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Abstract—As distributed applications became more 

commonplace and more sophisticated, new programming 

languages and models for distributed programming were created. 

The main scope of most of these languages was to simplify the 

process of development by a providing a higher expressivity. This 

paper presents another programming language for distributed 

computing named AGAPIA. Its main purpose is to provide an 

increased expressiveness while keeping the performance close to 

a core programming language. To demonstrate its capabilities the 

paper shows the implementations of some well-known patterns 

specific to distribute programming along with a comparison to 

the corresponding MPI implementation. A complete application 

is presented by combining a few patterns. By taking advantage of 

the transparent communication model and high level statements 

and patterns intended to simplify the development process, the 

implementation of distributed programs become modular, easier 

to write, in clear and closer to the original solution formulation. 
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I. INTRODUCTION  

Distributed programming is usually considered both 
difficult and inherently different from serial or concurrent 
centralized programming. Different high-level programming 
languages and models were created in order to increase 
expressiveness and productivity. This paper presents AGAPIA 
language in an attempt to add even more expressivity to the 
distributed programming. By taking advantage of the 
transparent communication model and high level statements 
intended to simplify the development process, the 
implementation of distributed programs become modular, 
easier to write, in clear and closer to the original solution 
formulation. Because the AGAPIA code is composed mostly 
from C language code plus a few specific language constructs 
and specifications it is expected that users can easily 
understand this new language. 

The demonstration of the AGAPIA language potential is 
demonstrated through the implementation of some of the well-
known patterns in the distributed computing along with a real 
example application and its performance results. Patterns are a 
way of codifying best practices for software engineering. 
Identifying themes and idioms that can be codified and reused 
to solve specific problems in parallel and distributed 
computing is an important topic in computer science. The 
semantics of each pattern is the same for every programming 
language, but the way to implement it differs between 
programming languages. When dealing with parallel and 
distributed programming the user has to take an important 

decision when choosing the programming language because 
each one has its own advantages and disadvantages. In this 
paper, by "parallel implementation" we understand both 
parallel implementations with shared memory and distributed 
computing. Actually, most of the programs in AGAPIA have 
the same source code for both shared and distributed memory 
models - the exceptions are when users want to take advantage 
of the shared memory and use it without retransmitting data. 

The paper is organized as follows. In Section 2 there is a 
short description of AGAPIA language, some explanations 
about its executing semantics that are important for 
understanding the next sections and a comparison to existing 
solutions. In Section 3 patterns are presented one by one. A 
more complex example by combining some of these patterns 
is given in Section 4. Concluding remarks are in Section 5. 

II. AGAPIA LANGUAGE 

A. Motivation for AGAPIA and a comparison with other 

solutions 

This section provides a short motivation why AGAPIA is a 
good solution for parallel computing, a comparison with other 
solutions, a presentation of previous papers and an idea about 
how the execution process is made.  

In the process of writing programs for parallel systems 
with distributed memory, using a common language such as 
MPI, users are concentrating on a set of sequential steps and 
needs to create multiple tasks that can run concurrently, and 
then handle their communications and synchronization 
explicitly. Before doing the implementation in a programming 
language, users are thinking on the architecture of the program 
as something more appropriate to a data flow diagram [12] 
where different entities are computing and exchanging data. 
Because of the sequential style to write a program, it is often 
hard to understand exactly what the interactions between the 
entities are. This could cause the program to be error prone, to 
have low modularity and difficulties to understand its 
communication.  

The objective of APAGIA language is to allow users 
create inherently parallel programs, with the same code 
structure for both shared and distributed memory models, with 
minimal coding and impact over performance. The gains 
would be less time to implement a program because a data 
flow diagram is similar to how a user generally thinks about a 
program, transparent communication, better modularity and 
less error prone.  Gamma calculus model [11] is another 
solution for inherently parallel programming with minimal 
code. Gamma is a kernel language in which programs are 
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described in terms of multiset transformations. However, the 
implementations in this presentation will show that AGAPIA 
programs are easier to understand, being more appropriate to 
common parallel programming languages that users know, 
because it uses C/C++ for most of its code and just adds some 
high level statements and operators for parallel coordination.  

In [2], AGAPIA v0.1 was described as being a kernel 
programming language for interactive systems. It contains a 
detailed presentation of the language syntax and a toy example 
of dual-pass termination detection protocol. In [3], the syntax 
is extended to allow for the construction of high-level 
structured rv-programs. The new version of the language is 
v0.2 and supports recursion and dynamic programs creation. 
This paper is based on the latest version of AGAPIA, v0.2. To 
create high-level programs, AGAPIA provides composition 
operators, conditional and iteration statements.  

B. Basics of AGAPIA programming 

The basic block in AGAPIA programming is the module. 
A module has four input/output interfaces. The input can be 
received in north and west while output could go to east and 
south. Each interface could contain zero, one or more 
variables. A module’s interface could be represented as a tuple 
of interfaces: (west; north;east;south). The interface of the 
module in Fig. 1 is ( int,string ; nil ; int ; int). By specifying nil 
to an interface we are actually ignoring it. 

             module main { listen a : int, s:string } { read nil } 

             { 

                    // ..source code for program.. 

