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Abstract—In this paper, a comprehensive survey on gaming 

tree searching methods that can use to find the best move in two 

players zero-sum computer games was introduced. The purpose 
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enhancement for them. Furthermore, a number of open research 
areas and suggestions of future work in this field are mentioned. 
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I. INTRODUCTION 

Game playing; where a human play versus a computer have 
a long history. In the earlier game playing programs, the 
computer couldn't win a human because of the weakness of the 
game tree algorithms for finding the best next-move or the 
limitation of computer computation and memory space. The 
advances in this field and the field of computer architecture 
finally allowed computers to win humans in most complex 
games, including chess. Many algorithms have already been 
invented to find the best next-move for the computer, including 
sequential algorithms such as MiniMax [1], NegaMax [2], 
Negascout [3], SSS* [4] and B* [5] as well as parallel 
algorithms such as Parallel Alpha-Beta algorithm [6]. These 
Parallel algorithms are now modified to run not only on CPUs, 
but also on GPUs [7] to provide a faster solution. 

Almost all game playing programs use game trees to find 
the next-best move. An example of a game tree for Tic-Tac-
Toe game [8] is shown in Fig. 1 The figure shows the 
following: 

 Each node represents a game state. 

 The root represents the current game state. 

 All the branches for a given node represent all the legal 
moves for that node. 

 The node that doesn't have any successor called a leaf. 

Evaluation function is used to determine whatever a leaf 
represents a win, lose, draw or just a score, in case the 

algorithm was stopped before any player won, lose or the game 
ended with a draw. The developers usually do that because in 
more complex games, there is no practical algorithm that can 
search in the entire tree in a reasonable amount of time even if 
it uses the power of parallel processing. An example for this is 
the checkers and chess game where they need to evaluate about 
1020 and 1040 nodes respectively. WD is used as an estimation 
of the number of nodes needs to be visited, where W represents 
the average number of legal moves for each node, and D 
represents the game length. Two solutions for this problem are 
to use a fixed depth "D" or to use a specific time to stop 
generating the tree. 

There are many categorization methods for sequential game 
tree. However, the most common categorization is based on 
depth-first and breadth-first, which was used in this paper. 
Depth-first search "DFS" [9] means the algorithm will start 
from the root and explores as long as the depth limitation didn't 
meet along each branch before backtracking. Breadth-first 
search "BFS" [10] begins from the root and inspects all the 
children of the root node before it inspects all the children of 
each root children's node. The parallel algorithms are hard to 
categorize as depth or breadth first since some parallel 
algorithms work as follows: each core or each processor 
inspects a child of the root using DFS or BFS. In the first case, 
the distribution of the root’s children uses a BFS algorithm, but 
each core or processor uses a DFS. In this case, it is called a 
hybrid-system.  

To make it clear for the reader, the paper was organized as 
follows: 

Section [II], presents a discussion for sequential game tree 
algorithms categorized into depth-first & breadth-first 
algorithms. Section [III], presents a discussion for parallel 
game tree algorithms from the programming point of view and 
from the hardware point of view. Section, [IV], provides an 
analysis for depth algorithms and breadth algorithms based on 
algorithm complexity for both time and memory. Section [V], 
concludes the paper with some future work that can enhance 
the current algorithms. 
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II. SEQUENTIAL GAME TREE ALGORITHMS 

As mentioned in the previous section, sequential algorithms 
were categorized into depth-first search [9] and breadth-first 
search [10]. Furthermore, the depth-first search algorithms 
categorized again into brute-force search and selective search 
[11]. The brute-force search is looking at every variation to a 
given depth while the selective search is looking at important 
branches only. Section [A], presents a discussion for the brute-
force search in depth-first search. Section [B], presents a 
discussion for the selective search in depth-first search. Section 
[C], presents a discussion for the breadth-first search. 

 

Fig. 1. Game tree for Tic-Tac-Toe game using MiniMax algorithm. 

A. Brute-Force algorithms in Depth-First Search  

The most famous algorithms in brute-force search are 
MiniMax [1], NegaMax [2], Alpha-Beta [12], NegaScout [3], 
and Principle-Variation [13]. Following is a description of each 
of these algorithms. 

MiniMax [1] algorithm is a game tree algorithm that is 
divided into two logically stages, the first one for the first 
player which is the computer and the second one for the second 
player which is the human. The algorithm tries to find the best 
legal move for the computer even if the human plays the best 
move for him. Which means, it maximizes the computer score 
when it chooses the computer move, while minimizing that 
score by choosing the best legal move for the human when it 
chooses the human move. 

In Fig. 1 there is a simulation of MiniMax search for Tic-
Tac-Toe game [8]. Every node has a value calculated by the 
evaluation function. For a given path, the value of the leaf 
nodes passed back to its parent. An example for that the value 
of any O's move will always choose the minimum value for the 
computer, while the value for any X's move will always choose 
the maximum value for the computer. 

In Fig. 2 a pseudo code for the MiniMax algorithm [1] is 
presented. The program first calls the function MiniMax which 
starts the chain of calls for MaxMove and MinMove. Each time 
MaxMove function or MinMove function is called it 
automatically calls the other function until the game ended, or 
it reached the desired depth. 

