
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

33 | P a g e
www.ijacsa.thesai.org

Distributed programming using AGAPIA

Ciprian. I. Paduraru

Department of Computer Science,

University of Bucharest

Bucharest, Romania

Abstract—As distributed applications became more

commonplace and more sophisticated, new programming

languages and models for distributed programming were created.

The main scope of most of these languages was to simplify the

process of development by a providing a higher expressivity. This

paper presents another programming language for distributed

computing named AGAPIA. Its main purpose is to provide an

increased expressiveness while keeping the performance close to

a core programming language. To demonstrate its capabilities the

paper shows the implementations of some well-known patterns

specific to distribute programming along with a comparison to

the corresponding MPI implementation. A complete application

is presented by combining a few patterns. By taking advantage of

the transparent communication model and high level statements

and patterns intended to simplify the development process, the

implementation of distributed programs become modular, easier

to write, in clear and closer to the original solution formulation.

Keywords—patterns; parallel; distributed; AGAPIA; fork; join;

control; scan; wavefront; map; reduction; pipeline; scatter;

decomposition; gather

I. INTRODUCTION

Distributed programming is usually considered both
difficult and inherently different from serial or concurrent
centralized programming. Different high-level programming
languages and models were created in order to increase
expressiveness and productivity. This paper presents AGAPIA
language in an attempt to add even more expressivity to the
distributed programming. By taking advantage of the
transparent communication model and high level statements
intended to simplify the development process, the
implementation of distributed programs become modular,
easier to write, in clear and closer to the original solution
formulation. Because the AGAPIA code is composed mostly
from C language code plus a few specific language constructs
and specifications it is expected that users can easily
understand this new language.

The demonstration of the AGAPIA language potential is
demonstrated through the implementation of some of the well-
known patterns in the distributed computing along with a real
example application and its performance results. Patterns are a
way of codifying best practices for software engineering.
Identifying themes and idioms that can be codified and reused
to solve specific problems in parallel and distributed
computing is an important topic in computer science. The
semantics of each pattern is the same for every programming
language, but the way to implement it differs between
programming languages. When dealing with parallel and
distributed programming the user has to take an important

decision when choosing the programming language because
each one has its own advantages and disadvantages. In this
paper, by "parallel implementation" we understand both
parallel implementations with shared memory and distributed
computing. Actually, most of the programs in AGAPIA have
the same source code for both shared and distributed memory
models - the exceptions are when users want to take advantage
of the shared memory and use it without retransmitting data.

The paper is organized as follows. In Section 2 there is a
short description of AGAPIA language, some explanations
about its executing semantics that are important for
understanding the next sections and a comparison to existing
solutions. In Section 3 patterns are presented one by one. A
more complex example by combining some of these patterns
is given in Section 4. Concluding remarks are in Section 5.

II. AGAPIA LANGUAGE

A. Motivation for AGAPIA and a comparison with other

solutions

This section provides a short motivation why AGAPIA is a
good solution for parallel computing, a comparison with other
solutions, a presentation of previous papers and an idea about
how the execution process is made.

In the process of writing programs for parallel systems
with distributed memory, using a common language such as
MPI, users are concentrating on a set of sequential steps and
needs to create multiple tasks that can run concurrently, and
then handle their communications and synchronization
explicitly. Before doing the implementation in a programming
language, users are thinking on the architecture of the program
as something more appropriate to a data flow diagram [12]
where different entities are computing and exchanging data.
Because of the sequential style to write a program, it is often
hard to understand exactly what the interactions between the
entities are. This could cause the program to be error prone, to
have low modularity and difficulties to understand its
communication.

The objective of APAGIA language is to allow users
create inherently parallel programs, with the same code
structure for both shared and distributed memory models, with
minimal coding and impact over performance. The gains
would be less time to implement a program because a data
flow diagram is similar to how a user generally thinks about a
program, transparent communication, better modularity and
less error prone. Gamma calculus model [11] is another
solution for inherently parallel programming with minimal
code. Gamma is a kernel language in which programs are

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

34 | P a g e
www.ijacsa.thesai.org

described in terms of multiset transformations. However, the
implementations in this presentation will show that AGAPIA
programs are easier to understand, being more appropriate to
common parallel programming languages that users know,
because it uses C/C++ for most of its code and just adds some
high level statements and operators for parallel coordination.

In [2], AGAPIA v0.1 was described as being a kernel
programming language for interactive systems. It contains a
detailed presentation of the language syntax and a toy example
of dual-pass termination detection protocol. In [3], the syntax
is extended to allow for the construction of high-level
structured rv-programs. The new version of the language is
v0.2 and supports recursion and dynamic programs creation.
This paper is based on the latest version of AGAPIA, v0.2. To
create high-level programs, AGAPIA provides composition
operators, conditional and iteration statements.

B. Basics of AGAPIA programming

The basic block in AGAPIA programming is the module.
A module has four input/output interfaces. The input can be
received in north and west while output could go to east and
south. Each interface could contain zero, one or more
variables. A module’s interface could be represented as a tuple
of interfaces: (west; north;east;south). The interface of the
module in Fig. 1 is (int,string ; nil ; int ; int). By specifying nil
to an interface we are actually ignoring it.

 module main { listen a : int, s:string } { read nil }

 {

 // ..source code for program..