             }{ speak b : int } { write c : int } 

main
a b

nil

c

West 

input

East 

output

North 

input

South 

output

(listen)

(read)

(speak)

(write)

 
Fig. 1. Simple program in AGAPIA.  

To obtain higher-level programs, the basic operation for 
the user is to use the composition operators. In the pictures 
below all the three composition operators that can be defined 
over two programs A and B are shown, along with the 
necessary restrictions and resulted interfaces. 

 Vertical (Temporal) composition: A%B. Resulted 
program interface is: 

(west(A) ∪ west(B); north(A); east(A) ∪ east(B); south(B)). 

A

B
 

Fig. 2. Vertical composition. South(A) should match North(B) 

 Horizontal (Spatial) composition: A # B. Resulted 
program interface is: 

(west(A); north(A) ∪ north(B); east(B); south(A) ∪ south(B))

A B
 

Fig. 3. Horizontal Composition. East(A) should match west(B). 

 Diagonal composition: A $ B. Resulted program 
interface is: 

(west(A); north(A); east(B), south(B)). 

A

B
 

Fig. 4. Diagonal composition. Both output interfaces of A should match the 

input interfaces of B. 

Two types of dependencies can be defined between modules: 

 north-south (or read-write) dependency: can occur in 
the vertical or diagonal composition.  

 east-west (listen-speak) dependency: can occur in the 
horizontal or diagonal compositions.  

A dependency exists if the interface on the corresponding 
side is not nil. Dependencies are usefully when coordinating 
the execution and preventing a program being executed before 
another one. For example, the diagonal composition could 
have both types of dependencies and it can be usefully when 
implementing barriers. 

The modularity of the language is given by the fact that a 
module implementation can be re-used in another application 
just by matching the correct interfaces. Also, at any time a 
user can change a module implementation with another one 
with the same interfaces. Making a comparison to general 
object oriented languages, a module change is like replacing 
an existing class with another one which have the same 
operations and data. However this is even easier in AGAPIA 
because the only specification of a module is contained in its 
input/output interfaces, while the entire semantics is contained 
inside the module. The original syntax of AGAPIA v0.2 
language was modified in order to make it friendlier to users. 
In Fig. 5 the new syntax is presented. As the syntax is defined, 
a module becomes a program at a higher-level.  

Interfaces 

 SI ::= nil | int | bool | float | string | buffer |  

           | (SI, SI) | (SI [] ) 

MI ::= (SI) | (SI;SI) | (SI;)*  

Expressions 

 V ::= x : MI | V(k) 

          | V.k | V.[k] | V@k | V@[k] 

              E ::= n | V | E + E | E * E | E – E | E/E 

 B ::= b | V | B&&B | B || B  | !B | E < E 
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Programs 

         W ::= null | new x : SI 

           | x := E | if (B) { W } else { W } 

           | W;W | while (B) { W } … (and all 

other C language constructs) 

M ::= module module_name  

[MI – optional]{listen x:MI}{read x:MI} 

     { W } {speak x : MI}{write x : MI} 

        P::= nil | M | if (B) { P } else { P }  

  | P % P | P # P | P $ P 

 | while_t (B) {P} | while_s(B) {P} | 

while_st(B) {P} 

| gather(int) | scatter(int) | map(int,P) | 

reduce(int,P,P) | scan(int,P,P) 

Fig. 5. The modified  syntax of AGAPIA programs. 

To be more appropriate to common programming 
languages some changes were done when writing AGAPIA 
code. “SI” from the syntax figure represents a simple interface 
declaration. Structures can be obtained by adding together 
more simple data types: (SI, SI). ( SI[] ) represents an array of 
simple data types. Instead of using sn/tn or sb/tb the decision 
was to merge them and use just int and bool for both temporal 
and spatial interfaces, but without losing the information of 
which category they are. Two new basic data types, “string” 
and “buffer” types were added for storing strings and sending 
buffers between distributed programs in an easy way.   

“MI” is used for defining a module interface and it 
basically uses “SI” for this. From (or in) a module interface, 
the output (or input) can flow to one or more other modules. 
(SI;SI) represents two different processes while (SI;)* is an 
array of processes. For example, if we are vertically 
composing a module M with a foreach_s statement, then the 
south output interface of M should be something of type 
(SI;)*.  In basic AGAPIA programs users can use all type of 
C\C++ language constructs. At the high-level programs 
section, the language offers simple and high level composition 
and flow branching statements. The “for each” and patterns 
“gather”, “scatter”, “map”, “reduce”, “scan” were added in 
order to improve the expresivness.  

Because array of processes are something AGAPIA 
specific, some more details must be given. A simple array of 
structures (named A) of a pair containing an int and a bool is 
defined as A:(int, bool)[], while A[i] is used to access an index 
from this array. An array of processes (named V), with each 
process containing the same pair is defined as V:(int, bool;)*, 
while V@[i] is used to access an index. The main difference is 
that elements from a simple array can’t be split to different 
AGAPIA programs just by composition, while the array of 
processes can. If there is a program which has as spatial input 
an array of processes and inside this program there is a 
composition like M # N # Z, each one accepting a simple pair 
of int and bool as spatial input, then the first three indices from 

the array will go in the right order to M, N and Z. It is best to 
use array of processes when dealing with AGAPIA high level 
iterative statements ( for/each/while or patterns). In the case of 
the above example with M # N # Z then it suffices, and it is 
even clear, to have a spatial input like ( (bool,int) ; (bool, int) ; 
(bool, int)) – three process inputs, one for each program. 

