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Abstract—Online shopping has become increasingly popular
in recent years. More and more people are willing to buy products
through Internet instead of physical stores. For promotional
purposes, almost all online merchants provide product recom-
mendations to their returning customers. Some of them ask
professional recommendation service providers to help develop
and maintain recommender systems while others need to share
their data with similar shops for better product recommendations.
There are two issues, (1) how to protect customers’ privacy while
retaining data utility before they release the data to the third
parties; (2) based on (1), how to handle data growth efficiently.

In this paper, we propose a NMF (Nonnegative Matrix
Factorization)-based data update approach in collaborative filter-
ing (CF) that solves the problems. The proposed approach utilizes
the intrinsic property of NMF to distort the data for protecting
user’s privacy. In addition, the user and item auxiliary infor-
mation is taken into account in incremental nonnegative matrix
tri-factorization to help improve the data utility. Experiments on
three different datasets (MovieLens, Sushi and LibimSeTi) are
conducted to examine the proposed approach. The results show
that our approach can quickly update the new data and provide
both high level privacy protection and good data utility.

Keywords—auxiliary information; collaborative filtering; data
growth; nonnegative matrix factorization; privacy

I. INTRODUCTION

The emergence of E-commerce not only helps sellers save
resources and time but also facilitates online transactions.
Different kinds of promotions have been adopted by merchants
to advertise their products. Conventional stores usually present
popular products, e.g., batteries, gift cards, and magazines
at the checkout line besides offering discounts, which is a
typical way of product recommendations. For returning cus-
tomers, online stores are far superior with respect to product
recommendation since they use users’1 purchase history in
recommender system to achieve accurate recommendation.
The so called recommender system is a program that utilizes
algorithms to predict users’ purchase interests by profiling their
shopping patterns. Most popular recommender systems utilize
CF techniques, e.g., item/user correlation based CF [22], SVD
(Singular Value Decomposition) based latent factor CF [24],

1The terms “customer” and “user” will be used interchangeably as they
refer to the same thing in this context. Same convention applies to “product”
and “item”.

and NMF (Nonnegative Matrix Factorization) based CF [34],
[4].

In many online recommender systems, it is inevitable for
data owners to expose their data to other parties. For instance,
due to the lack of easy-to-use technology, some online mer-
chants buy services from professional recommendation service
providers to help build their recommender systems. In addition,
many shops share their real time data with partners for better
product recommendations. Such examples include two or more
online book stores that sell similar books, and online movie
rental websites that have similar movies in their systems. In
these scenarios, exposed data can cause privacy leakage of
user information if no preprocessing is done. Typical privacy
information includes the ratings of a user left on particular
items and on which items that this user has rated. People
would not like others (except the website where they purchased
the products because they have no choice) to know what
they are interested in and to what extent they like or dislike
the items. This is the most fundamental privacy problem in
collaborative filtering. Thus privacy preserving collaborative
filtering algorithms [3], [21], [19] were proposed to tackle the
problem.

Most CF algorithms work on user-item rating matrices to
make recommendations. These numerical matrices store user’s
ratings on particular items, typically with users corresponding
to the rows and items corresponding to the columns. In general,
the rating matrices are very sparse, meaning that there are lots
of missing values. Therefore, two tasks need to be done before
a data owner (merchant) releases the data to a third party:
missing value imputation and data perturbation2.

Furthermore, data owners are responsible for efficiently
handling the fast growth of data. Once new data arrives, data
owners need to perform incremental data update and send the
imputed and perturbed data to the third parties. To this end,
Wang and Zhang[30] proposed an SVD-based privacy pre-
serving data update scheme to handle data growth efficiently
and preserve privacy as well. Nevertheless, their SVD-based
update scheme has a few deficiencies: (1) The SVD algorithm

2Data perturbation is a form of privacy-preserving data mining technique. It
falsifies the data before publication by introducing error to elements purposely
for confidentiality reasons [8]. Data perturbation is widely used in collaborative
filtering for privacy preservation.
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cannot be applied to incomplete matrix so missing values
imputation is required. Choosing a good imputation method
is not quite straightforward and it is dependant on different
datasets. (2) The update scheme only utilizes the rating data
while ignores other auxiliary information. It is known that in
some datasets, e.g., MovieLens dataset [24], Sushi preference
dataset [12] and LibimSeTi Dating Agency (LibimSeTi for
short) dataset [2], auxiliary information of users or items,
e.g., user’s demographic data, item’s categorical data, is also
provided. This information, if properly used, can improve the
recommendation accuracy especially when the original rating
matrix is extremely sparse. (3) The time complexity of their
method contains a cubic term with respect to the number of
new rows or columns. It is a potentially expensive factor in the
update process, especially when a large amount of new data
comes in.

In this paper, we propose a NMF-based data update ap-
proach that solves the issues. The approach, named iAux-
NMF is based on the incremental nonnegative matrix tri-
factorization algorithms [7]. We start with computing the
weighted and constrained nonnegative matrix tri-factorization
for the original sparse rating matrix (with a lot of missing
values), utilizing both the rating matrix itself and the auxiliary
information. The factor matrices of NMF are then used to
approximate the original rating matrix with missing values
imputed. Meanwhile, the data is automatically perturbed due
to the intrinsic properties of NMF [29]. For new data, iAux-
NMF is performed to produce imputed and perturbed data.
This process can conceal which items the users have rated as
there is no more missing entries and disguise the true rating
values since the processed ratings and the original ones are
different. By doing so, even though the third party has this data
in its hand, it does not know which ratings it can trust or to
what extent it can trust. Therefore, user’s privacy is protected.

We examine our approach in several aspects: (1) correct-
ness of the approximated rating matrix, (2) clustering analysis
on the approximated rating matrix for investigating user rating
distribution, (3) privacy level of the approximated rating ma-
trix, (4) time cost of the algorithms, and (5) parameter study.
The results demonstrate that our approach imputes and perturbs
the new data in a timely manner with satisfying privacy level
and high data utility (less compromised data accuracy). The
processed data is also reasonable from the clustering point of
view.

The contributions of this paper are threefold:

1) No particular missing value imputation methods re-
quired during the data update;

2) Incorporating auxiliary information into the update
process to improve data utility;

3) Higher data update efficiency.

The remainder of this paper is organized as follows. Section
II gives the related work. Section III defines the problem and
related notations. Section IV describes the main idea of the
proposed approach. Section V presents the experiments and
discusses the results. Some concluding remarks and future
work are given in VI.

II. RELATED WORK

Privacy preserving data update was first studied by Wang
et al.[28] who presented a data value hiding method for
clustering algorithms based on incremental SVD technique
[26]. Their method can produce a significant increase in speed
for the SVD-based data value hiding model, better scalability,
and better real-time performance of the model. Motivated by
their work, Wang and Zhang[30] incorporated the missing
value imputation and randomization-based perturbation as well
as a post-processing procedure into the incremental SVD to
update the new data with privacy preservation in collaborative
filtering.