 }{ speak b : int } { write c : int }

main
a b

nil

c

West

input

East

output

North

input

South

output

(listen)

(read)

(speak)

(write)

Fig. 1. Simple program in AGAPIA.

To obtain higher-level programs, the basic operation for
the user is to use the composition operators. In the pictures
below all the three composition operators that can be defined
over two programs A and B are shown, along with the
necessary restrictions and resulted interfaces.

 Vertical (Temporal) composition: A%B. Resulted
program interface is:

(west(A) ∪ west(B); north(A); east(A) ∪ east(B); south(B)).

A

B

Fig. 2. Vertical composition. South(A) should match North(B)

 Horizontal (Spatial) composition: A # B. Resulted
program interface is:

(west(A); north(A) ∪ north(B); east(B); south(A) ∪ south(B))

A B

Fig. 3. Horizontal Composition. East(A) should match west(B).

 Diagonal composition: A $ B. Resulted program
interface is:

(west(A); north(A); east(B), south(B)).

A

B

Fig. 4. Diagonal composition. Both output interfaces of A should match the

input interfaces of B.

Two types of dependencies can be defined between modules:

 north-south (or read-write) dependency: can occur in
the vertical or diagonal composition.

 east-west (listen-speak) dependency: can occur in the
horizontal or diagonal compositions.

A dependency exists if the interface on the corresponding
side is not nil. Dependencies are usefully when coordinating
the execution and preventing a program being executed before
another one. For example, the diagonal composition could
have both types of dependencies and it can be usefully when
implementing barriers.

The modularity of the language is given by the fact that a
module implementation can be re-used in another application
just by matching the correct interfaces. Also, at any time a
user can change a module implementation with another one
with the same interfaces. Making a comparison to general
object oriented languages, a module change is like replacing
an existing class with another one which have the same
operations and data. However this is even easier in AGAPIA
because the only specification of a module is contained in its
input/output interfaces, while the entire semantics is contained
inside the module. The original syntax of AGAPIA v0.2
language was modified in order to make it friendlier to users.
In Fig. 5 the new syntax is presented. As the syntax is defined,
a module becomes a program at a higher-level.

Interfaces

 SI ::= nil | int | bool | float | string | buffer |

 | (SI, SI) | (SI [])

MI ::= (SI) | (SI;SI) | (SI;)*

Expressions

 V ::= x : MI | V(k)

 | V.k | V.[k] | V@k | V@[k]

 E ::= n | V | E + E | E * E | E – E | E/E

 B ::= b | V | B&&B | B || B | !B | E < E

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

35 | P a g e
www.ijacsa.thesai.org

Programs

 W ::= null | new x : SI

 | x := E | if (B) { W } else { W }

 | W;W | while (B) { W } … (and all

other C language constructs)

M ::= module module_name

[MI – optional]{listen x:MI}{read x:MI}

 { W } {speak x : MI}{write x : MI}

 P::= nil | M | if (B) { P } else { P }

 | P % P | P # P | P $ P

 | while_t (B) {P} | while_s(B) {P} |

while_st(B) {P}

| gather(int) | scatter(int) | map(int,P) |

reduce(int,P,P) | scan(int,P,P)

Fig. 5. The modified syntax of AGAPIA programs.

To be more appropriate to common programming
languages some changes were done when writing AGAPIA
code. “SI” from the syntax figure represents a simple interface
declaration. Structures can be obtained by adding together
more simple data types: (SI, SI). (SI[]) represents an array of
simple data types. Instead of using sn/tn or sb/tb the decision
was to merge them and use just int and bool for both temporal
and spatial interfaces, but without losing the information of
which category they are. Two new basic data types, “string”
and “buffer” types were added for storing strings and sending
buffers between distributed programs in an easy way.

“MI” is used for defining a module interface and it
basically uses “SI” for this. From (or in) a module interface,
the output (or input) can flow to one or more other modules.
(SI;SI) represents two different processes while (SI;)* is an
array of processes. For example, if we are vertically
composing a module M with a foreach_s statement, then the
south output interface of M should be something of type
(SI;)*. In basic AGAPIA programs users can use all type of
C\C++ language constructs. At the high-level programs
section, the language offers simple and high level composition
and flow branching statements. The “for each” and patterns
“gather”, “scatter”, “map”, “reduce”, “scan” were added in
order to improve the expresivness.

Because array of processes are something AGAPIA
specific, some more details must be given. A simple array of
structures (named A) of a pair containing an int and a bool is
defined as A:(int, bool)[], while A[i] is used to access an index
from this array. An array of processes (named V), with each
process containing the same pair is defined as V:(int, bool;)*,
while V@[i] is used to access an index. The main difference is
that elements from a simple array can’t be split to different
AGAPIA programs just by composition, while the array of
processes can. If there is a program which has as spatial input
an array of processes and inside this program there is a
composition like M # N # Z, each one accepting a simple pair
of int and bool as spatial input, then the first three indices from

the array will go in the right order to M, N and Z. It is best to
use array of processes when dealing with AGAPIA high level
iterative statements (for/each/while or patterns). In the case of
the above example with M # N # Z then it suffices, and it is
even clear, to have a spatial input like ((bool,int) ; (bool, int) ;
(bool, int)) – three process inputs, one for each program.