C. High level statements  

To change the input/output flow by conditional branching, 
we can use the “if” program. It has the following syntax: if 
(condition) {P_IF } else { P_ELSE } , where P_IF and 
P_ELSE are also two programs. There are two restrictions 
regarding these two programs: P_IF and P_ELSE programs 
should have the same interfaces (and even input interfaces 
with the same variable names) to make the input/output 
matching correctly. “condition” can only contain variables 
defined in the input interfaces of P_IF and P_ELSE. Fig. 6 
shows how an “if” program looks like inside. Inputs received 
are buffered until condition can be evaluated. 

north input

south output

East

output
West

input

condition

evaluate over input

P_IF

P_ELSE

OR

 
Fig. 6. Inside an if program in AGAPIA. 

To create iterating compositions of programs, AGAPIA 
provides the following statements: for’s, fort, for_st, 
foreach_s, foreach_t, foreach_st, whiles, while_t, while_st. 
These are doing the same things as the “for” and “while” 
statements in the common programming languages, excepting 
that for each iteration an AGAPIA program is spawned and 
composed with other programs. Between consecutive 
iterations, the programs can be composed spatial, temporal and 
diagonal – as the usual programs composition. The type of the 
composition is indicated by the letters that comes after 
underscore in the statement name:  “s” means spatial (#), “t” 
temporal (%), and “st” diagonal ($). This rule is valid for all 
types of “for/each/_” and “while_” statements. As we can see 
from the syntax, these statements become AGAPIA programs 
too. 

Fig. 7, 8, 9 shows how the for, foreach and while programs 
look internally for each iteration type. The figures are 
conclusive about how the input/output flows inside. 

north input

south output

East

output

West

input …

…….

…….

 
Fig. 7. Inside an for_s/foreach_s/while_s program. There is a spatial 

composition between consecutive iterating programs. 
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north input

south output

East

output

West

input
.

.

.

.
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.

.

.

.

.

.

 
Fig. 8. Inside an for/each_t or while_t program. There is a temporal 

composition between consecutive iterating programs. 

north input

south output

East

output

West

input
.

.

.

.

.

 

 

………………...

 
Fig. 9. Inside an for_st/foreach_st or while_st program. There is a diagonal 

composition between consecutive iterating programs. 

As with the “if” program condition, the “while_” program 
condition refers to the interface of the program it is iterating 
on. So if we have a program like while_t(condition) {P}, then 
condition can refer to the north and west input interfaces of P. 
If user knows the number of iterations then it is better in terms 
of performance to use the for/for each statements, because in 
background all internal instances could be created directly 
allowing the maximization of parallelism.  There is one big 
difference between “for_” and “for each_”. “for_” should be 
used when we want to impose a certain order on how the 
internal programs are instantiated. If we have a program like 
foreach_s(n) {P}, and n value does not depend on the 
input/output of P, and P doesn’t have any listen-speak 
dependency, then those n instances of type P  could be 
spawned and executed in parallel in any order. If we use for_s 
instead, then the internal instances will be instantiated in the 
order of the iteration (although they could also run in parallel, 
if there is no listen-speak dependency between them). 

Speaking in terms of interfaces, the iterating side of these 
programs has as interface an array of processes. If the 
interface of P is (west; north; east; south), then the for_s / 
foreach_s/while_s interface is (west, (north;)*, east, (south;)*). 

Some clarifications must be made about how the 
parameters containing arrays of processes are sent between 
programs. If the program which sends input for an array of 
processes is an atomic program, then all data is sent in a 
chunk. Same thing happens if the receiver program is a atomic 
(we achieve this by buffering the inputs and detecting when all 
input expected arrived). If none of the modules are atomic, and 
both programs are connecting an (int;)* to an (int;)* then the 
mapping is made on the same indices, 1:1. If not, and for 
example the array of processes has type (int;)*,  then the input 
for this array of processes can contain in its specification just a 
single array of processes and this should be the last element. A 

correct example is connecting (int;)* to (int ; int ;……;(int;)*.  
Connecting (int; (int;)*; int; …) to (int;)* is not allowed, 
because there is no mechanism to know how much the second 
item in the specification will expand. Considering these 
recursively, the compiler knows exactly the order of how 
elements come in the array. Also, for optimization purposes, if 
communicating programs are not atomic then we send array 
indices individually. Imagine a program which does some 
parallel computations and set individual items in an array of 
processes in the south interface. If this program is vertically 
composed with a foreach_s statement then sending array 
indices individually is a performance advantage. Each time an 
item is sent to the foreach_s program a new instance inside of 
it can start, maximizing this way the potential parallelism.  

The other high level statements, which represents some 
ready to use common patterns, were created in order to 
improve the productivity in building complex applications. 
Scatter is used to transform from a simple array to an array of 
processes while Gather transforms an array of processes to a 
simple array. Common usage examples can includes creating 
an array of tasks then splitting each item to a different 
program instance or receiving results from different programs 
in a simple array. The Map pattern can be used to apply an 
operation (represented by a given module) over a set of items 
and produce another set of items. Examples of usage include 
image processing, ray tracing or Monte Carlo sampling. 
AGAPIA also provides Scan and Reduce primitives which 
does the typical operations in logarithmic time over a set if 
inputs coming from different programs. Other kind of patterns 
such as pipeline or wavefront can be easily expressed just by 
using composition operators. 