NegaMax [2] algorithm is an identical algorithm for 
MiniMax with only one slight difference. It uses only the 

maximization function rather than using both maximization and 
minimization functions. This can be done by negating the value 
that is returned from the children from the opponent's point of 
view rather than searching for the minimum score. This is 
possible because of the following mathematical relation: 

                      Max (a, b) == -Min (-a, -b)           (1)  

 

Fig. 2. MiniMax Algorithm Pseduo Code  

In Fig. 3 there is a pseudo code for NegaMax algorithm. 
Clearly, (1) was used to simplify the MiniMax algorithm. 

Alpha-Beta [12] algorithm is a smart modification that can 
be applied to MiniMax or NegaMax algorithms. Kunth and 
Moore proved that many branches could be pruned away of the 
game tree which reduces the time needed to finish the tree, and 
it will give the same result as MiniMax or NegaMax. The main 
idea of the algorithm is cutting the uninteresting branches in the 
game tree. The following examples illustrating the idea:  
Max (8, Min (5, X)) and Min (3, Max (7, Y)) 
The result is always 8 in the first example and 3 in the second 
example, no matter the values of X or Y. This means the 
algorithm can cut the node X or Y with its branches. The 
Alpha-Beta algorithm uses two variables (alpha & beta) to 
detect these cases, so any value less than alpha or larger than 

MinMax (GamePosition game) { 

  return MaxMove (game); 

} 

  

MaxMove (GamePosition game) { 

  if (GameEnded(game)) { 

    return EvalGameState(game); 

  } 

  else { 

    best_move < - {}; 

    moves <- GenerateMoves(game); 
    ForEach moves { 

       move <- MinMove(ApplyMove(game)); 

       if (Value(move) > Value(best_move)) { 

          best_move < - move; 

       } 

    } 

    return best_move; 

  } 

} 

  

MinMove (GamePosition game) { 
  best_move <- {}; 

  moves <- GenerateMoves(game); 

  ForEach moves { 

     move <- MaxMove(ApplyMove(game)); 

     if (Value(move) > Value(best_move)) { 

        best_move < - move; 

     } 

  } 

  

  return best_move; 

} 
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beta will automatically cutoff without affecting the result of the 
search tree. 

The enhanced version of the NegaMax algorithm from Fig. 
3 with Alpha-Beta property is shown in Fig. 4.  

 

Fig. 3. NegaMax Algorithm Pseudo Code 

Several enhancements for the Alpha-Beta algorithm was 
published [13]; some of them is listed as follows: 

 Move Ordering: The speed and the number of cutoffs of 
the Alpha-Beta algorithm can change dramatically 
depending on the moving search order. The best move 
should be examined first, and then the second best move 
and so on. This will maximize the effectiveness of the 
algorithm. Many techniques developed to solve this 
problem, including: 

o Iterative deepening. 

o Transposition tables. 

o Killer Move Heuristic. 

o History Heuristic. 

 Minimal Window Search: Alpha-Beta algorithms 
depend on the values of alpha and beta to cutoff the 
branches, so by narrowing the search window by 
changing the values of alpha and beta; it will increase 
the possibilities of the cutoffs. Many algorithms such as 
NegaScout [3] and MTD (f) [14] used this property to 

improve the Alpha-Beta algorithm which discussed 
below.  

 

Fig. 4. Enhanced NegaMax with Alpha-Beta Property Pseudo Code 

The NegScout [3] and Principal Variation Search [13] 
algorithms were based on the scout algorithm which was an 
enhanced version of the Alpha-Beta algorithm that can make 
more cutoffs in the game tree. It contains a new test condition 
that checks whatever the first node in the siblings is either less 
than or equal to beta value or greater than or equal to the alpha 
value. If the result of the condition is true, then the algorithm 
cuts off the root node for these siblings, and if it is false, then it 
searches the rest of the siblings to get the new values of alpha 
and beta. 

In Fig. 5 there is a pseudo code for the NegaScout [3]. It 
looks like the same algorithm in Fig. 4 with the modification of 
the minimal window search. 

B. Selectivity algorithms in Depth-First Search  

The main difference between the brute-force algorithms and 
the selectivity algorithms; it doesn't depend on fixed depth to 
stop looking in each branch. The most common techniques in 
this category are Quiescence Search and Forward Pruning. 