C. High level statements

To change the input/output flow by conditional branching,
we can use the “if” program. It has the following syntax: if
(condition) {P_IF } else { P_ELSE } , where P_IF and
P_ELSE are also two programs. There are two restrictions
regarding these two programs: P_IF and P_ELSE programs
should have the same interfaces (and even input interfaces
with the same variable names) to make the input/output
matching correctly. “condition” can only contain variables
defined in the input interfaces of P_IF and P_ELSE. Fig. 6
shows how an “if” program looks like inside. Inputs received
are buffered until condition can be evaluated.

north input

south output

East

output
West

input

condition

evaluate over input

P_IF

P_ELSE

OR

Fig. 6. Inside an if program in AGAPIA.

To create iterating compositions of programs, AGAPIA
provides the following statements: for’s, fort, for_st,
foreach_s, foreach_t, foreach_st, whiles, while_t, while_st.
These are doing the same things as the “for” and “while”
statements in the common programming languages, excepting
that for each iteration an AGAPIA program is spawned and
composed with other programs. Between consecutive
iterations, the programs can be composed spatial, temporal and
diagonal – as the usual programs composition. The type of the
composition is indicated by the letters that comes after
underscore in the statement name: “s” means spatial (#), “t”
temporal (%), and “st” diagonal ($). This rule is valid for all
types of “for/each/_” and “while_” statements. As we can see
from the syntax, these statements become AGAPIA programs
too.

Fig. 7, 8, 9 shows how the for, foreach and while programs
look internally for each iteration type. The figures are
conclusive about how the input/output flows inside.

north input

south output

East

output

West

input …

…….

…….

Fig. 7. Inside an for_s/foreach_s/while_s program. There is a spatial

composition between consecutive iterating programs.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

36 | P a g e
www.ijacsa.thesai.org

north input

south output

East

output

West

input
.

.

.

.

.
…..

.

.

.

.

.

.

Fig. 8. Inside an for/each_t or while_t program. There is a temporal

composition between consecutive iterating programs.

north input

south output

East

output

West

input
.

.

.

.

.

………………...

Fig. 9. Inside an for_st/foreach_st or while_st program. There is a diagonal

composition between consecutive iterating programs.

As with the “if” program condition, the “while_” program
condition refers to the interface of the program it is iterating
on. So if we have a program like while_t(condition) {P}, then
condition can refer to the north and west input interfaces of P.
If user knows the number of iterations then it is better in terms
of performance to use the for/for each statements, because in
background all internal instances could be created directly
allowing the maximization of parallelism. There is one big
difference between “for_” and “for each_”. “for_” should be
used when we want to impose a certain order on how the
internal programs are instantiated. If we have a program like
foreach_s(n) {P}, and n value does not depend on the
input/output of P, and P doesn’t have any listen-speak
dependency, then those n instances of type P could be
spawned and executed in parallel in any order. If we use for_s
instead, then the internal instances will be instantiated in the
order of the iteration (although they could also run in parallel,
if there is no listen-speak dependency between them).

Speaking in terms of interfaces, the iterating side of these
programs has as interface an array of processes. If the
interface of P is (west; north; east; south), then the for_s /
foreach_s/while_s interface is (west, (north;)*, east, (south;)*).

Some clarifications must be made about how the
parameters containing arrays of processes are sent between
programs. If the program which sends input for an array of
processes is an atomic program, then all data is sent in a
chunk. Same thing happens if the receiver program is a atomic
(we achieve this by buffering the inputs and detecting when all
input expected arrived). If none of the modules are atomic, and
both programs are connecting an (int;)* to an (int;)* then the
mapping is made on the same indices, 1:1. If not, and for
example the array of processes has type (int;)*, then the input
for this array of processes can contain in its specification just a
single array of processes and this should be the last element. A

correct example is connecting (int;)* to (int ; int ;……;(int;)*.
Connecting (int; (int;)*; int; …) to (int;)* is not allowed,
because there is no mechanism to know how much the second
item in the specification will expand. Considering these
recursively, the compiler knows exactly the order of how
elements come in the array. Also, for optimization purposes, if
communicating programs are not atomic then we send array
indices individually. Imagine a program which does some
parallel computations and set individual items in an array of
processes in the south interface. If this program is vertically
composed with a foreach_s statement then sending array
indices individually is a performance advantage. Each time an
item is sent to the foreach_s program a new instance inside of
it can start, maximizing this way the potential parallelism.

The other high level statements, which represents some
ready to use common patterns, were created in order to
improve the productivity in building complex applications.
Scatter is used to transform from a simple array to an array of
processes while Gather transforms an array of processes to a
simple array. Common usage examples can includes creating
an array of tasks then splitting each item to a different
program instance or receiving results from different programs
in a simple array. The Map pattern can be used to apply an
operation (represented by a given module) over a set of items
and produce another set of items. Examples of usage include
image processing, ray tracing or Monte Carlo sampling.
AGAPIA also provides Scan and Reduce primitives which
does the typical operations in logarithmic time over a set if
inputs coming from different programs. Other kind of patterns
such as pipeline or wavefront can be easily expressed just by
using composition operators.

D. AGAPIA runtime, backend and how to use interface

variables.