D. AGAPIA runtime, backend and how to use interface 

variables. 

Paper [2] states in the „Conclusion and future work” 
section that we need an AGAPIA compiler. Because of this, 
the previous papers didn't talk about how the programs are 
being executed or the input/output flow in detail. The compiler 
is now publicly available at http://code.google.com/p/agapia-
programming-language and it is continuously updated. A 
briefly presentation is made here about how the programs 
execution works. All programs looks like a dataflow graph 
with nodes representing smaller programs. The 
communication between these nodes is transparent, 
composition operators or high-level statements and patterns 
automatically creates in background the links between 
input/output interfaces. 

The source code for user written programs can be a mix of 
C\C++ and specific AGAPIA statements and operators. A 
program which doesn’t contain any specific AGAPIA 
composition or statements is called atomic.  The semantic 
difference between the atomic programs and non-atomic ones 
is that the first category needs all the inputs available before 
starting to execute. The real computational tasks that can be 
executed in parallel by the internal schedulers are to be found 
in the atomic programs. To minimize the computational 
overhead, the atomic programs are translated and linked into 
C/C++ code. Only the non-atomic programs are being 
interpreted.  
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The scheduler is built on the top of MPI. The default 
scheduler’s architecture is composed by a master and multiple 
workers. The master process responsibility is to coordinate 
input/output of the modules and detect new atomic modules 
that can be executed. These atomic programs are executed as 
soon as there is an idle worker available. Users can change this 
default execution by using some specifier near a module 
definition. Specifier “@Master” can make a module to be 
executed only on master – this is typically useful when there is 
a resource available just on the master. A module can be 
executed and coordinated by the same worker by specifying 
“@SameProcess” – this behavior can reduce the transfer time 
or allow the usage of small coordination modules with 
minimal overhead. 

An important preparation for the next section is to show 
how we can use the variables defined in the interface of a 
program. The code below shows some examples of accessing 
input/output variables. We can access each one directly by its 
name. Usually we read from input interfaces, compute, then 
write in the output variables. Even if the below module has 
operator “@” used to access an array of processes, it still 
remains an atomic one and it is executed purely as C\C++ 
code. A parser included in the AGAPIA distribution translates 
in background the “@” operator into a series of C language 
calls.  

Module TEST {listen arrayOfProcesses : (int;)* } { read nil } 

{ 

// Read a value from index 0 in an array of processes 

    value  = arrayOfProcesses@[0] ; 

// Set a value to a simple array index  
chrs[0] = ‘a’;     

}{speak  chrs: char[] } {write value : int } 

III. PARALLEL PATTERNS IN AGAPIA 

This section presents some basic parallel programming 
patterns and how to implement them in AGAPIA. As Section 
1 states, the patterns implemented here can be used in both 
shared and distributed memory models. 

A. Fork-Join 

The Fork-Join pattern lets control flow fork into multiple 
parallel flows that rejoin later [1]. It is the base of many 
patterns and its main usage is to split a process (parent) into 
two or more parts that could be computed in parallel. Below is 
an example of a simple implementation of this pattern in 
AGAPIA. 

 

Fig. 10. Example of a Fork-Join. The process that execute program A spawns 

a new process that execute program B, continues execution in parallel, and 
after some time they join. 

By simple composition of programs we can create a Fork-
Join pattern in AGAPIA. Because of the read-write 
dependency, the program Join knows that it needs to get input 

from both programs A and B to continue execution. Both 
programs can be executed in parallel and having the listen-
speak dependency between A and B guarantees that A start 
before B. The easiness of the implementation comes from the 
fact that the user just needs to write the correct interfaces for 
programs and use the composition operators. 

module ForkExample {listen nil}{read nil} 

{ 

    A#B 

    % 

    Join 

}{speak nil}{write nil} 

module A{listen nil}{read nil} 

{ .. code ..} 

{speakta:int}{write sa:int} 

module B{listen ta:int}{read nil} 

{ .. code ..} 

{speak nil}{write ba:int} 

module Join{listen nil}{read sa:int,sc:int} 

{ .. code ..} 

{speak nil}{write nil} 

Creating a fork-join in MPI is possible by using the 
MPI_Comm_Spawn function. But there are some 
disadvantages over the AGAPIA solution. First thing is that 
user has to write different code/executable for the parent and 
child process. Then, communication between spawned child 
and joining is more complicated than in AGAPIA – user have 
to be carefully about calling MPI_Wait and MPI_Finalize in 
the right places and use the correct communication channel 
and id. 

B. Map 

The map pattern replicates a function over every element 
of an index set. The set can be abstract or associated with the 
elements of a collection [1]. Usually, it produces a new set of 
values, like in Fig. 11. Using this pattern user can write 
programs to solve problems like image processing, Monte 
Carlo sampling or ray tracing, in a parallel environment. 

 
Fig. 11. Map pattern example. The input is a set of values, it applies the same 

function over all items in the set and usually obtain another set of values. 

