. The 3D reconstruction problem can
then be posed as a variational problem where the unknown is
the functional Φ′:

min
Φ′
Ed[Φ′] + λeEe[Φ′] + λbEb[Φ′] (11)

This is the sum of three terms. The first term is the data
fidelity term. The second two terms are used to enforce
deformation priors. We split this into two components; the
term Eb is used to penalise non-smooth bending of the surface.
The term Ee is used to penalize deformations which do not
agree with the intrinsic material properties of the surface.
In the research literature, Ee has been instantiated previously
using an isometric prior which associates higher energies to
extensible deformations. Although not immediately applicable
for extensible surfaces, a convex approximation to problem
(11) has been formulated by [14] for inextensible surfaces.
We review now this formulation in the next paragraph.

Fig. 4. Without prior, template-based monocular 3D reconstruction of a
deformable surface is an ill-posed problem. All the shapes (a, b, c, d, e)
project to the same correspondences in the deformed image. To retrieve the
correct shape (c), additional constraints have to be added.

B. Isometric Surfaces

It is known that isometric and developable surfaces such as
paper can be isometrically flattened to the 2D plane without
stretching (see figure 5). Consequently, a planar template can
be used, and any 3D embedding of the surface must be
isometric with respect to this plane. Now, because the first
fundamental form of planar surfaces is the identity matrix 1,
the 3D reconstruction problem can be written as:

min
Φ′
Ed[Φ′] + λeE ′e[Φ′] + λbE ′b[Φ′] (12)

where:
E ′e[Φ′] =

∫
Ω

‖IΦ′ − 1‖2F dq (13)

If Φ is an isometry we can choose Γ ≡ Ω then Φ is the identity
map. Thus the bending term (9) can be approximated by the
second derivatives:

E ′b[Φ′] =

∫
Ω

‖Φ′
uu‖+ ‖Φ′

vv‖
2
2 dq (14)

ϕ'
Γ'

Ω

single imagetemplate
 

Fig. 5. 3D reconstruction of isometric surfaces.

C. Quasi-Conformal Surfaces

Unlike isometric developable surfaces, a quasi-conformal
surface cannot be flattened to a plane without inducing stretch-
ing or shrinking as shown in figure 3. Quasi-conformal sur-
faces include both extensible and non-developable surfaces. In
the abdominal cavity, the organs are often extensible and non-
developable surfaces: uterus, liver, kidneys, etc. For modeling
the deformations of such organs, we could identify the me-
chanical properties of each of these different tissues. However,
according to the patient (age, health of the organ, etc), the
mechanical properties of the tissue would change. Our current
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solution uses a differential geometry approach rather than
mechanical models. For a quasi-conformal deformation Φ′, our
constrained variational formulation of the 3D reconstruction is
stated as:

min
Φ′
Ed[Φ′] + λcEc[Φ′] + λaEa[Φ′] + λbEb[Φ′] (15)

where:

Ec[Φ′] =

∫
Ω

∥∥∥∥∥IΦ′ −

(
ϕ 0

0 ϕ

)∥∥∥∥∥
2

F

dq (16)

and:

Ea[Φ′] =

∫
Ω

(det(IΦ′)− det(IΦ))
2
dq (17)

with IΦ =

(
ϕ 0

0 ϕ

)
and ϕ(u, v) is a real, positive scalar.

Ec softly constrains the 3D embedding to stretch or shrink
isotropically. Since local isotropy implies that angles on the
surface are preserved, this therefore penalises non-conformal
embeddings. By contrast, in Ea we softly enforce equal deter-
minant of the first fundamental forms, and this constrains the
area between template and deformed surfaces to be locally
equal. The priors are weighted by λc and λa respectively.
Consequently, by setting λc and λa accordingly, we can relax
the isometry constraints and tolerate either angle or area
changes. Crucially, we have found experimentally that changes
in areas should be tolerated more than in angles, allowing the
surface to locally-isotropically deform. The bending term is
weighted with a small λb relatively to λc and λa to allow
curvature changes and to obtain smooth 3D reconstructions.
Problem (15) is non-convex and its resolution needs a descent
initialization before minimization with a non-linear optimizer.
In the next section, we describe how we resolve problem (15).