Besides SVD, NMF has also been studied in collaborative
filtering. Zhang et al.[34] applied NMF to collaborative fil-
tering to learn the missing values in the rating matrix. They
compared an expectation maximization (EM) based procedure
(using NMF as its solution) with the weighted nonnegative
matrix factorization (WNMF) based method which was pre-
viously applied to missing value imputation in matrix of
network distances [18]. By integrating the advantages of both
algorithms, they presented a hybrid method and demonstrated
its effectiveness on real datasets. Chen et al.[4] proposed an
orthogonal nonnegative matrix tri-factorization (ONMTF) [7]
based collaborative filtering algorithm. Their algorithm also
took into account the user similarity and item similarity. Our
approach is generally based on the nonnegative matrix tri-
factorization (NMTF) but we add further constraints to the
objective function.

NMF with additional constraints has been applied to
different fields. Li et al.[16] proposed nonnegative matrix
factorization with orthogonality constraints for detection of a
target spectrum in a given set of Raman spectra data. Hoyer et
al.[10] extended NMF by adding a sparsity-inducing penalty
to the objective function to include the option for explicit
sparseness control. Ferdowsi et al.[9] proposed a constrained
NMF algorithm for separation of active area in the brain from
fMRI. In their work, prior knowledge of the sensory stimulus
is incorporated into standard NMF to find new update rules
for the decomposition process.

Thapa et al.[25] proposed explicit incorporation of the ad-
ditional constraint, called “clustering constraint”, into NMF in
order to suppress the data patterns in the process of performing
the matrix factorization. Their work is based on the idea that
one of the factor matrices in NMF contains cluster membership
indicators. The clustering constraint is another indicator matrix
with altered class membership in it. This constraint then guides
NMF in updating factor matrices. Enlightened by that paper,
we convert users’ and items’ auxiliary information into cluster
membership indicator matrices and apply them to NMTF as
additional constraints. We do not hide data pattern, but update
factor matrices in a more reasonable way for better missing
value imputation.

III. PROBLEM DESCRIPTION

Assume the data owner has three matrices: a sparse user-
item rating matrix (denoted by R ∈ Rm×n), a user feature
matrix (denoted by FU ∈ Rm×kU ), and an item feature matrix
(denoted by FI ∈ Rn×kI ), where there are m users, n items,
kU user features, and kI item features. An entry rij in R
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represents the rating left on item j by user i. The valid range
of rating value varies from website to website. Some use the
1 ∼ 5 scale with 1 as the lowest rating (most disliked) and 5
as the highest rating (most favorated) while some others use
the −10 ∼ 10 scale with -10 as the lowest rating, 0 as neutral
rating, and 10 as the highest rating.

The original rating matrix contains the real rating values
left by users on items, which means it can be used to identify
the shopping patterns of users. These patterns can reveal some
user privacy, so releasing the original rating data without any
privacy protection will cause the privacy breach. One possible
way to protect the user privacy before releasing the rating
matrix is to impute the matrix and then perturb it. In this
procedure, imputation estimates the missing ratings as well as
conceals the user preference on particular items (no missing
value means there is no way to tell which items have been
rated by users since all items are marked as rated.) while the
perturbation distorts the ratings so that user’s preferences on
particular items are blurred.

As for the user feature matrix FU and item feature matrix
FI , they contain users’ and items’ information, respectively.
They are taken into account to help impute the missing entries
in rating matrix for better accuracy. The processed (imputed
and perturbed) matrix, denoted by Rr ∈ Rm×n is the one that
will be handed over to the third party.

When new users’ transactions arrive, the new rows (each
row contains the ratings left on items by the corresponding
user), denoted by T ∈ Rp×n, should be appended to the origi-
nal matrix R. Meanwhile, this new users’ auxiliary information
is also available, and thus the feature matrix is updated as well,
i.e., [

R
T

]
→ R′

[
FU

∆FU

]
→ F ′U (1)

where ∆FU ∈ Rp×kU .

Similarly, when new items arrive, the new columns (each
column contains the ratings left by users on the corresponding
item), denoted by G ∈ Rm×q , should be appended to the
original matrix R, so should the item feature matrix, i.e.,

[ R G ]→ R′′,

[
FI

∆FI

]
→ F ′I (2)

where ∆FI ∈ Rq×kI .

To protect users’ privacy, the new rating data must be
processed before it is released. We use Tr ∈ Rp×n to denote
the processed new rows and Gr ∈ Rm×q for processed new
columns.

IV. USING IAUX-NMF FOR PRIVACY PRESERVING DATA
UPDATE

In this section, we will introduce the iAux-NMF (incre-
mental auxiliary nonnegative matrix factorization) algorithm
and its application in incremental data update with privacy
preservation.

A. Aux-NMF

While iAux-NMF deals with the incremental data update,
we want to present the non-incremental version, named Aux-
NMF beforehand. This section is organized as follows: de-
veloping the objective function, deriving the update formula,
convergence analysis, and the detailed algorithm.

1) Objective Function: Nonnegative matrix factorization
(NMF)[15] is a widely used dimension reduction method in
many applications such as clustering [7], [13], text mining [31],
[20], image processing and analysis [33], [23], data distortion
based privacy preservation [11], [25], etc. NMF is also applied
in collaborative filtering to make product recommendations
[34], [4].

A conventional NMF is defined as follows [15],

Rm×n ≈ Um×k · V Tn×k (3)

The goal is to find a pair of orthogonal nonnegative matrices U
and V (i.e., UTU = I, V TV = I) that minimize the Frobenius
norm (or Euclidean norm) ‖R − UV T ‖F . It comes up with
the objective function

minU≥0,V≥0f(R,U, V ) = ‖R− UV T ‖2F (4)

In this paper, we want to develop a NMF-based matrix
factorization technique which takes into account the weight
and constraint. It is expected to preserve the data privacy by
imputing and perturbing the values during its update process.

It is worth noting that one of the significant distinctions
between collaborative filtering data and other data is the
missing value issue. One user may have rated only a few items
and one item may receive only a small number of ratings. It
results in a very sparse rating matrix which cannot be simply
fed to the matrix factorization algorithms, such as SVD and
NMF. Those missing values should be imputed properly during
the pre-processing step. Existing imputation methods include
random value imputation, mean value imputation [24], EM
(Expectation Maximization) imputation [5], [32], and linear
regression imputation [27], etc. Nevertheless, all of them
require extra time to compute the missing values. In contrast,
weighted NMF (WNMF) [34] can work with sparse matrix
without separate imputation.