A Map can be defined by hand if complex situation needs. 
To exemplify this and show the background implementation of 

A B

Join
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a Map, an implementation in AGAPIA of this pattern is 
presented below. In this case the set is an array of processes of 
numeric values. A simple elemental function (the function 
being replicated) is used: multiply each number by two. 

module MapExample{listen n : int }{read inputs:(int;)*) } 

{ 

 foreach_s(n) 

{ 

       ElementalFunc 

} 

}{speak nil}{write outputs:(int;)*)} 

module ElementalFunc{listen nil}{read in:int} 

{ 

 out = in*2; 

}{speak nil}{write out:int} 

The first n elements from “inputs” will get through the 
ElementalFunc, get multiplied by two, and then goes to the 
correct index in the “outputs” array. Because there is no listen-
speak dependency, all ElementalFunc tasks can be executed in 
parallel. Compiler knows how to send the correct inputs from 
array to each ElementalFunc because, as Section 2 states, the 
elements in the “inputs” array will be available in the order the 
came in. Then, each input received will be sent to the correct 
iteration of the for each loop. If a needed input is not available 
yet in the array, the corresponding ElementalFunc instance 
will wait until it becomes available. 

AGAPIA provides an existing implementation of this 
pattern that users can use to simplify a program 
implementation. Users have to define what the map operations 
does on the input element with the correct input and output 
types in the interface and to give as parameter the number of 
items the map should apply to. Map automatically adjusts 
depending on the type of composition and data types. An 
example of usage where the map is applied over the output of 
n modules of type A, then results are used as input for n 
modules of type B is given below: 

 
foreach_s(n){A} 

% 

Map(ElementalFunc,n) 

%  

foreach_s(n){B}.  

To implement this in MPI we first need to send the input to 
different processes (either calling a Scatter operation, or using 
parallel I/O which were processes read data on their own). 
Then, these processes compute the desired operation - the 
elemental function - and finally, a gather operation will be 
used to copy the results back to a root process. As Scatter and 
Gather operations are implemented, we need to create another 
communication channel to contain just the processes that 

needs to run the elemental function. Also, for the two 
operations to complete, the root and workers should call them 
in the correct order. These disadvantages make this pattern 
implementation in MPI a slightly more error prone and harder 
to understand that it is by using AGAPIA which provides a 
clearer picture for users. 

C. Gather and Scatter 

The Gather pattern reads values from a set of processes 
and stores them in a collection. The Scatter pattern is the 
inverse of the Gather pattern – the values from a collection are 
distributed to multiple processes. These are base operations for 
parallel programming with distributed memory and are also 
implemented in MPI: MPI_Gather and MPI_Scatter.  Below 
are both operations implemented in AGAPIA. 

 
Fig. 12. Gather example. 

module Gather{listen n : int}{read v:(int;)*} 

{ 

 for (int i = 0; i < n; i++) 

      out[i] = v@[i]; 

} {speak n : int}{write out : int[]} 

 
Fig. 13. Scatter example. 

module Scatter{listen n : int}{read int: int[]} 

{ 

for (int i = 0; i < n; i++) 

v@[i] = in[i]; 
}{speak n : int}{write v:(int;)*} 

Both patterns implementations are using the temporal 
interface for transmitting the number of items in the arrays. 
User could also choose to transmit the number of items 
through the spatial interface, but then he needs some identity 
operators to match correctly the interfaces. Examples can be 
found in [2] and [3]. 

AGAPIA already provides implementations for Gather and 
Scatter. A parameter representing how many items should be 
gathered/scattered must be given. An example to gather the 
results from a foreach_s statement in an array is: foreach_s(n) 
{A} % gather(n). This will gather the outputs from the south 
interface of all n modules of type A in a simple array. 
gather/scatter automatically define and checks the input/output 
interfaces depending on the source/destination of data. 

D. Pipeline 

The pipeline pattern is usefully when the computation 
involves performing a calculation on many sets of data and 
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this calculation can be viewed in terms of data flowing 
through a sequence of stages. It is common in the 
implementation of real time applications, signal processing, 
online applications, compilers or systolic algorithms. There 
are two types of pipelines: linear pipelines – all stages that are 
applied over an input are executed serially,   non-linear 
pipelines – can contain stages that could execute in parallel. 
Both types can be easily implemented in AGAPIA. Below is 
presented an implementation of a linear pipeline. 

S1 S2 S3 S4

S1 S2 S3 S4

………………………………………………...

input

 

Fig. 14. Linear pipeline. There are read-write dependencies between levels,  

and listen-speak dependencies for consecutive programs of a level. 

module Pipeline {listen InImagesArray :(image;)*}{read 
nil}  

{ 

 for_t (int i = 0; i < NrImages; i++) 

 { 

  S1 # S2 # S3 # S4 

} 

}{speak nil}{write OutImagesArray:(image;)*} 

We can make sure that a certain stage program can’t be 
executed in parallel on different levels by creating a write-read 
dependency. An example of this kind of behavior can be 
obtained for program S1 like this: 

module S1 {listen img: image}{read check:int} 

{ 

 .. code to compute the imgout.. 

}{speak imgout:image}{write check:int} 

We can even play with groups of dependencies between 
stages on the same level. It’s all about how the user put 
dependencies between programs. Non-linear pipelines can be 
easily obtained too: 

S1

S2

S3
S4

 
Fig. 15. Non-linear pipeline. S2 and S3 can be executed in parallel. 