VII. DISCRETE FORMULATION

A. Initialization

This initialization step allows us to have a proper initial
estimate of the deformed shape using an SOCP formulation
in the case of quasi-conformal surfaces.

1) Previous Approaches: In the case of isometric surfaces
several SOCP formulations have been proposed. These formu-
lations rely on the principles that a 3D surface point Q lies
on the sightline linking its image projection (u′, v′)> and the
camera center. It is obvious that this constraint is enough to fit
the image reprojection constraint but since it does not have any
constraint on the surface shape these have to be supplied by
other geometric constraints. A pointwise SOCP formulation
for isometric surfaces was proposed by [14]. It is based
on the observation that the euclidean distance between two
surface points Qi and Qj cannot be greater than the geodesic
distance dij for any possible isometric deformations (see figure
6). The geodesic distances can be easily computed as the
euclidean distances of the isometrically flattened template. The

formulation is stated as:

max
Q1,...,QNc

p>
3

∑Nc

i=1 Qi, (max. depth)

s.t.∥∥∥∥∥
(
p>

1

p>
2

)
Qi − q′

i p
>
3 Qi

∥∥∥∥∥
2

≤ εI p>
3 Qi, (img. err.)

‖ Qi − Qj ‖2≤ dij + ετ , (isometry)
p>

3 Qi ≥ 0, (positive depth)
(18)

where pk is the kth row of the known matrix K. The

maximize depth
u
p
p

e
r 

b
o
u
n
d

recovered shape

Euclidean = geodesic Euclidean < geodesic

flat non-flat

single image

c
a
m

e
ra

(a) (b)

(c)

Fig. 6. 3D reconstruction using SOCP with isometric formulation. (a) In a
flat shape, the Euclidean distance is equal to the geodesic distance. (b) In a
non-flat shape of an isometric surface, the Euclidean distance is lower than
the geodesic distance. (c) This last observation allows one to put an upper
bound constraint when the depth is maximized.

maximization of the depth is controlled by the euclidean
distance between the 3D points which cannot be greater than
the corresponding geodesic. εI and ετ are small real values
which model the tolerance to noise in the correspondences
and in the template. An SOCP formulation for isometric
surfaces with mesh representation is proposed by [26]. The
reconstruction of one frame relies on the reconstructed mesh
of the preceding frame. For the first frame, the initial pose of
the mesh is assumed to be known and a failure in one frame
can cause failures to chain over the video.

2) Our Formulation Using SOCP: In our work, the previ-
ously described formulations with SOCP cannot be directly
used since they are not designed for quasi-conformal surfaces
(see figure 7). Indeed, they cannot handle non-developable and
extensible surfaces.

Let us denote V′ the set of vertices of the mesh of the
deformed surface Γ′. In our work, the 3D-2D correspondences
between points xi, i = 1, . . . , Nc in the template mesh
and points (u′i, v

′
i)

>, i = 1, . . . , Nc in the deformed image
are assumed to be known. In the triangular mesh they are
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expressed in barycentric coordinates:

xi = ai vj,1 + bi vj,2 + civj,3 ∈ Γ, i = 1 . . . Nc (19)

with ai, bi, ci ∈ [0, 1] and vj,1, vj,2 and vj,3 are vertices of
the face fj . Our first SOCP formulation of the 3D reconstruc-
tion of the deformed mesh can be stated as follows:

max
V′

p>
3

∑Nc

i=1 x
′
i, (max. depth)

s.t.∥∥∥∥∥
(

(p1 − uip3)x′
i

(p2 − vip3)x′
i

)∥∥∥∥∥
2

≤ εI p3 x
′
i, (img. err.)