Given a weight matrix W ∈ Rm×n that indicates the value
existence in the rating matrix R (see Eq. (6)), the objective
function of WNMF is

minU≥0,V≥0f(R,W,U, V ) = ‖W ◦ (R− UV T )‖2F (5)

where ◦ denotes the element-wise multiplication.

wij =

{
1 if rij 6= 0
0 if rij = 0

(wij ∈W, rij ∈ R) (6)

When WNMF converges, R̃ = UV T is the matrix with all
missing entries filled. Since the residual exists, R̃ is different
from R, making it a perturbed version of R. As we stated in
Section I, users do not want their privacy, i.e., their ratings
left on particular items and on which items they have rated,
to be released to other people. In WNMF, both of them are
protected.

(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 5, No. 4, 2014 

226| P a g e  
www.ijacsa.thesai.org 



In [6], Ding et al. showed the equivalency between NMF
and K-Means clustering. When given a matrix R with objects
as rows and attributes as columns, the two matrices U and V
produced by NMF on R describe the clustering information
of the objects: each column vector of U , ui, can be regarded
as a basis and each data point ri is approximated by a linear
combination of these k bases, weighted by the components of
V [17], where k is the rank of factor matrices. Thus the objects
are grouped into clusters in terms of matrix U .

However, in some cases, the data matrix R can represent
relationships between two sorts of objects, e.g., a user-item
rating matrix in collaborating filtering applications and a term-
document matrix in text mining applications. It is expected
that both row (user/term) clusters and column (item/document)
clusters can be obtained by performing NMF on R. Due
to the intrinsic property of NMF, it is very difficult to find
two matrices U and V that represent user clusters and item
clusters respectively at the same time. Hence, an extra factor
matrix is needed to absorb the different scales of R, U , V for
simultaneous row clustering and column clustering [7]. Eq.
(7) gives the objective function of NMTF(Nonnegative Matrix
Tri-Factorization).

minU≥0,S≥0,V≥0f(R,U, S, V ) = ‖R− USV T ‖2F (7)

where U ∈ Rm×k, S ∈ Rk×l, and V ∈ Rn×l (U and V are
orthogonal matrices).

The use of S brings in a large scale of freedom for U
and V so that they can focus on row and column clustering
and preserve more privacy during the factorization process. In
this scheme, both U and V are cluster membership indicator
matrices while S plays the role of coefficient matrix. Note
that objects corresponding to rows in R are clustered into k
groups and objects corresponding to columns are clustered into
l groups.

With auxiliary information of users and items, we can
convert the NMTF to a supervised learning process by applying
cluster constraints to the objective function (7), i.e.,

minU≥0,S≥0,V≥0f(R,U, S, V, CU , CI) =

α · ‖R− USV T ‖2F + β · ‖U − CU‖2F
+ γ · ‖V − CI‖2F

(8)

where α, β, and γ are coefficients that control the weight of
each part. CU and CI are user cluster matrix and item cluster
matrix. They are obtained by running K-Means clustering
algorithm on user feature matrix FU and item feature matrix
FI as mentioned in Section III.

Combining (5) and (8), we develop the objective func-
tion for weighted and constrained nonnegative matrix tri-
factorization, as

minU≥0,S≥0,V≥0f(R,W,U, S, V, CU , CI) =

α · ‖W ◦ (R− USV T )‖2F + β · ‖U − CU‖2F
+ γ · ‖V − CI‖2F .

(9)

We name this matrix factorization Aux-NMF, indicating that
it incorporates the user/item auxiliary information into the
factorization.

2) Update Formula: In this section, we illustrate the deriva-
tion of update formulae for Aux-NMF.

Let L = f(R,W,U, S, V, CU , CI), X = ‖W ◦ (R −
USV T )‖2F , Y = ‖U − CU‖2F , and Z = ‖V − CI‖2F . Take
derivative of X with respect to U , S, and V :

∂X

∂U
= −2(W ◦R)V ST + 2W ◦ (USV T )V ST (10)

∂X

∂S
= −2UT (W ◦R)V + 2UT [W ◦ (USV T )]V (11)

∂X

∂V
= −2(W ◦R)TUS + 2[W ◦ (USV T )]TUS (12)

Take derivative of Y with respect to U , S, and V :

∂Y

∂U
= 2U − 2CU ,

∂Y

∂S
=
∂Y

∂V
= 0 (13)

Take derivative of Z with respect to U , S, and V :

∂Z

∂U
=
∂Z

∂S
= 0,

∂Z

∂V
= 2V − 2CI (14)

Using (10) to (14), we get the derivatives of L:

∂L

∂U
= 2α[W ◦ (USV T )]V ST + 2βU

− 2α(W ◦R)V ST − 2βCU

(15)

∂L

∂V
= 2α[W ◦ (USV T )]TUS + 2γV

− 2α(W ◦R)TUS − 2γCI

(16)

∂L

∂S
= 2αUT [W ◦ (USV T )]V

− 2αUT (W ◦R)V
(17)

To obtain update formula, we use the Karush-Kuhn-Tucker
(KKT) complementary condition [14] for the nonnegativity of
U , S, and V . We have

{2α[W ◦ (USV T )]V ST + 2βU

− 2α(W ◦R)V ST − 2βCU}ijUij = 0
(18)

{2α[W ◦ (USV T )]TUS + 2γV

− 2α(W ◦R)TUS − 2γCI}ijVij = 0
(19)

{2αUT [W ◦ (USV T )]V − 2αUT (W ◦R)V }ijSij = 0 (20)

They give rise to the corresponding update formulae:

Uij = Uij ·
[α(W ◦R)V ST + βCU ]ij

{α[W ◦ (USV T )]V ST + βU}ij
(21)

Vij = Vij ·
[α(W ◦R)TUS + γCI ]ij

{α[W ◦ (USV T )]TUS + γV }ij
(22)

Sij = Sij ·
[UT (W ◦R)V ]ij

{UT [W ◦ (USV T )]V }ij
(23)

Assume k, l � min(m,n), the time complexities of updating
U , V , and S in each iteration are all O(mn(k + l)). There-
fore, the time complexity of Aux-NMF in each iteration is
O(mn(k + l)).
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3) Convergence Analysis: We follow [15] to prove that
the objective function L is nonincreasing under the update
formulas (21), (22), and (23).

Definition 1: H(u, u′) is an auxiliary function for F (u) if
the conditions

H(u, u′) ≥ F (u), H(u, u) = F (u) (24)

are satisfied.

Lemma 1: If H is an auxiliary function for F , then F is
nonincreasing under the update

ut+1 = argmin
u

H(u, ut) (25)

Lemma 1 can be easily proved since we have F (ut+1) =
H(ut+1, ut+1) ≤ H(ut+1, ut) ≤ H(ut, ut) = F (ut).

We will prove the convergences of the update formulas
(21), (22), and (23) by showing that they are equivalent to
(25), with proper auxiliary functions defined.

Let us rewrite the objective function L,

L = tr[α(W ◦R)T · (W ◦R)]

+ tr{−2α(W ◦R)T · [W ◦ (USV T )]}
+ tr{α[W ◦ (USV T )]T · [W ◦ (USV T )]}
+ tr(βUTU) + tr(−2βUTCU ) + tr(βCTUCU )

+ tr(γV TV ) + tr(−2γV TCI) + tr(γCTI CI)

(26)

where tr(∗) is the trace of a matrix.