A program with a pipeline like in Fig. 15 can be 
implemented by changing the source code inside the for_s 
statement from the previous pipeline implementation with: S1 
# (S2%S3) #S4. By combining the pipelines with “if” 
statements, we can easily create some other kind of patterns 
like filters. 

If we consider that a distributed system could run multiple 
non-linear pipelines in parallel then an implementation in MPI 
needs to use the dynamic process spawning or a custom 
scheduler created by user. The simplest way to do it, using 
dynamic process spawning, has some disadvantages. First, we 
need separate code files/executable for each component or 
group of components from pipeline that needs to be executed 
on different processes. This makes the code hard to follow, in 
contrast to AGAPIA where we have the entire code in one file, 
together with the entire pipeline flow. A second issue that 
appears often in pipeline applications is the diversity of 
parameters and data sent between components of the pipeline. 
In MPI we need several calls to MPI_Send and MPI_Recv 
functions. In AGAPIA the parameters are serialized and sent 
automatically according to programs interfaces.  

E. Geometric Decomposition 

The Geometric Decomposition pattern breaks data into a 
set of subcollections. The purpose is to give this data to 
different processes for parallel execution. Sometimes, it is not 
necessary to transfer the data, like in the case of programming 
for a shared memory model. Stencil operations, which are 
used in image processing and simulations, are good examples 
of usage for this pattern. 

Below is an example of an image filter skeleton 
implementation in AGAPIA which uses a shared memory 
model. The “Decomposition” program is responsible for 
breaking data – in our example it gives to each process, an 
equal number of consecutive lines from the input image. The 
number of tasks in which we want to break the computation of 
filter over the image is decided in this program by a call to an 
external function defined by user and transmitted through the 
temporal interface further. The “Task” program is the one 
responsible for executing the given part of the image. 

.

.

.

.

.lineStart

nrLines
Task 

index i

 
Fig. 16. Image decomposition. 

Task

w, h, 

pixels []

Tasks[]

nt for_s

Filter

Decomposition

Computetasks

All  Task  modules can be executed in parallel.

Task Task......

 

Fig. 17. The flow of input and execution in AGAPIA. The programs are 
represented by rectangles and their name is in the top-left corner. 

Module Filter{listen nil}{read w:int, h:int, pixels:int[]} 
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{ 

 Decomposition 

 $ 

 ComputeTasks 

}{speak nil}{write nil} 

module Decomposition{listen nil}{read w:int, h:int, 
pixels:int[]} 

{ 

 nt = Utils::GetNbOfTasks(w,h); 

 for (int i = 0; i < nt; i++) 

 { 

  tasks@[i].lineStart= (h/nt) * i; 

  tasks@[i].nrLines= h/nt; 

} 

}{speak nt:int}{write tasks:(lineStart:int, nrLines:int);)* } 

module ComputeTasks{listen nt:int}  

{read tasks:(lineStart:int, nrLines;int);)* } 

{ 

 for_s (int  i = 0; i <  nt; i++) 

 { 

     Task 

 } 

}{speak nil}{write nil} 

If the user wants to solve this problem in the distributed 
case, then the only necessary change to the source code is to 
distribute the pixels data instead of line start and number of 
lines.  

An implementation in MPI will make the code more 
complicated because we need to serialize the parameter and 
image buffer and then scatter data from master to workers. 
Also, user has to split code in two flows for master and 
workers, be carefully with indices and to call the MPI_Scatter 
function on all processes that are doing tasks. 

F. Reduction and Scan 

A reduction combines every element in a collection into a 
single element using an associative combiner function [1]. 
Scan pattern computes all partial reductions in a collection.  

These two patterns could be used for a broad category  of 
applications, including numerical analysis (dot products and 
row-column products in matrix multiplication, convergence 
testing for linear equations, etc.) or image analysis. Because 
scan doesn’t differ too much in the AGAPIA implementation 
than reduction, only the reduction operation is presented 
here.Below is a reduction operation with an associative 
combiner function, implemented in AGAPIA. The tree has a 
span of      . 

 
Fig. 18. Tree reduction pattern for an associative combiner function. 

The program Reduce receives as input an array of 
processes each one having an integer value. Inside, it uses a 
program CombineFunc which receives as input two integers 
values and outputs a single one – the value resulted by 
combining the inputs. A simple example of combine function 
could be the addition of numbers. 

module Reduce{listen nil}{read v:(int;)*) } 

{ 

  for_t (int i = 1; i <=      ; i++) 

  { 

     for_s(j = 1; j <=   ; j++) 

     { 

           CombineFunc 

     } 

   } 

   ….. use the result here…. 

}{speak nil}{write nil} 

module ComputeFunc{ listen nil } { read a : int, b : int } 

{ 

 c = a + b; 

}{speak nil} { write c : int} 

In this case, the “for_t” will spawn levels one by one, 
while the “for_s”, will spawn all tasks needed for that level. 
All tasks on a level can be computed in parallel because there 
is no listen-speak dependency in the program “CombineFunc” 
(between tasks created at each level). On the other side, 
because of the read-write dependency, the computation 
respects the expected flow: the levels are guaranteed to be 
executed in the correct order. 