‖ v′
i − v′

j ‖2≤ κ ‖ vi − vj ‖2 +ετ , (extension)

(20)

where x′
i is the new location of the 3D correspondence point

in the deformed mesh. κ is a real parameter chosen so that
edges are able to shrink or to stretch. As expected, when the
depth is maximized and the vertices move toward the correct
sightline, the global shape of the surface can be corrupted
since the edges are allowed to extend or to shrink. To avoid
obtaining meaningless 3D reconstructions, a smoothing term
based on a discrete laplacian is added. It ensures a global
resemblance between the deformed surface and the template
surface. Moreover, this smoothing term preserves the shape in
occluded areas. Indeed, in non-developable surfaces like the
uterus, it is mandatory to be able to handle occlusions since it
is not possible to have a single view which covers the whole
surface.

In the discrete differential geometry of 2-manifolds, there
are various formulations of the discrete Laplace-Beltrami
operator as described by [42]. The one we use in our imple-
mentation is the linear combinatorial formulation expressed
as:

li = L(vi) = vi −
1

#N (i)

∑
j∈N (i)

vj (21)

with N (i) the one ring neighbor of vertex i and #N (i)
is the cardinal of this set. The norm of li represents the
discrete approximation of the mean curvature at vertex vi
([42]). Allowing smooth changes of the norm of this vector
over the mesh vertices allows us to keep the global shape of
the surface. Then, an additional constraint can be added in our
formulation of equation (20):

max
V′

p>
3

∑Nc

i=1 x
′
i, (max. depth)

s.t.∥∥∥∥∥
(

(p1 − uip3)x′
i

(p2 − vip3)x′
i

)∥∥∥∥∥
2

≤ εI p3 x
′
i, (img. err.)

‖ v′
i − v′

j ‖2≤ κ ‖ vi − vj ‖2 +ετ , (extension)
‖ l′i ‖2≤ κs ‖ li ‖2 (shape smoother)

(22)
with κs a positive value which controls the tolerance to
curvature change. In our implementation we use the YALMIP-
toolbox ([43]) to compute the solution of our SOCP formula-
tion with κs = 0.1. Even if problem (20) is convex, its solution
is not optimal mainly because in practice the correspondences

never cover densely the template surface. The refinement is
done by using a discrete version of the variational formulation
of equation (15).
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Fig. 7. 3D reconstruction using SOCP with extensible formulation. It is
obvious that the Euclidean distance from the flat shape cannot be used in the
case of quasi-conformal surfaces. Instead we use an upper bound of extended
template edge lengths. Further constraints on curvature preserving are added
to keep a meaningful reconstructed shape.

B. Refinement

In our formulation of equation (15), the local non-isometry
constraint is expressed as the sum of a local isotropy constraint
and a local equi-areal constraint. The weights associated to
each constraint allow us to penalize either the angle variation
or the area variation of a local region during the deformation.
Equivalently, using a triangular mesh representation of the
surface, each triangle can be subject to shearing and anisotropy
scaling for any quasi-conformal deformation. Henceforth,
equation (15) can be re-formalized for a triangular mesh
surface as:

min
V′

∑Nc

i=1

∥∥∥∥∥
(

(p1 − uip3)x′
i

(p2 − vip3)x′
i

)∥∥∥∥∥ (motion)

+λsh
∑Nf

i=1 ‖ Si − S0
i ‖2 (shearing)

+λan
∑Nf

i=1 ‖ Ai − A0
i ‖2 (anisotropy)

+λs ‖ L(li) ‖2 (smoothing)

(23)

Si and Ai are the 2D shearing and anisotropy scaling trans-
forms from the template to the deformed ith face, λan and λsh
are two real positive weights that tune the amount of penalty
for shearing, anisotropy scaling, and the smoothing energy
term. The inextensible formulation enforces the edges of the
triangles to remain constant when fitting the data correspon-
dence constraint. In contrast, this weighted combination of
quasi-conformal transforms relaxes the inextensible condition
and allows us to deal with local extensible deformations.
S0 and A0 are local maximum amounts of shearing and
anisotropy scaling for each face of the 3D template mesh.
They can be either learned from training data or experimentally
set. Practically, normalized shearing and anisotropy scaling
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transforms are experimentally set and then scaled by the
triangle area of each face fi to obtain the transforms S0