Eliminating the irrelevant terms, we define the following
functions that are only related to U , V , and S, respectively.

L(U) = tr{−2α(W ◦R)T · [W ◦ (USV T )]

+ α[W ◦ (USV T )]T · [W ◦ (USV T )]

+ βUTU − 2βUTCU}
= tr{[−2[α(W ◦R)V ST + βCU ]UT

+ UT [αW ◦ (USV T )V ST ] + UT (βU)}

(27)

L(V ) = tr{−2α(W ◦R)T · [W ◦ (USV T )]

+ α[W ◦ (USV T )]T · [W ◦ (USV T )]

+ γV TV − 2γV TCI

= tr{[−2[α(W ◦R)TUS + γCI ]V
T

+ V T [α(W ◦ (USV T ))TUS] + V T (γV )}

(28)

L(S) = tr{−2α(W ◦R)T · [W ◦ (USV T )]

+ α[W ◦ (USV T )]T · [W ◦ (USV T )]

= tr{[−2αUT (W ◦R)V ]ST

+ [αUT (W ◦ (USV T ))V ]ST }

(29)

Lemma 2: For any matrices X ∈ Rn×n+ , Y ∈ Rk×k+ , F ∈
Rn×k+ , F ′ ∈ Rn×k+ , and X , Y are symmetric, the following
inequality holds

n∑
i=1

k∑
j=1

(XF ′Y )ijF
2
ij

F ′ij
≥ tr(FTXFY ) (30)

The proof of Lemma 2 is presented in [7]. We will use
this lemma to build an auxiliary function for L(U) (since
it is similar to L(V ) and L(S), we will not discuss the
convergences for them).

Lemma 3:

H(U,U ′) =− 2
∑
ij

{[α(W ◦R)V ST + βCU ]UT }ij

+
∑
ij

(αW ◦ (U ′SV T )V ST + βU ′)ijU
2
ij

U ′ij

(31)

is an auxiliary function of L(U) and the global minimum of
H(U,U ′) can be achieved by

Uij = U ′ij ·
[α(W ◦R)V ST + βCU ]ij

{α[W ◦ (U ′SV T )]V ST + βU ′}ij
(32)

Proof: We need to prove two conditions as specified in
Definition 1. It is apparent that H(U,U) = L(U). According
to Lemma 2, we have∑

ij

(αW ◦ (U ′SV T )V ST + βU ′)ijU
2
ij

U ′ij

=
∑
ij

(αW ◦ (U ′SV T )V ST )ijU
2
ij

U ′ij
+
∑
ij

(βU ′)ijU
2
ij

U ′ij

≥ tr{UT [αW ◦ (USV T )V ST ]}+ tr[UT (βU)]

(33)

I.e., H(U,U ′) ≥ L(U). Thus H(U,U ′) is an auxiliary function
of L(U).

To find the global minimum of H(U,U ′) with U ′ fixed,
we take derivative of H(U,U ′) with respect to Uij and let it
be zero:

∂H(U,U ′)

∂Uij
= {−2[α(W ◦R)V ST + βCU ]}ij

+ 2
(αW ◦ (U ′SV T )V ST + βU ′)ijUij

U ′ij
= 0

(34)

Solving for Uij , we have

Uij = U ′ij ·
[α(W ◦R)V ST + βCU ]ij

{α[W ◦ (U ′SV T )]V ST + βU ′}ij
(35)

Since the Hessian matrix ∂2H(U,U ′)/∂Uij∂Ukl is positive
definite, H(U,U ′) is a convex function and the minimum
obtained by Eq. (35) is also the global minimum.

Similarly, the convergences of update formulas (23) and
(22) can be proved as well.

4) Detailed Algorithm: In this section, we present the spe-
cific algorithm for Aux-NMF in collaborating filtering which
is the basis of incremental Aux-NMF.

Algorithm 1 depicts the whole process of performing Aux-
NMF on a rating matrix.

Though Aux-NMF will eventually converge to a local
minimum, it may take hundreds or even thousands of iterations.
In our algorithm, we set an extra stop criterion - the maximum
iteration counts. In collaborative filtering, this value varies
from 10 ∼ 100 and can generally produce good results.
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Algorithm 1 Aux-NMF

Require:
User-Item rating matrix: R ∈ Rm×n;
User feature matrix: FU ∈ Rm×kU ;
Item feature matrix: FI ∈ Rn×kI ;
Column dimension of U: k;
Column dimension of V: l;
Coefficients in objective function: α, β, and γ;
Number of maximum iterations: MaxIter.

Ensure:
Factor matrices: U ∈ Rm×k, S ∈ Rk×l, V ∈ Rn×l;
User cluster membership indicator matrix: CU ∈ Rm×k;
Item cluster membership indicator matrix: CI ∈ Rn×l;
User cluster centroids: CentroidsU ;
Item cluster centroids: CentroidsI ;

1: Cluster users into k groups based on FU by K-Means
algorithm → CU , CentroidsU ;

2: Cluster items into l groups based on FI by K-Means
algorithm → CI , CentroidsI ;

3: Initialize U , S, and V with random values;
4: Build weight matrix W by Eq. (6);
5: Set iteration = 1 and stop = false;
6: while (iteration < MaxIter) and (stop == false) do
7: Uij ← Uij · [α(W◦R)V ST +βCU ]ij

{α[W◦(USV T )]V ST +βU}ij ;

8: Vij ← Vij · [α(W◦R)TUS+γCI ]ij
{α[W◦(USV T )]TUS+γV }ij ;

9: Sij ← Sij · [UT (W◦R)V ]ij
{UT [W◦(USV T )]V }ij ;

10: L← α · ‖W ◦ (R−USV T )‖2F + β · ‖U −CU‖2F + γ ·
‖V − CI‖2F ;

11: if (L increases in this iteration) then
12: stop = true;
13: Restore U , S, and V to their values in last iteration.
14: end if
15: end while
16: Return U, S, V, CU , CI , CentroidsU , and CentroidsI .

B. iAux-NMF

As discussed in Section III, new data can be regarded as
new rows or new columns in the matrix. They are imputed and
perturbed by iAux-NMF (incremental Aux-NMF) with the aid
of U, S, V, CU , CI , CentroidsU , and CentroidsI generated
by Algorithm 1.

iAux-NMF is technically the same as Aux-NMF, but fo-
cuses on a series of new rows or new columns. Hence, in this
section we will describe the incremental case of Aux-NMF by
row update and column update separately.