Paper [2] states in the „Conclusion and future work”
section that we need an AGAPIA compiler. Because of this,
the previous papers didn't talk about how the programs are
being executed or the input/output flow in detail. The compiler
is now publicly available at http://code.google.com/p/agapia-
programming-language and it is continuously updated. A
briefly presentation is made here about how the programs
execution works. All programs looks like a dataflow graph
with nodes representing smaller programs. The
communication between these nodes is transparent,
composition operators or high-level statements and patterns
automatically creates in background the links between
input/output interfaces.

The source code for user written programs can be a mix of
C\C++ and specific AGAPIA statements and operators. A
program which doesn’t contain any specific AGAPIA
composition or statements is called atomic. The semantic
difference between the atomic programs and non-atomic ones
is that the first category needs all the inputs available before
starting to execute. The real computational tasks that can be
executed in parallel by the internal schedulers are to be found
in the atomic programs. To minimize the computational
overhead, the atomic programs are translated and linked into
C/C++ code. Only the non-atomic programs are being
interpreted.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

37 | P a g e
www.ijacsa.thesai.org

The scheduler is built on the top of MPI. The default
scheduler’s architecture is composed by a master and multiple
workers. The master process responsibility is to coordinate
input/output of the modules and detect new atomic modules
that can be executed. These atomic programs are executed as
soon as there is an idle worker available. Users can change this
default execution by using some specifier near a module
definition. Specifier “@Master” can make a module to be
executed only on master – this is typically useful when there is
a resource available just on the master. A module can be
executed and coordinated by the same worker by specifying
“@SameProcess” – this behavior can reduce the transfer time
or allow the usage of small coordination modules with
minimal overhead.

An important preparation for the next section is to show
how we can use the variables defined in the interface of a
program. The code below shows some examples of accessing
input/output variables. We can access each one directly by its
name. Usually we read from input interfaces, compute, then
write in the output variables. Even if the below module has
operator “@” used to access an array of processes, it still
remains an atomic one and it is executed purely as C\C++
code. A parser included in the AGAPIA distribution translates
in background the “@” operator into a series of C language
calls.

Module TEST {listen arrayOfProcesses : (int;)* } { read nil }

{

// Read a value from index 0 in an array of processes

 value = arrayOfProcesses@[0] ;

// Set a value to a simple array index
chrs[0] = ‘a’;

}{speak chrs: char[] } {write value : int }

III. PARALLEL PATTERNS IN AGAPIA

This section presents some basic parallel programming
patterns and how to implement them in AGAPIA. As Section
1 states, the patterns implemented here can be used in both
shared and distributed memory models.

A. Fork-Join

The Fork-Join pattern lets control flow fork into multiple
parallel flows that rejoin later [1]. It is the base of many
patterns and its main usage is to split a process (parent) into
two or more parts that could be computed in parallel. Below is
an example of a simple implementation of this pattern in
AGAPIA.

Fig. 10. Example of a Fork-Join. The process that execute program A spawns

a new process that execute program B, continues execution in parallel, and
after some time they join.

By simple composition of programs we can create a Fork-
Join pattern in AGAPIA. Because of the read-write
dependency, the program Join knows that it needs to get input

from both programs A and B to continue execution. Both
programs can be executed in parallel and having the listen-
speak dependency between A and B guarantees that A start
before B. The easiness of the implementation comes from the
fact that the user just needs to write the correct interfaces for
programs and use the composition operators.

module ForkExample {listen nil}{read nil}

{

 A#B

 %

 Join

}{speak nil}{write nil}

module A{listen nil}{read nil}

{ .. code ..}

{speakta:int}{write sa:int}

module B{listen ta:int}{read nil}

{ .. code ..}

{speak nil}{write ba:int}

module Join{listen nil}{read sa:int,sc:int}

{ .. code ..}

{speak nil}{write nil}

Creating a fork-join in MPI is possible by using the
MPI_Comm_Spawn function. But there are some
disadvantages over the AGAPIA solution. First thing is that
user has to write different code/executable for the parent and
child process. Then, communication between spawned child
and joining is more complicated than in AGAPIA – user have
to be carefully about calling MPI_Wait and MPI_Finalize in
the right places and use the correct communication channel
and id.

B. Map

The map pattern replicates a function over every element
of an index set. The set can be abstract or associated with the
elements of a collection [1]. Usually, it produces a new set of
values, like in Fig. 11. Using this pattern user can write
programs to solve problems like image processing, Monte
Carlo sampling or ray tracing, in a parallel environment.

Fig. 11. Map pattern example. The input is a set of values, it applies the same

function over all items in the set and usually obtain another set of values.

A Map can be defined by hand if complex situation needs.
To exemplify this and show the background implementation of

A B

Join

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

38 | P a g e
www.ijacsa.thesai.org

a Map, an implementation in AGAPIA of this pattern is
presented below. In this case the set is an array of processes of
numeric values. A simple elemental function (the function
being replicated) is used: multiply each number by two.

module MapExample{listen n : int }{read inputs:(int;)*) }

{

 foreach_s(n)

{

 ElementalFunc

}

}{speak nil}{write outputs:(int;)*)}

module ElementalFunc{listen nil}{read in:int}

{

 out = in*2;

}{speak nil}{write out:int}

The first n elements from “inputs” will get through the
ElementalFunc, get multiplied by two, and then goes to the
correct index in the “outputs” array. Because there is no listen-
speak dependency, all ElementalFunc tasks can be executed in
parallel. Compiler knows how to send the correct inputs from
array to each ElementalFunc because, as Section 2 states, the
elements in the “inputs” array will be available in the order the
came in. Then, each input received will be sent to the correct
iteration of the for each loop. If a needed input is not available
yet in the array, the corresponding ElementalFunc instance
will wait until it becomes available.