i and

A0
i . In all our experiments we set S0

i =

(
1.05 0

0 1.05

)
and

A0
i =

(
1 0.1

0 1

)
to tolerate fair scaling and shearing for each

triangle of the mesh. The additional weighted energy term
smoothes the deformed shape with a tunable weight λs. It is
expressed through the linear Laplace-Beltrami discrete linear
operator ∆ of dimension N × N ([44]). The weights λan,
λsh and λs are respectively set to 0.11, 0.14 and 0.12 using
the method described by [45]. They hardly enforce the motion
term to fit the correspondence constraint and fairly constrain
the shearing, the anisotropy scaling and the smoothness to
allow the triangle to freely deform.

VIII. EXPERIMENTAL RESULTS

A. In-Vivo Data With Ground-Truth

To obtain in-vivo datasets with ground-truth we use two
synchronized laparoscopes to explore and deform the ab-
dominal cavity of a living pig. The experiment is done in
the Centre International de Chirurgie Endoscopique (CICE1)
under respect of ethical constraints. We used two synchronised
laparoscopes to construct ground-truth for metric comparison.
To cope with the difficulty of having a non-constant rigid
transforms between the two laparoscopes we put a reference
checker-board inside the abdominal cavity. This checker-board
allows us at any frame to register the left and right views to
obtain ground-truth 3D information. In the first exploratory
step we reconstruct the 3D template of three different organ’s
tissues: the bladder and the pericardium. The obtained shapes
are shown in figure 9. In the deformation step, the bladder and
the pericardium are deformed with the checker-board tool. A
set of 100 deformed image frames are taken for each tissue.
For our reconstruction method we use on average a set of 40,
25 and 30 point correspondences respectively for the bladder
and the pericardium. They were generated using SIFT ([46]).
Outliers and points outside from the organs in concern were
removed by the method proposed in ([47]). In figure 10 we
show a subset of different 3D reconstructions using our method
from single views for different amounts of extensibility and
curvature change with respect to the templates. We can see
that globally our method gives meaningful 3D reconstructions
according to the deformed images. Note that the features on
the deformed regions with the quasi-conformal constraint give
consistent recovery of the deformation. These observations
are confirmed quantitatively in figure I where we show the
reconstruction errors with respect to stereo and with com-
parison to isometric reconstruction. The reconstruction errors
are computed with all the sets of images as the norm of the
difference between the stereo 3D points and the reconstructed
3D points of each organ’s tissue. Our method gives an order

1http://www.cice.fr/

Bladder Pericardium

47.90× 27.45× 24.0 [mm3] 20.40×22.00×14.16 [mm3]

Fig. 9. Pig datasets: 3D templates of three different organ’s tissues: The
bladder and the pericardium. For each template we indicate in mm the size
of the box bounding the 3D shape.

Quasi-Conformal Isometric

Bladder
Median 2.61 6.25

Min 1.72 5.20
Max 3.10 6.62

Pericardium
Median 2.20 5.25

Min 1.56 3.03
Max 3.79 6.52

TABLE I
DETAILED QUANTITATIVE RESULTS FOR DIFFERENT IN-VIVO TISSUES.

THE ERRORS ARE IN MILLIMITERS.

of magnitude more accurate with an average of 5mm error on
the 3D reconstruction.

B. Surgery In-Vivo Data

To validate the proposed approach on real in-vivo data, the
experiment we propose is the 3D reconstruction of an uterus
from in-vivo sequences acquired using a monocular Karl Storz
laparoscope. The frames are acquired at 30 fps and have a
resolution of 1280 × 720. The 3D template of the uterus is
generated during the laparosurgery exploration step as pre-
viously described. Complex and unpredictable deformations
may occur on the uterus when the surgeon starts to examine
it. A set of 75 correspondences between the flattened uterus
template and the deformed images were used. They were
generated using SIFT ([46]). Outliers and points outside from
the uterus region were removed by the method proposed in
([47]) (table 11, row 2). In figure 11, rows 3-4, we show the 3D
reconstructed deformations with the corresponding deformed
image in row 1. In row 4, we show synthesized views from
novel camera views, and show qualitatively that the deformed
uterus has been reconstructed well.