Reduce and Scan patterns are already implemented in 
AGAPIA and can be reutilized by users in order to improve 
the development process and the clearness of the code. They 
receive three parameters: the number of elements to 
reduce/scan, a module defining the function to combine the 
elements and a module defining the neutral element of the 
combination (needed when the number of elements is not a 
power of 2 - In addition to the implementation shown above, if 
the number of elements is not a power of 2 then we use this 
neutral element to add fictive elements until we get a power of 
2). For example the sum reduce presented above where the 
Source produces n items and Neutral produces a neutral 
element as output without receiving any input, can be defined 

mailto:tasks@[i].lineStart
mailto:tasks@[i].nrLines
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as: Source % Reduce(n, ComputeFunc, Neutral). Reduce will 
automatically adapt to the type of composition used and 
performs type checking for the input values, Neutral and 
ComputeFunc. 

MPI has two functions that implement these two patterns: 
MPI_Scan and MPI_reduce. However it has some slightly 
disadvantages compared to AGAPIA. First, we need to create 
a separate communication channel for all processes implied in 
the process of scan/reduce, then, these functions acts like a 
barrier and needs to be called in the right order on all those 
processes. These things can make the code difficult to 
understand in comparison with AGAPIA code, where the 
pattern help the user to keep a code closer to the natural way 
of the solution formulation. 

G. Wavefront pattern 

The Wave front pattern appears in programs with data 
elements laid out as multidimensional grids and which have 
data dependencies between elements that resemble a diagonal 
sweep. This is very common for dynamic programming 
problems or systolic algorithms. The temporal interface in 
AGAPIA makes the implementation of this pattern to be easy 
and clear. 

 
Fig. 19. Data dependencies for the longest-common-subsequence problem. 

To implement this pattern in AGAPIA we need first to 
analyze the data dependencies and make sure that we can send 
all data needed by a program through its north and west 
interfaces. For example, the longest-common-subsequence 
problem has a diagonal dependency. If we consider that each 
cell (or group of cells) is a program instance responsible for 
computing the formula, then we need to transfer somehow that 
diagonal element from F(i-1,j-1) to F(i,j). We can do this by 
sending first the item from F(i-1,j-1) to F(i-1,j) and then both 
data values from F(i-1,j) to F(i,j). 

In the distributed memory model we also need to distribute 
the characters of the two arrays A and B. Below is the main 
source code body (without initializations or data splitting). 
The “chA” and “chB” denotes the characters that each cell 
should compare when computing the value. 

for_t(int i = 0; i < n; i++) 

for_s(int j = 0; j < m; j++) 

        { 
ComputeCellValue 

} 

module ComputeCellValue{listen left:int, chA:int}  

{read up:int, diag:int, chB:int} 

{ 

// F[i][j] = max(F[i-1][j-1]+1*(A[i] == B[j]), 

//              F[i][j-1], F[i-1,j]); 

result = max( diag+1*(chA==chB), left, up); 

} 

{speak result:int,chA:int }{write result:int,result:int, chB:int} 
To implement this in MPI we have to create a scheduler by 

hand to compute the cells that are ready for execution – which 
takes some important time to code - or to use dynamic process 
spawn in MPI - but this has the same disadvantages as the 
previous examples. Splitting the code/executable for different 
cells computation and communication issues will transform an 
implementation in MPI into something much different that the 
simple sequential implementation and how to user thinks 
about the solution generally. In AGAPIA, after a cell is 
computed it sends the output further making other programs 
ready for execution. These will be automatically scheduled in 
the backend and the user concerns are just to use the correct 
recursion and initialization as in a sequential program. 

IV. AN EXAMPLE COMBINING MULTIPLE PATTERNS AND 

PERFORMANCE EVALUATION 

This section is dedicated to show a more complex example 
by using a combination of these patterns and to show how the 
AGAPIA implementation compares to the MPI one, in terms 
of performance, time of development and expressivity. The 
example used is composed from some of the patterns 
presented in the previous section: fork and join, scatter, gather, 
and a non-linear pipeline. The accent is put on the architecture 
of the application and how AGAPIA hides communication 
details and keeps a program modular and closer to how users 
thinks a solution. The low-level code of modules is not shown 
here due to space constraints, but it is the same code that we 
use in C\C++ language in order to implement those operations. 

The problem discussed here is how to implement a 
distributed system which accepts two types of tasks from 
clients:  text and image searching through some resources 
available on a predefined network address. These resources 
are books - for text searching - and images for image 
searching. We consider that each resource has an associated 
index. As a result, clients should receive back the index where 
the highest similarity occurred when comparing the user data 
to the network resource data. 

The code given below begins with two definitions: the 
“userTask” type used to store data given to compare, the type 
and the client address (IP address considered as an integer). 
The MAIN module is the entry point of the application. It has 
as temporal input type an array of processes each of type 
“userTask”.  The while_t construct will create a 
SOLVE_TASK module each time a new userTask is available 
in the temporal side. As the SOLVE_TASK interfaces are 
defined, there is no dependency between consecutive iterations 
of the while_t statement. Given this, multiple SOLVE_TASK 
modules can run in parallel. Inside this module, there is a 
conditional statement which checks the type of the task. If it is 
a text request then it creates the SEARCH_TEXT module, 
otherwise if it is an image then SEARCH_IMG module it is 
created.  