R
Original 

User-Item  
matrix

U
S VT× ×Aux-NMF

TNew users ΔU

Rr

m×n

p×n

m×k

p×k

k×l l×n

m×n

Tr p×n

rR
~

Fig. 1: Updating New Rows in iAux-NMF

1) Row/User Update: In Eq. (1), we see that T ∈ Rp×n is
added to R as a few rows. This process is illustrated in Fig. 1.
T should be imputed and perturbed before being released. As

we did in Section IV-A1, the objective function is developed
here, i.e.,

min∆U≥0f(T,WT ,∆U, S, V,∆CU ) =

α · ‖WT ◦ (T −∆USV T )‖2F + β · ‖∆U −∆CU‖2F
(36)

As in Section IV-A2, we obtain the update formula for this
objective function, as

∆Uij = ∆Uij ·
[α(WT ◦ T )V ST + β∆CU ]ij

{α[WT ◦ (∆USV T )]V ST + β∆U}ij
(37)

Convergence of (37) can be proved similarly as in Section
IV-A3. Since row update only works on new rows, the time
complexity of the algorithm in each iteration is O(pn(l+k)+
pkl). Assume k, l � min(p, n), the time complexity is then
simplified to O(pn(l + k).

Algorithm 2 illustrates the row update in iAux-NMF.

Algorithm 2 iAux-NMF for Row Update

Require:
New rating data: T ∈ Rp×n;
New user feature matrix: ∆FU ∈ Rp×kU ;
Coefficients in objective function: α, β, and γ;
Factor matrices: U ∈ Rm×k, S ∈ Rk×l, V ∈ Rn×l;
User cluster membership indicator matrix: CU ∈ Rm×k;
User cluster centroids: CentroidsU ;
Number of maximum iterations: MaxIter.

Ensure:
Updated factor matrix: U ′ ∈ R(m+p)×k;
Updated user cluster membership indicator matrix: C ′U ∈
R(m+p)×k;
Updated user cluster centroids: Centroids′U ;
Imputed and perturbed new data: Tr ∈ Rp×n;

1: Cluster new users into k groups based on ∆FU
and CentroidsU by K-Means algorithm → ∆CU ,
Centroids′U ;

2: Initialize ∆U ∈ Rp×k with random values;
3: Build weight matrix WT by Eq. (6);
4: Set iteration = 1 and stop = false;
5: while (iteration < MaxIter) and (stop == false) do
6: ∆Uij ← ∆Uij · [α(WT ◦T )V ST +β∆CU ]ij

{α[WT ◦(∆USV T )]V ST +β∆U}ij
7: L← α · ‖WT ◦ (T −∆USV T )‖2F +β · ‖∆U−∆CU‖2F ;
8: if (L increases in this iteration) then
9: stop = true;

10: Restore U ′ to its value in last iteration.
11: end if
12: end while
13: Append ∆CU to CU → C ′U ;
14: Append ∆U to U → U ′;
15: Calculate ∆USV T → Tr;
16: Return U ′, C ′U , Centroids

′
U , and Tr.

2) Column/Item Update: Column update is almost identical
to row update. When new data G ∈ Rm×q arrives, they are
updated by Algorithm 3. The time complexity for column
update is O(qm(l + k).
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Algorithm 3 iAux-NMF for Column Update

Require:
New rating data: G ∈ Rm×q;
New item feature matrix: ∆FI ∈ Rq×kI ;
Coefficients in objective function: α, β, and γ;
Factor matrices: U ∈ Rm×k, S ∈ Rk×l, V ∈ Rn×l;
Item cluster indicator membership matrix: CI ∈ Rn×l;
Item cluster centroids: CentroidsI ;
Number of maximum iterations: MaxIter.

Ensure:
Updated factor matrix: V ′ ∈ R(n+q)×l;
Updated item cluster membership indicator matrix: C ′I ∈
R(n+q)×l;
Updated item cluster centroids: Centroids′I ;
Imputed and perturbed new data: Gr ∈ Rm×q;

1: Cluster new items into l groups based on ∆FI and
CentroidsI by K-Means algorithm→ ∆CI , Centroids′I ;

2: Initialize ∆V ∈ Rq×l with random values;
3: Build weight matrix WG by Eq. (6);
4: Set iteration = 1 and stop = false;
5: while (iteration < MaxIter) and (stop == false) do
6: ∆Vij ← ∆Vij · [α(WG◦G)TUS+γ∆CI ]ij

{α[WG◦(US∆V T )]TUS+γ∆V }ij
7: L← α · ‖WG ◦ (G−US∆V T )‖2F +γ · ‖∆V −∆CI‖2F ;
8: if (L increases in this iteration) then
9: stop = true;

10: Restore V ′ to its value in last iteration.
11: end if
12: end while
13: Append ∆CI to CI → C ′I ;
14: Append ∆V to V → V ′;
15: Calculate US∆V T → Gr;
16: Return V ′, C ′I , Centroids

′
V , and Gr.

Data owner should hold the updated factor matrices (U ′, S,
and V ′) and the cluster information (user/item cluster member-
ship indicator matrices and centroids) for future update. Note
that we leave the matrices S and V (S and U ) unchanged
in row update (column update), which does not indicate they
will never change. We will show when Aux-NMF should
be recomputed to ensure the data utility and privacy in the
experimental study section.

V. EXPERIMENTAL STUDY

In this section, we discuss the test datasets, data prepro-
cessing, evaluation strategy, and experimental results.

A. Data Description

In the experiments, we adopt MovieLens [24], Sushi [12]
preference, and LibimSeTi [2] dating datasets as the test data.
Table I collects the statistics of the datasets.

TABLE I: Statistics of the data

Dataset #users #items #ratings Sparsity
MovieLens 943 1,682 100,000 93.7%
Sushi 5,000 100 50,000 90%
LibimSeTi 2,000 5,625 129,281 98.85%

The public MovieLens dataset that we use has 943 users
and 1,682 items. The 100,000 ratings, ranging from 1 to 5,
were divided into two parts: the training set (80,000 ratings)
and the test set (20,000 ratings). In addition to rating data,
users’ demographic information and items’ genre information
are also available.

The Sushi dataset describes users’ preferences on different
kinds of sushi. There are 5,000 users and 100 sushi items.
Each user has rated 10 items, with a rating ranging from 1
to 5. That is to say, there are 50,000 ratings in this dataset.
To build the test set and training set, for every user, we
randomly select 2 out of 10 ratings and put them into the
test set (10,000 ratings) while the rest of ratings are used
as training set (40,000 ratings). Similar to MovieLens, the
Sushi dataset comes with user’s demographic information as
well as item’s group information and some attributes (e.g., the
heaviness/oiliness in taste, how frequently the user eats the
sushi etc.).

The LibimSeTi dating dataset is gathered by LibimSeTi.cz,
an online dating website. It contains 17,359,346 anonymous
ratings of 168,791 profiles made by 135,359 LibimSeTi users
as dumped on April 4, 2006. However, only user’s gender is
provided with the data. We will show how to deal with this
problem (lack of item information) in later section. Confined to
the memory limitation of the test computer, we pick up 2,000
users and 5,625 items (profiles are considered as items for this
dataset) with 108,281 ratings in training set and 21,000 ratings
in test set. Ratings are on a 1 ∼ 10 scale where 10 is best.