C. Discussion

Our experimental results have shown the effectiveness and
the improvement of our approach above a previous method
proposed by [14] relying also on a single view and a tem-
plate (c.f. table I for quantitative comparison). State-of-the-
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Fig. 8. Shape and geometric measures of the 3D template surface. Left: texture-mapped 3D template surface. Middle: the length of the edges. Right: the
conformal curvatures, in radians, computed at each vertex of the mesh ([42]).

Rate of de-
formation

Left image Right image Correspondences between template
and right image

3D reconstruction with
our method from right
image

ext 15%

cur 10%

ext 18%

cur 12%

ext 10%

cur 5%

ext 12%

cur 7%

Fig. 10. In-vivo pig datasets: 3D reconstruction from a monocular laparoscope using our quasi-conformal method. First column: Rate of deformation in
extensibility and curvature change with respect to the 3D template. Second column: Left image from stereo view used to compute ground-truth deformation.
Third column: Right image from stereo view. This image is used together with the left image to generate ground-truth 3D reconstruction. It is also used
as single image to obtain 3D reconstruction with our method. Third column: correspondences between template image and right image used for the 3D
reconstruction with our method. Fourth column: 3D reconstruction with our method from single image. Quantitative 3D errors of reconstruction are shown in
table I.
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Fig. 11. 3D reconstruction on an in-vivo video sequence from a monocular laparoscope using our quasi-conformal method. First row: Single 2D views of
uterus deformation with a surgery tool. Second row: Point correspondences between the template and deformed images. Third row: 3D reconstruction using
our quasi-conformal method. Each 3D reconstruction is done using the single view above. The view is given in the laparoscope’s view point. Fourth row: 3D
deformed surface seen from a different point of view which provides visualization of the self-occluded part. Fifth row: Zoom in the deformed area.

art NRSfM methods for non-isometric deformations are only
sequential for soft or cyclic deformations relying on deformed
shapes at precedent time of the current deformed frame. Our
approach relies on a template which can be more accurately
recovered before starting to reconstruct deformed shapes.
Moreover, it uses only a single image and thus does not rely
on any temporal priors.

IX. CONCLUSION

In this paper, we have presented a new method to reconstruct
a quasi-conformal deforming living tissue in 3D using a single
laparoscopic image and a 3D template that is previously re-
constructed using standard RSfM. Our method provides novel
technical contributions and also a new way of tackling the
3D vision problem in laparoscopy. The experimental results
show the effectiveness of our approach and clearly improve
the state-of-the-art isometric reconstruction method.

The performance of our 3D reconstruction algorithm de-
pends on the point correspondences between the template and
the deformed image. When the tracking system may miss some
features our approach can be joined together with shading
approach in order to recover the 3D shape of those featureless

regions. We are currently working on improving the matching
between the template and deformed image and supplying our
approach with shading cues in featureless regions. Finally,
it would be interesting to investigate a mechanical modeling
approach in future work.

APPENDIX

Percentage of deformation with respect to extensibility:

ext =

∑Ne

i=1 | ‖ e′i ‖ − ‖ e0
i ‖ |∑Ne

i=1 ‖ e0
i ‖

× 100,

where {e′i}i=1,...,Ne is the set of edges of the deformed mesh
and {e0

i }i=1,...,Ne
is the set of edges of the template mesh.

Percentage of deformation with respect to curvature change:

cur =

∑Ne

i=1 ‖ l′i − l0i ‖∑Ne

i=1 ‖ l0i ‖
× 100,

where {l′i}i=1,...,N is the set of curvatures of the deformed
mesh and {l0i }i=1,...,N is the set of curvatures of the template
mesh. In order to evaluate the performance of our approach,
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we use the following error measure in mm:√∑Nv

i=1 ‖ v′
i − vi ‖2

Nv
,

where {v′
i}i=1,...,Nv are the vertices of the 3D reconstructed

mesh and {vi}i=1,...,Nv
are the vertices of the deformed mesh.
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