AGAPIA provides an existing implementation of this
pattern that users can use to simplify a program
implementation. Users have to define what the map operations
does on the input element with the correct input and output
types in the interface and to give as parameter the number of
items the map should apply to. Map automatically adjusts
depending on the type of composition and data types. An
example of usage where the map is applied over the output of
n modules of type A, then results are used as input for n
modules of type B is given below:

foreach_s(n){A}

%

Map(ElementalFunc,n)

%

foreach_s(n){B}.

To implement this in MPI we first need to send the input to
different processes (either calling a Scatter operation, or using
parallel I/O which were processes read data on their own).
Then, these processes compute the desired operation - the
elemental function - and finally, a gather operation will be
used to copy the results back to a root process. As Scatter and
Gather operations are implemented, we need to create another
communication channel to contain just the processes that

needs to run the elemental function. Also, for the two
operations to complete, the root and workers should call them
in the correct order. These disadvantages make this pattern
implementation in MPI a slightly more error prone and harder
to understand that it is by using AGAPIA which provides a
clearer picture for users.

C. Gather and Scatter

The Gather pattern reads values from a set of processes
and stores them in a collection. The Scatter pattern is the
inverse of the Gather pattern – the values from a collection are
distributed to multiple processes. These are base operations for
parallel programming with distributed memory and are also
implemented in MPI: MPI_Gather and MPI_Scatter. Below
are both operations implemented in AGAPIA.

Fig. 12. Gather example.

module Gather{listen n : int}{read v:(int;)*}

{

 for (int i = 0; i < n; i++)

 out[i] = v@[i];

} {speak n : int}{write out : int[]}

Fig. 13. Scatter example.

module Scatter{listen n : int}{read int: int[]}

{

for (int i = 0; i < n; i++)

v@[i] = in[i];
}{speak n : int}{write v:(int;)*}

Both patterns implementations are using the temporal
interface for transmitting the number of items in the arrays.
User could also choose to transmit the number of items
through the spatial interface, but then he needs some identity
operators to match correctly the interfaces. Examples can be
found in [2] and [3].

AGAPIA already provides implementations for Gather and
Scatter. A parameter representing how many items should be
gathered/scattered must be given. An example to gather the
results from a foreach_s statement in an array is: foreach_s(n)
{A} % gather(n). This will gather the outputs from the south
interface of all n modules of type A in a simple array.
gather/scatter automatically define and checks the input/output
interfaces depending on the source/destination of data.

D. Pipeline

The pipeline pattern is usefully when the computation
involves performing a calculation on many sets of data and

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

39 | P a g e
www.ijacsa.thesai.org

this calculation can be viewed in terms of data flowing
through a sequence of stages. It is common in the
implementation of real time applications, signal processing,
online applications, compilers or systolic algorithms. There
are two types of pipelines: linear pipelines – all stages that are
applied over an input are executed serially, non-linear
pipelines – can contain stages that could execute in parallel.
Both types can be easily implemented in AGAPIA. Below is
presented an implementation of a linear pipeline.

S1 S2 S3 S4

S1 S2 S3 S4

………………………………………………...

input

Fig. 14. Linear pipeline. There are read-write dependencies between levels,

and listen-speak dependencies for consecutive programs of a level.

module Pipeline {listen InImagesArray :(image;)*}{read
nil}

{

 for_t (int i = 0; i < NrImages; i++)

 {

 S1 # S2 # S3 # S4

}

}{speak nil}{write OutImagesArray:(image;)*}

We can make sure that a certain stage program can’t be
executed in parallel on different levels by creating a write-read
dependency. An example of this kind of behavior can be
obtained for program S1 like this:

module S1 {listen img: image}{read check:int}

{

 .. code to compute the imgout..

}{speak imgout:image}{write check:int}

We can even play with groups of dependencies between
stages on the same level. It’s all about how the user put
dependencies between programs. Non-linear pipelines can be
easily obtained too:

S1

S2

S3
S4

Fig. 15. Non-linear pipeline. S2 and S3 can be executed in parallel.

A program with a pipeline like in Fig. 15 can be
implemented by changing the source code inside the for_s
statement from the previous pipeline implementation with: S1
(S2%S3) #S4. By combining the pipelines with “if”
statements, we can easily create some other kind of patterns
like filters.

If we consider that a distributed system could run multiple
non-linear pipelines in parallel then an implementation in MPI
needs to use the dynamic process spawning or a custom
scheduler created by user. The simplest way to do it, using
dynamic process spawning, has some disadvantages. First, we
need separate code files/executable for each component or
group of components from pipeline that needs to be executed
on different processes. This makes the code hard to follow, in
contrast to AGAPIA where we have the entire code in one file,
together with the entire pipeline flow. A second issue that
appears often in pipeline applications is the diversity of
parameters and data sent between components of the pipeline.
In MPI we need several calls to MPI_Send and MPI_Recv
functions. In AGAPIA the parameters are serialized and sent
automatically according to programs interfaces.