SEARCH_TEXT and SEARCH_IMG modules are similar 
in terms of structure, so only the code for the first one is 
shown here. This module receives a task from the parent 
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module (SOLVE_TASK) in the temporal side. Inside of it, the 
first step is to create an array with N jobs description, in 
module CREATE_ARRAY_OF_TASKS which splits the 
indices to search on for each task in equally parts. These jobs 
are scattered to the N modules instances that are created by the 
for_s statement. After this step, jobs can be executed in 
parallel, the background scheduler assigning them to workers 
as soon as they get idle. After a module that performs the job 
finishes the execution on a worker, it will serialize the data 
declared in the module’s output interface and send it back to 
master which coordinates the resulted data through the 
program’s graph. 

The REDUCE operations acts like a “join”, waiting for all 
to complete then launch a classical max-reduce operation in 
order to find the index with the highest similarity. The results 
are then sent in the SEND_RESULTS module which uses a 
parameter from local stack of the parent module. 

struct userTask{ data : buffer,  addr:int type : int } 

#define N 16*4 

module MAIN { listen tasks : (userTask;)* }{ read nil } 

{ 

 while_t(true) 

 { 

  SOLVE_TASK 

 } 

}{ speak nil } {write nil } 

module SOLVE_TASK { listen task : userTask } 

{ 

 if (task.type  == TEXT) 

 { 

  SEARCH_TEXT 

}  

 else if (task.type == IMAGE) 

 { 

  SEARCH_IMG 

} 

} { speak nil } {write nil } 

module SEARCH_TEXT { listen task : userTask} 

{ 

 CREATE_ARRAY_OF_TASKS  

% 

SCATTER(N) 

% 

for_s (N) { TEXT_SIMILARITY } 

%  

REDUCE(N, MAXOP, NEUTRALOP) 

% 

SEND_RESULTS(task.addr) 

}{ speak nil } { write nil } 

Module TEXT_SIMILARITY is using a classical edit-
distance implementation to compare the given text with each 
paragraph of the book. Images are compared inside module 
IMG_SIMILARITY (similar in structure with 
TEXT_SIMILARITY). The comparison is done using 
OpenCV library functions for comparing histograms. At any 
time, a user can change these two modules in order to 
implement other methods. The only requirement is to keep the 
same input/output interfaces demonstrating this way the 
modularity of the language.  

In terms of development productivity and code size the 
AGAPIA implementation performs better than the 
corresponding MPI version because: 

 The communication is transparent, the user doesn’t 
need to write specific primitives for sending/   
receiving data 

 By having the scheduler already implemented in the 
background there is no need to create a complicated 
scheduler by hand as the MPI implementation needs in 
order to compute the similarity jobs. 

 Faster development time because a user can write the 
code closer to how he thinks the solution. 

 Better modularity and less error prone than MPI. User 
can change at any time a module implementation just 
by keeping the correct interfaces. It is less error-prone 
because of the transparent communication model and 
modularity.   

The cost of using AGAPIA in terms of performance is 
minor. Because the atomic module's code are compiled and 
linked directly as C\C++ code there is no performance 
difference when executing them. The only additional cost 
comes from the coordination. The coordination is internally 
optimized to avoid unnecessary data copies and it generally 
uses references when coordination happens on the same 
machine. At this point users must be carefully to avoid big 
data flow between modules if this is not needed. An example 
is the CREATE_ARRAY_OF_TASKS which is atomic and 
this means it can be executed by any workers. This module 
does very little inside: it just sets indices and data for each job. 
Watching the global flow it makes no sense to execute this on 
workers. If we add @MASTER near the module declaration, 
and considering that SCATTER will also execute on master 
then we avoid copying a big data chunk representing a task to 
a worker just for splitting and setting some values. 

Table 1 shows the compared result of executing a bunch of 
tasks generated at once on programs implemented in AGAPIA 
and MPI. The time to finish for all tasks and the additional 
memory footprint, excluding the memory used for storing task, 
is compared. Ideally we should get minimal performance and 
memory impact by using AGAPIA language. 
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TABLE I. COMPARATIVE RESULTS OF EXECUTION TIME AND MEMORY 

FOOTPRINT 

Solution 
Time to finish all 
tasks (seconds) 

Memory footprint (excluding the 
memory used for storing tasks) 

MPI 114.87 1756 

AGAPIA 115.34 1911 

 
The simulation was run using 64 processes on a local 

network and involving 8 different machines. Results show that 
the performance penalty of using AGAPIA implementation is 
small while the benefits given by productivity and modularity 
of the application are big enough to recommend its usage.  

V. 7. CONCLUSION AND FUTURE WORK 

This paper presented well-known parallel programming 
patterns and how they can be implemented in AGAPIA 
language. This is just a small subset of patterns that can be 
implemented in this language. By using and combining them 
and with the help of the transparent communication model that 
it provides, we can create highly structured parallel programs 
that are easy to write, modular and less error prone. All this 
advantages are given by language semantics, high level 
composition statements and its temporal interface. One of the 
future improvements for AGAPIA is to study the possibility of 
tasks cancelation and to improve the scheduling algorithm by 
adding priorities or GPU processing. An important point to 
focus on is to study in deep some categories of applications 
that can take advantage by using AGAPIA language. 
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