B. Data Preprocessing

The proposed algorithms require user and item feature
matrices as the input. To build such feature matrices, we
pre-process the auxiliary information of users and items. In
MovieLens dataset, user’s demographic information includes
user id, age, gender, occupation, and zip code. Amongst them,
we utilize age, gender, and occupation as features. For age,
the numbers are categorized into 7 groups: 1-17, 18-24, 25-
34, 35-44, 45-49, 50-55, >=56. For gender, there are two
possible values: male and female. As per statistics, there are
21 occupations: administrator, artist, doctor, and so on. Based
on these possible values, we build a user feature matrix FU
with 30 features (kU = 30), i.e., each user is represented as
a row vector with 30 elements. An element will be set to 1
if the corresponding feature value is true for this user and
0 otherwise. An example is, for a 48 years old female user,
who is an artist, the elements in the columns corresponding to
female, 45-49, and artist should be set to 1. All other elements
should be 0. Similar with user feature matrix, item feature
matrix is built according to their genres. Movies in this dataset
are attributed to 19 genres and hence the item feature matrix
FI has 19 features (kI = 19) in it.

In Sushi dataset, we use some of the user’s demographic
information, i.e., gender and age. In this case, user’s age has
been divided into 6 groups by the data provider: 15-19, 20-
29, 30-39, 40-49, 50-59, >=60. User gender consists of male
and female, which is same as MovieLens data. Thus, the user
feature matrix for this dataset has 5,000 rows and 8 columns.
The item feature matrix, on the other hand, has 100 rows and
16 columns. The 16 features include 2 styles (maki and other),
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2 major groups (seafood and other), and 12 minor groups
(aomono (blue-skinned fish), akami (red meat fish), shiromi
(white-meat fish), tare (something like baste; for eel or sea
eel), clam or shell, squid or octopus, shrimp or crab , roe,
other seafood, egg, meat other than fish, vegetables).

Different from MoiveLens and Sushi datasets, LibimSeTi
dataset only provides user’s gender as its auxiliary information
so we directly use it as user’s cluster indicator matrix CU . It
is worth noting that in this dataset, there are three possible
gender values: male, female, and unknown. To be consistent,
the number of user clusters is set to 3.

C. Evaluation Strategy

For comparison purposes, we run the proposed approach
and the SVD-based data update approach [30] on the datasets
to measure the error of unknown value imputation and the
privacy level of the perturbed data, as well as their time cost.
The SVD-based data update approach first uses the column
mean to impute missing values in the new data and then
performs the incremental SVD update on the imputed data.
The machine we use is equipped with Intel R© Core

TM
i5-2405S

processor, 8GB RAM and is installed with UNIX operating
system. The code was written and run in MATLAB.

We start with the partial training matrix R (also referred to
as the original data, which is built by removing ratings left on
some items or left by some users from the complete training
matrix3), and then add the rest of data (also referred to as the
new data) to R in several rounds.

When building R, we use the split ratio to decide how
many ratings will be removed from the complete training data.
For example, there are 1000 users and 500 items with their
companion ratings in the training data. If the split ratio is 40%
and we will do a row update, we use the first 400 rows as the
original data, i.e., R (∈ R400×500). The remaining 600 rows
of the training matrix will be added to R in several rounds.
Similarly, if we are going to perform a column update, we
use the first 200 columns as the original data (R ∈ R1000×200)
while the remaining 300 columns will be added to R in several
rounds.

In each round, we add 100 rows/columns to the original
data. If the number of the rows/columns of new data is not
divisible by 100, the last round will update the rest. Therefore,
in this example, the remaining 600 rows will be added to R
in 6 rounds with 100 rows each. Note that Sushi data only has
100 items in total but we still want to test the column update
on it so we add 10 items instead of 100 in each round.

The basic procedure of the experiments is as follows:

1) Perform Aux-NMF and SVD on R, producing the
approximated matrix Rr (see Fig. 1);

2) Append the new data to Rr by iAux-NMF and SVD-
based data update algorithm (SVDU for short) [30],
yielding the updated rating matrix R̃r;

3Here, “complete” means all the ratings from the dataset are in the matrix.
It is still a sparse matrix.

3) Measure imputation error4 and privacy of the updated
rating matrix R̃r;

4) Compare and study the results.

The imputation error is obtained by calculating the differ-
ence between the actual ratings in the test data and the imputed
ratings in the released data. A common and popular criterion
is the MAE (Mean Absolute Error), which can be calculated
as follows:

MAE =
1

|TestSet|
∑

rij∈TestSet

|rij − pij | (38)

where rij is the actual value while pij is the predicted value.

When measuring the privacy, we define the privacy level
in Definition 2

Definition 2: Privacy level Π(Y |X) is a metric that indi-
cates to what extent a random variable Y could be estimated
if given random variable X .

Π(Y |X) = 2h(Y |X) (39)

where h(Y |X) is the differential entropy of Y given X .

This privacy measure was proposed by Agrawal et al.[1]
and was applied to measure the privacy in collaborative filter-
ing by Polat et al.[21], and Wang et al.[30]. In our experiment,
we take Π(Y |X) (the higher the better) as privacy measure to
quantify the privacy, where random variable Y corresponds to
the values in training set and X corresponds to the perturbed
values (at same position as those in training set) in released
data.

D. Results and Discussion

In this section, we present and discuss our experimental
results in two stages. We first run Aux-NMF and SVD on the
complete training data to evaluate the performance of the non-
incremental algorithm. Then we follow the steps as specified
in the previous section to evaluate the incremental algorithms.

1) Test on complete Training Data: Some parameters of the
proposed algorithms need to be determined in advance. Table
II gives the parameter setup in Aux-NMF (see Algorithm 1).

TABLE II: Parameter Setup in Aux-NMF

Dataset α β γ k l MaxIter
MovieLens 0.2 0 0.8 7 7 10
Sushi 0.4 0.6 0 7 5 10
LibimSeTi 1 0 0 3 10 10

For MovieLens dataset, we set α = 0.2, β = 0, and
γ = 0.8, which means that we rely mostly on the item cluster
matrix, and then the rating matrix, whereas eliminate the user
cluster matrix. This combination was selected after probing
many possible cases. We will discuss how we choose the
parameters in Section V-D3. We believe there still exist better
combinations. Both k and l are set to 7. We set these values
because K-Means was prone to generate empty clusters with

4We use the term “imputation error” because all missing values are imputed
and will be compared with the real values, though no specific imputation
technique is used in Aux-NMF and iAux-NMF.
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greater k and l, especially on the data with very few users or
items. Note that if β or γ is a non-zero value, the user or item
cluster matrix will be used and k or l is equal to the number
of user clusters or item clusters. As long as β or γ is zero,
the algorithm will eliminate the corresponding cluster matrix
and k or l will have nothing to do with the number of user
clusters or item clusters.