E. Geometric Decomposition

The Geometric Decomposition pattern breaks data into a
set of subcollections. The purpose is to give this data to
different processes for parallel execution. Sometimes, it is not
necessary to transfer the data, like in the case of programming
for a shared memory model. Stencil operations, which are
used in image processing and simulations, are good examples
of usage for this pattern.

Below is an example of an image filter skeleton
implementation in AGAPIA which uses a shared memory
model. The “Decomposition” program is responsible for
breaking data – in our example it gives to each process, an
equal number of consecutive lines from the input image. The
number of tasks in which we want to break the computation of
filter over the image is decided in this program by a call to an
external function defined by user and transmitted through the
temporal interface further. The “Task” program is the one
responsible for executing the given part of the image.

.

.

.

.

.lineStart

nrLines
Task

index i

Fig. 16. Image decomposition.

Task

w, h,

pixels []

Tasks[]

nt for_s

Filter

Decomposition

Computetasks

All Task modules can be executed in parallel.

Task Task......

Fig. 17. The flow of input and execution in AGAPIA. The programs are
represented by rectangles and their name is in the top-left corner.

Module Filter{listen nil}{read w:int, h:int, pixels:int[]}

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

40 | P a g e
www.ijacsa.thesai.org

{

 Decomposition

 $

 ComputeTasks

}{speak nil}{write nil}

module Decomposition{listen nil}{read w:int, h:int,
pixels:int[]}

{

 nt = Utils::GetNbOfTasks(w,h);

 for (int i = 0; i < nt; i++)

 {

 tasks@[i].lineStart= (h/nt) * i;

 tasks@[i].nrLines= h/nt;

}

}{speak nt:int}{write tasks:(lineStart:int, nrLines:int);)* }

module ComputeTasks{listen nt:int}

{read tasks:(lineStart:int, nrLines;int);)* }

{

 for_s (int i = 0; i < nt; i++)

 {

 Task

 }

}{speak nil}{write nil}

If the user wants to solve this problem in the distributed
case, then the only necessary change to the source code is to
distribute the pixels data instead of line start and number of
lines.

An implementation in MPI will make the code more
complicated because we need to serialize the parameter and
image buffer and then scatter data from master to workers.
Also, user has to split code in two flows for master and
workers, be carefully with indices and to call the MPI_Scatter
function on all processes that are doing tasks.

F. Reduction and Scan

A reduction combines every element in a collection into a
single element using an associative combiner function [1].
Scan pattern computes all partial reductions in a collection.

These two patterns could be used for a broad category of
applications, including numerical analysis (dot products and
row-column products in matrix multiplication, convergence
testing for linear equations, etc.) or image analysis. Because
scan doesn’t differ too much in the AGAPIA implementation
than reduction, only the reduction operation is presented
here.Below is a reduction operation with an associative
combiner function, implemented in AGAPIA. The tree has a
span of .

Fig. 18. Tree reduction pattern for an associative combiner function.

The program Reduce receives as input an array of
processes each one having an integer value. Inside, it uses a
program CombineFunc which receives as input two integers
values and outputs a single one – the value resulted by
combining the inputs. A simple example of combine function
could be the addition of numbers.

module Reduce{listen nil}{read v:(int;)*) }

{

 for_t (int i = 1; i <= ; i++)

 {

 for_s(j = 1; j <= ; j++)

 {

 CombineFunc

 }

 }

 ….. use the result here….

}{speak nil}{write nil}

module ComputeFunc{ listen nil } { read a : int, b : int }

{

 c = a + b;

}{speak nil} { write c : int}

In this case, the “for_t” will spawn levels one by one,
while the “for_s”, will spawn all tasks needed for that level.
All tasks on a level can be computed in parallel because there
is no listen-speak dependency in the program “CombineFunc”
(between tasks created at each level). On the other side,
because of the read-write dependency, the computation
respects the expected flow: the levels are guaranteed to be
executed in the correct order.

Reduce and Scan patterns are already implemented in
AGAPIA and can be reutilized by users in order to improve
the development process and the clearness of the code. They
receive three parameters: the number of elements to
reduce/scan, a module defining the function to combine the
elements and a module defining the neutral element of the
combination (needed when the number of elements is not a
power of 2 - In addition to the implementation shown above, if
the number of elements is not a power of 2 then we use this
neutral element to add fictive elements until we get a power of
2). For example the sum reduce presented above where the
Source produces n items and Neutral produces a neutral
element as output without receiving any input, can be defined

mailto:tasks@[i].lineStart
mailto:tasks@[i].nrLines

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

41 | P a g e
www.ijacsa.thesai.org

as: Source % Reduce(n, ComputeFunc, Neutral). Reduce will
automatically adapt to the type of composition used and
performs type checking for the input values, Neutral and
ComputeFunc.

MPI has two functions that implement these two patterns:
MPI_Scan and MPI_reduce. However it has some slightly
disadvantages compared to AGAPIA. First, we need to create
a separate communication channel for all processes implied in
the process of scan/reduce, then, these functions acts like a
barrier and needs to be called in the right order on all those
processes. These things can make the code difficult to
understand in comparison with AGAPIA code, where the
pattern help the user to keep a code closer to the natural way
of the solution formulation.

G. Wavefront pattern

The Wave front pattern appears in programs with data
elements laid out as multidimensional grids and which have
data dependencies between elements that resemble a diagonal
sweep. This is very common for dynamic programming
problems or systolic algorithms. The temporal interface in
AGAPIA makes the implementation of this pattern to be easy
and clear.

Fig. 19. Data dependencies for the longest-common-subsequence problem.

To implement this pattern in AGAPIA we need first to
analyze the data dependencies and make sure that we can send
all data needed by a program through its north and west
interfaces. For example, the longest-common-subsequence
problem has a diagonal dependency. If we consider that each
cell (or group of cells) is a program instance responsible for
computing the formula, then we need to transfer somehow that
diagonal element from F(i-1,j-1) to F(i,j). We can do this by
sending first the item from F(i-1,j-1) to F(i-1,j) and then both
data values from F(i-1,j) to F(i,j).

In the distributed memory model we also need to distribute
the characters of the two arrays A and B. Below is the main
source code body (without initializations or data splitting).
The “chA” and “chB” denotes the characters that each cell
should compare when computing the value.

for_t(int i = 0; i < n; i++)

for_s(int j = 0; j < m; j++)

 {
ComputeCellValue

}

module ComputeCellValue{listen left:int, chA:int}

{read up:int, diag:int, chB:int}

{

// F[i][j] = max(F[i-1][j-1]+1*(A[i] == B[j]),

// F[i][j-1], F[i-1,j]);

result = max(diag+1*(chA==chB), left, up);

}

{speak result:int,chA:int }{write result:int,result:int, chB:int}
To implement this in MPI we have to create a scheduler by

hand to compute the cells that are ready for execution – which
takes some important time to code - or to use dynamic process
spawn in MPI - but this has the same disadvantages as the
previous examples. Splitting the code/executable for different
cells computation and communication issues will transform an
implementation in MPI into something much different that the
simple sequential implementation and how to user thinks
about the solution generally. In AGAPIA, after a cell is
computed it sends the output further making other programs
ready for execution. These will be automatically scheduled in
the backend and the user concerns are just to use the correct
recursion and initialization as in a sequential program.

IV. AN EXAMPLE COMBINING MULTIPLE PATTERNS AND

PERFORMANCE EVALUATION

This section is dedicated to show a more complex example
by using a combination of these patterns and to show how the
AGAPIA implementation compares to the MPI one, in terms
of performance, time of development and expressivity. The
example used is composed from some of the patterns
presented in the previous section: fork and join, scatter, gather,
and a non-linear pipeline. The accent is put on the architecture
of the application and how AGAPIA hides communication
details and keeps a program modular and closer to how users
thinks a solution. The low-level code of modules is not shown
here due to space constraints, but it is the same code that we
use in C\C++ language in order to implement those operations.

The problem discussed here is how to implement a
distributed system which accepts two types of tasks from
clients: text and image searching through some resources
available on a predefined network address. These resources
are books - for text searching - and images for image
searching. We consider that each resource has an associated
index. As a result, clients should receive back the index where
the highest similarity occurred when comparing the user data
to the network resource data.

The code given below begins with two definitions: the
“userTask” type used to store data given to compare, the type
and the client address (IP address considered as an integer).
The MAIN module is the entry point of the application. It has
as temporal input type an array of processes each of type
“userTask”. The while_t construct will create a
SOLVE_TASK module each time a new userTask is available
in the temporal side. As the SOLVE_TASK interfaces are
defined, there is no dependency between consecutive iterations
of the while_t statement. Given this, multiple SOLVE_TASK
modules can run in parallel. Inside this module, there is a
conditional statement which checks the type of the task. If it is
a text request then it creates the SEARCH_TEXT module,
otherwise if it is an image then SEARCH_IMG module it is
created.

SEARCH_TEXT and SEARCH_IMG modules are similar
in terms of structure, so only the code for the first one is
shown here. This module receives a task from the parent

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

42 | P a g e
www.ijacsa.thesai.org

module (SOLVE_TASK) in the temporal side. Inside of it, the
first step is to create an array with N jobs description, in
module CREATE_ARRAY_OF_TASKS which splits the
indices to search on for each task in equally parts. These jobs
are scattered to the N modules instances that are created by the
for_s statement. After this step, jobs can be executed in
parallel, the background scheduler assigning them to workers
as soon as they get idle. After a module that performs the job
finishes the execution on a worker, it will serialize the data
declared in the module’s output interface and send it back to
master which coordinates the resulted data through the
program’s graph.

The REDUCE operations acts like a “join”, waiting for all
to complete then launch a classical max-reduce operation in
order to find the index with the highest similarity. The results
are then sent in the SEND_RESULTS module which uses a
parameter from local stack of the parent module.

struct userTask{ data : buffer, addr:int type : int }

#define N 16*4

module MAIN { listen tasks : (userTask;)* }{ read nil }

{

 while_t(true)

 {

 SOLVE_TASK

 }

}{ speak nil } {write nil }

module SOLVE_TASK { listen task : userTask }

{

 if (task.type == TEXT)

 {

 SEARCH_TEXT

}

 else if (task.type == IMAGE)

 {

 SEARCH_IMG

}

} { speak nil } {write nil }

module SEARCH_TEXT { listen task : userTask}

{

 CREATE_ARRAY_OF_TASKS

%

SCATTER(N)

%

for_s (N) { TEXT_SIMILARITY }

%

REDUCE(N, MAXOP, NEUTRALOP)

%

SEND_RESULTS(task.addr)

}{ speak nil } { write nil }

Module TEXT_SIMILARITY is using a classical edit-
distance implementation to compare the given text with each
paragraph of the book. Images are compared inside module
IMG_SIMILARITY (similar in structure with
TEXT_SIMILARITY). The comparison is done using
OpenCV library functions for comparing histograms. At any
time, a user can change these two modules in order to
implement other methods. The only requirement is to keep the
same input/output interfaces demonstrating this way the
modularity of the language.