For Sushi dataset, we set α = 0.4, β = 0.6, and γ = 0.
The parameters indicate that the user cluster matrix plays the
most critical role during the update process. In contrast, rating
matrix is the second important factor as it indicates the user
preference on items. The item cluster matrix seems trivial so it
does not participate the computation. We set k to 7 and l to 5
based on the same reason as mentioned in previous paragraph.

For LibimSeTi dataset, we give the full weight to the rating
matrix. Zero weight is received for user and item cluster ma-
trices since they do not contribute anything to the good results.
As mentioned in data description, user’s auxiliary information
only includes the gender with three possible values. So we set
k to 3. In this case, l only denotes the column rank of V and
is set to 10.

In SVD, since it cannot run on an incomplete matrix, we
use item mean to impute the missing values (see [30]). The
rank is set to 13 for MovieLens, 7 for Sushi, and 10 for
LibimSeTi. Table III presents the results on three datasets.

TABLE III: Results on MovieLens dataset

Dataset Method MAE Π(Y |X) Time Cost

MovieLens Aux-NMF 0.7481 1.2948 0.9902s
SVD 0.7769 1.2899 34.1341s

Sushi Aux-NMF 0.9016 1.4588 0.5350s
SVD 0.9492 1.4420 5.4175s

LibimSeTi Aux-NMF 1.2311 1.0715 5.7962s
SVD 1.2154 1.0537 390.2246s

In this table, the time cost of SVD includes the imputation
time while the time cost of Aux-NMF includes the clustering
time. For instance, on MovieLens dataset, the imputation
took 32.2918 seconds and SVD itself took 1.8423 seconds,
as 34.1341 seconds in total; the clustering time took 0.0212
seconds and Aux-NMF itself took 0.9690 seconds, as 0.9902
seconds in total. As can be seen, Aux-NMF outperformed SVD
in all aspects on all three datasets. We notice that the former
ran much faster than the latter (saves 97% time on MovieLens,
90% time on Sushi, and 98% time on LibimSeTi). This is
mainly because SVD-based algorithm needs imputation, which
is time consuming, but for Aux-NMF, it can directly work on
sparse matrix though it needs to cluster beforehand (it is very
fast in general).

It is interesting to take a look at the results of running
K-Means on the final matrix generated by Aux-NMF and the
matrix generated by SVD. As shown in Fig. 2(a), MovieLens
users with ratings produced by Aux-NMF were clustered into 7
groups with clear boundaries. However, the result is different
for SVD - most users were grouped together and thus the
clusters cannot be distinguished from each others. Note that
the axes in both figures are ratings left by users on items. The
results indicate the more normally distributed ratings in the

matrix generated by Aux-NMF than SVD. Remember that our
goal is to provide good imputation accuracy as well as high
privacy level. In addition, the data should look as if it is the
real data. To this end, we should make the ratings distribute
normally, i.e., people may leave more 3 stars on a 1 ∼ 5 scale
than 1 star and 5 stars. In this regard, Aux-NMF generated
more reasonable data than SVD did.
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Fig. 2: Clustering results on ratings predicted by Aux-NMF
(a) and SVD (b) on MovieLens dataset

2) The Incremental Case: In previous section, we exam-
ined the Aux-NMF on three datasets in terms of MAE, privacy
level, as well as time cost. Now we measure the same metrics
on iAux-NMF (incremental Aux-NMF).

Fig. 3 shows the time cost for updating new rows and
columns by iAux-NMF and SVDU (SVD-based data update
algorithm). We use “RowN” and “ColumnN” to represent row
and column updates in iAux-NMF. Similarly, “RowS” and
“ColumnS” are for row and column updates in SVDU. We
use the same parameter setup in Table II.

It can be seen that iAux-NMF outperformed SVDU in both
row and column updates. As pointed out in Section IV-B, the
time complexity of row update in iAux-NMF is O(pn(l + k)
and column update has a time complexity of O(qm(l+k). As
a reference, the time complexities of row and column updates
in SVDU are O(k3 + (m + n)k2 + (m + n)kp + p3) and
O(k3 + (m+n)k2 + (m+n)kq+ q3), respectively. When the
rating matrix has high dimensions, the time cost difference can
be huge. For example, the LibimSeTi dataset has both more
users and more items than MovieLens so the improvement of
iAux-NMF over SVDU plotted in Fig. 3(c) was greater than
Fig. 3(a). However, the Sushi data is a bit special as the time
difference between two methods in row update was very small,
though iAux-NMF still ran faster. In Section V-D1, we broke
the time cost of both methods into two pieces: for SVDU, the
time consists of imputation time and SVD computation time;
for Aux-NMF, the time consists of clustering time and Aux-
NMF computation time (Before running the algorithms, the
parameters need to be determined. We will discuss the time
cost for this part in Section V-D3.). By tracking the time cost
of each stage, we found that the imputation in SVDU took
considerably shorter time in row update than column update
on this dataset but the time cost of Aux-NMF in row update
and column update did not differ a lot. Essentially, the faster
imputation in row update can be attributed to the small number
of items. Since SVDU uses the column mean to impute the

(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 5, No. 4, 2014 

232| P a g e  
www.ijacsa.thesai.org 



0.0

2.0

4.0

6.0

8.0

10.0

12.0

10% 20% 30% 40% 50% 60% 70% 80% 90%

Ti
m

e 
(S

ec
s)

RowN
ColumnN
RowS
ColumnS

Split Ratio

MovieLens

(a)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

10% 20% 30% 40% 50% 60% 70% 80% 90%

Ti
m

e 
(S

ec
s)

RowN
ColumnN
RowS
ColumnS

Split Ratio

Sushi

(b)

0.0

25.0

50.0

75.0

100.0

125.0

150.0

175.0

10% 20% 30% 40% 50% 60% 70% 80% 90%

Ti
m

e 
(S

ec
s)

RowN
ColumnN
RowS
ColumnS

Split Ratio

LibimSeTi

(c)

Fig. 3: Time cost variation with split ratio
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Fig. 4: MAE variation with split ratio

missing values, if there are only a few items, the mean value
calculation can be fast.

However, with the substantial improvement in time cost,
iAux-NMF should not produce a significantly higher imputa-
tion error than SVDU.