In terms of development productivity and code size the
AGAPIA implementation performs better than the
corresponding MPI version because:

 The communication is transparent, the user doesn’t
need to write specific primitives for sending/
receiving data

 By having the scheduler already implemented in the
background there is no need to create a complicated
scheduler by hand as the MPI implementation needs in
order to compute the similarity jobs.

 Faster development time because a user can write the
code closer to how he thinks the solution.

 Better modularity and less error prone than MPI. User
can change at any time a module implementation just
by keeping the correct interfaces. It is less error-prone
because of the transparent communication model and
modularity.

The cost of using AGAPIA in terms of performance is
minor. Because the atomic module's code are compiled and
linked directly as C\C++ code there is no performance
difference when executing them. The only additional cost
comes from the coordination. The coordination is internally
optimized to avoid unnecessary data copies and it generally
uses references when coordination happens on the same
machine. At this point users must be carefully to avoid big
data flow between modules if this is not needed. An example
is the CREATE_ARRAY_OF_TASKS which is atomic and
this means it can be executed by any workers. This module
does very little inside: it just sets indices and data for each job.
Watching the global flow it makes no sense to execute this on
workers. If we add @MASTER near the module declaration,
and considering that SCATTER will also execute on master
then we avoid copying a big data chunk representing a task to
a worker just for splitting and setting some values.

Table 1 shows the compared result of executing a bunch of
tasks generated at once on programs implemented in AGAPIA
and MPI. The time to finish for all tasks and the additional
memory footprint, excluding the memory used for storing task,
is compared. Ideally we should get minimal performance and
memory impact by using AGAPIA language.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

43 | P a g e
www.ijacsa.thesai.org

TABLE I. COMPARATIVE RESULTS OF EXECUTION TIME AND MEMORY

FOOTPRINT

Solution
Time to finish all
tasks (seconds)

Memory footprint (excluding the
memory used for storing tasks)

MPI 114.87 1756

AGAPIA 115.34 1911

The simulation was run using 64 processes on a local

network and involving 8 different machines. Results show that
the performance penalty of using AGAPIA implementation is
small while the benefits given by productivity and modularity
of the application are big enough to recommend its usage.

V. 7. CONCLUSION AND FUTURE WORK

This paper presented well-known parallel programming
patterns and how they can be implemented in AGAPIA
language. This is just a small subset of patterns that can be
implemented in this language. By using and combining them
and with the help of the transparent communication model that
it provides, we can create highly structured parallel programs
that are easy to write, modular and less error prone. All this
advantages are given by language semantics, high level
composition statements and its temporal interface. One of the
future improvements for AGAPIA is to study the possibility of
tasks cancelation and to improve the scheduling algorithm by
adding priorities or GPU processing. An important point to
focus on is to study in deep some categories of applications
that can take advantage by using AGAPIA language.

REFERENCES

[1] Michael McCool, James Reinders, Arch Robison, “Structured Parallel
programming: Patterns for Efficient Computation”, Morgan Kaufmann

July 9, 1012.

[2] Dragoi, C., Stefanescu, G.: “On compiling structured interactive
programs with registers and voices”; Proc. SOFSEM 2008, LNCS

4910,Springer (2008), 259-270.

[3] Alexandru Popa, Alexandru Sofronia, Gheorghe Stefanescu, “High-level
Structured Interactive Programs with Registers and Voices”; Journal of

Universal Computer Science, vol. 13, no 11 (2007) 1722-1754.

[4] Timothy G. Mattson, Beverly A.Sanders, Berna L. Massingill, “Patterns
for Parallel Programming”, Addison-Wesley, September 25, 2004

[5] James Reinders, “Intel Threading Building Blocks, Outfitting C++ for

Multi-core Processor parallelism”

[6] Mordechai (Moti) Ben-Ari, “Principles of Concurrent and Distributed
Programming, Second edition”, Addison-Wesley, 2006.

[7] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, “Compilers, Principles,
Techniques, and Tools, Columbia University, January 1, 1986.

[8] Dragoi, C., Stefanescu, G.: “Structured programmingfor interactive rv-

systems”; Institute of Mathematics of the Romanian Academy,Preprint
9/2006, Bucharest (2006)

[9] Agha, G.: “Actors: A model of concurrent computation in

distributedsystems”; MIT Press (1986).

[10] W. Wadge and E.A. Ashcroft. Lucid, the data flow programming
language. Academic Press, 1985.

[11] Hong Lin, Jeremy Kemp, Padraic Gilbert, “Computing Gamma Calculus

on Computer Cluster”, International Journal of Techonology Diffusion,
Volume 1, Issue 4, 2010.

[12] Donald, S. and Le Vie, Jr. (2000). Understanding Data Flow Diagram.

Proceedings of the 47th annual conference on Society for Technical
Communication. Texas: Integrated Concepts, Inc.