Fig. 4 shows the mean absolute errors of the predic-
tion. When the split ratio was greater than 20%, iAux-NMF
achieved lower errors than SVUD on MovieLens and Sushi
datasets. The average improvement on MovieLens was 9.79%
for row update and 9.76% for column update. The Sushi
dataset had a little less average improvement than MoiveLens
but it was still noticeable. Nevertheless, both of them had
large errors by iAux-NMF than by SVD when the split ratio
was less than 20%. This is because the centroids picked up
by K-Means algorithm did not distribute over the data that
was not large enough to reflect the global picture. With badly
selected centroids, K-Means cannot produce a good clustering
result which further affects the Aux-NMF and iAux-NMF so
the errors would be large. Unlike MovieLens and Sushi, the
LibimSeTi dataset got different results. In this case, iAux-
NMF still performed better than SVDU but the gap tended to
be smaller as the split ratio increased. The results imply that
auxiliary information is important to iAux-NMF as it is used as
constraint in the update process. On the contrary, SVDU does
not need it. This can explain why SVDU performed better than
iAux-NMF on LibimSeTi (no auxiliary information is used).

In Section IV-B2, we mentioned the issue of Aux-NMF
re-computation. As presented in Fig. 4, the MAE’s of both
row and column updates on MovieLens dataset dropped more
slowly at 70% and nearly kept the same after this point.
Similarly but more interestingly, the MAE of row update
on Sushi dataset began to increase at 70%. Therefore, a re-

computation can be performed at 70% for these two datasets.
For LibimSeTi dataset, the MAE’s did not seem to stop
decreasing so the re-computation is not immediately necessary.

In addition to MAE, we want to investigate the privacy
metrics presented in Section V-C. The privacy level with
varying split ratio is plotted in Fig. 5. The curve shows that the
privacy level of the data produced by iAux-NMF were higher
and more stable than SVDU while the latter had decreasing
trend with greater split ratios. The results are encouraging.

As a summary, the iAux-NMF data update algorithm ran
much faster than SVDU while maintaining nearly the same
data utility and privacy as SVDU, if not better.

3) Parameter Study: In iAux-NMF, three parameters, i.e.,
α, β, and γ need to be set. In this section, we do some
comparisons over several parameter combinations and discuss
the results. Note that we keep the split ratio at 40% and pre-
generate the initial random matrices in Algorithms 2 and 3
to eliminate the effect of randomness in the experiments. We
adopt the parameter setup in Table II because it is the best
combination obtained by probing many possible cases. The
pseudocode in Algorithm 4 shows the procedure to find out
the parameters that produce the lowest MAE’s. The step is
set to 0.1 when we increment the parameters. Since there is
a constraint α + β + γ = 1, the total number of parameter
combinations is 66. It took 806.28 seconds to run a full test
on MovieLens dataset, 1116.9 seconds on Sushi, and 11517.87
seconds on LibimSeTi. The times are relatively long when
compared with the times of running the incremental algo-
rithms. However, the parameters only need to be determined
offline once so it will not affect the online performance.

Table IV lists some representative combinations with their
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Fig. 5: Privacy level variation with split ratio

Algorithm 4 Pseudocode for Parameter Probing

1: for α = 0 : 0.1 : 1 do
2: for β = 0 : 0.1 : 1 - α do
3: γ = 1− α− β.
4: Run Aux-NMF and iAux-NMF on a dataset with

parameter α, β, and γ, saving the MAE’s as well
as α, β, and γ to the corresponding variables.

5: end for
6: end for
7: Find out the lowest MAE and obtain the associated pa-

rameters.

results on MovieLens dataset. The best combinations are in
bold font. We notice that if the updates simply relied on
the rating matrix, the results were only a little worse than
taking into account the auxiliary information. In contrast, if
only the auxiliary information was utilized, the MAE was
unacceptable, though the privacy level was the highest. It
is clear that between user features and item features, the
latter made good contribution to the results while the former
seems trivial. Nevertheless, the weight of rating matrix can be
lowered but should not be removed. The Sushi dataset (Table
V) had a similar conclusion but it is the user features that
played a more dominant role.

TABLE IV: Parameter Probe on MovieLens dataset

Parameters Update MAE Π(Y |X)

α = 1, β = 0, γ = 0
Row 0.7643 1.2913

Column 0.7538 1.2964

α = 0.5, β = 0.5, γ = 0
Row 0.7643 1.2913

Column 0.7539 1.2963

α = 0.5, β = 0, γ = 0.5
Row 0.7624 1.2909

Column 0.7534 1.2958

α = 0, β = 0.5, γ = 0.5
Row 0.9235 1.3149

Column 0.9164 1.3150
α = 0.2, β = 0, γ = 0.8 Row 0.7616 1.2890
α = 0.4, β = 0, γ = 0.6 Column 0.7533 1.2955

As shown in Table VI, the rating matrix of LibimSeTi
dataset was the only information used in the computation. This
indicates that even the dataset comes with users’ genders, they
did not help in our model. This is reasonable as the gender is
not a necessary factor for people to determine their ratings (A
female can rate another female with a fairly high rating.). Note
that since there is no item features coming with this dataset,

TABLE V: Parameter Probe on Sushi dataset

Parameters Update MAE Π(Y |X)

α = 1, β = 0, γ = 0
Row 0.9083 1.4578

Column 0.9221 1.4613

α = 0.5, β = 0.5, γ = 0
Row 0.9073 1.4580

Column 0.9201 1.4614

α = 0.5, β = 0, γ = 0.5
Row 0.9085 1.4580

Column 0.9221 1.4614

α = 0, β = 0.5, γ = 0.5
Row 1.0468 1.4851

Column 1.0371 1.4849
α = 0.4, β = 0.6, γ = 0 Row 0.9071 1.4580
α = 0.2, β = 0.8, γ = 0 Column 0.9180 1.4620

γ was always set to zero.

Therefore, we can conclude that, the rating matrix should
always be utilized while the auxiliary information makes
contributions to the improved results as well.

TABLE VI: Parameter Probe on LibimSeTi dataset

Parameters Update MAE Π(Y |X)

α = 1, β = 0, γ = 0
Row 1.2589 1.0719

Column 1.2911 1.0717

α = 0.5, β = 0.5, γ = 0
Row 1.3378 1.0713

Column 1.3926 1.0709

α = 0, β = 1, γ = 0
Row 5.4017 1.0782

Column 5.4017 1.0782

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a NMF-based privacy preserving
data update approach for collaborative filtering purpose. This
approach utilizes the auxiliary information to build the cluster
membership indicator matrices for users and items. These
matrices are regarded as additional constraints in updating the
weighted nonnegative matrix tri-factorization. The proposed
approach, named iAux-NMF, can incorporate the incremental
data into existing data quite efficiently while maintaining
the high data utility and privacy. Furthermore, the inevitable
missing value imputation issues in collaborative filtering is
solved in a subtle manner by this approach without using
any particular imputation methods. Experiments conducted on
three different datasets demonstrate the superiority of iAux-
NMF over the existing privacy-preserving SVD-based data
update method in the situation of incremental data update.
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In future work, we will consider the automated clustering
update when new data comes in. This new feature will decide
the number of clusters by itself and recompute the NMF
when needed. We believe it can provide better data utility and
privacy. We will also investigate the distributed data update in
collaborative filtering and attempt to propose the corresponding
distributed algorithms.
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