// Search game tree to given depth, and return evaluation of 

// root node. 

int AlphaBeta(gamePosition, depth, alpha, beta) 

{ 

 if (depth=0 || game is over) 

// evaluate leaf gamePositionition from  

// current player’s standpoint 

  return Eval (gamePosition); 

  // present return value 

 score = - INFINITY; 
 // generate successor moves 

 moves = Generate(gamePosition); 

 // look over all moves 

 for i =1 to sizeof(moves) do 

 { 

  // execute current move 

Make(moves[i]); 

// call other player, and switch sign of  

// returned value 

cur = -AlphaBeta(gamePosition, depth-1,  

                              -beta, -alpha); 
   // compare returned value and score  

// value, update it if necessary 

  if (cur > score) score = cur; 

  // adjust the search window 

  if (score > alpha) alpha = score; 

  // retract current move 

  Undo(moves[i]); 

   // cut off 

  if (alpha >= beta) return alpha; 

 } 

 return score; 

} 

// Search game tree to given depth, and return evaluation of 

// root node. 

int NegaMax(gamePosition, depth) 

{ 

 if (depth=0 || game is over) 

// evaluate leaf gamePositionition from  

// current player’s standpoint 

  return Eval (gamePosition); 

  // present return value 

 score = - INFINITY; 

 // generate successor moves 
 moves = Generate(gamePosition); 

 // look over all moves 

 for i =1 to sizeof(moves) do 

 { 

  // execute current move 

  Make(moves[i]); 

// call other player, and switch sign of  

// returned value 

  cur = -NegaMax(gamePosition, depth-1); 

 // compare returned value and score  

// value, update it if necessary 
  if (cur > score) score = cur; 

  // retract current move 

  Undo(moves[i]); 

 } 

 return score; 

} 
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Below is a discussion of the implementation of the Quiescence 
Search technique [15] and ProbCut [16] algorithm that is based 
on the Forward Pruning technique.  

 

Fig. 5. NegaScout Algorithm Pseudo Code Using the Minimal Window 
Search Principle 

Quiescence Search [15] based on the idea of variable depth 
searching. The algorithm follows the normal fixed depth in 
most branches. However, in some branches the algorithm takes 
a deeper look and increases the search depth. An example of 
that is the chess game where in critical moves like checks or 
promotions, the algorithms extend the depth to make sure there 
is no threat exists. 

In Fig. 6 there is an abstract pseudo code for the 
Quiescence Search that extends the depth and checks if there is 
any capture for pieces after a specific move or not.  

 

Fig. 6. Abstract Pseudo Code Version for Quiescence Search 

Forward Pruning technique completes the idea of the 
variable depth, where it cuts-off unpromising branches. 
However, this can lead to errors in the result. Many algorithms 
implemented the idea of this technique, including N-Best 
Selective Search, ProbCut and Multi-ProCut [16]. 

N-Best Selective Search only looks for the best N-best 
moves at each node. All other siblings for the N-best moves 
will automatically cutoff. 

Both ProbCut Multi-ProCut algorithms use the result of 
shallow search to determine the possibility that a deeper search 
will change the value of alpha and beta or not. 

ProbCut [16] algorithm uses the statistics’ correlation 
techniques to cutoff branches, because it was discovered that 
there is a strong correlation between values obtained from 
different depth. The relation was described by Micheal Buro as 
follows: 

V_D = a * V_D’ + b + e                             (2) 

Where V_D means the value of a given depth, a & b are 
real numbers and e is a normally distributed error with zero 
mean. 

Since the value of a ≈ 1, b ≈ 0 and σ2 is small in most stable 
evaluation function, the probability of V_D >= beta could be 
predicted from the following equivalent equation: 

     V_D’ >= ((1/ Φ(P))*σ + beta –b) / a                    (3) 

Furthermore, the probability of V_D <= alpha could 
predicted from the following equivalent equation: 

      V_D’ <= (-(1/Φ(P)*σ + alpha –b) / a                  (4) 

int Quiesce( int alpha, int beta ) { 

    int stand_pat = Evaluate(); 

    if( stand_pat >= beta ) 

        return beta; 

    if( alpha < stand_pat ) 

        alpha = stand_pat; 

  

    until( every_capture_has_been_examined )  { 

        MakeCapture(); 
        score = -Quiesce( -beta, -alpha ); 

        TakeBackMove(); 

  

        if( score >= beta ) 

            return beta; 

        if( score > alpha ) 

           alpha = score; 

    } 

    return alpha; 

} 

// Search game tree to given depth, and return evaluation of 

// root node. 

int NegaScout(gamePosition, depth, alpha, beta) 

{ 

 if (depth=0 || game is over) 

// evaluate leaf gamePositionition from  
// current player’s standpoint 

  return Eval (gamePosition); 

  // present return value 

 score = - INFINITY; 

 n = beta; 

 // generate successor moves 

 moves = Generate(gamePosition); 

 // look over all moves 

 for i =1 to sizeof(moves) do 

 { 

  // execute current move 
Make(moves[i]); 

// call other player, and switch sign of  

// returned value 

cur = -NegaScout(gamePosition, depth-1,  

                              -n, -alpha); 

  if (cur > score) { 

 if (n = beta ) OR (d <= 2) 

 // compare returned value and  

// score value, update it if 

// necessary 

score = cur; 

else 
score = -NegaScout 

(gamePosition,depth-1,  

  -beta, -cur); 

} 

  // adjust the search window 

  if (score > alpha) alpha = score; 

  // retract current move 

  Undo(moves[i]); 

   // cut off 

  if (alpha >= beta) return alpha; 

  n = alpha+1; 
 } 

 return score; 

} 
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In Fig. 7 there is an abstract implementation for the 
ProbCut algorithm. Remember it's up to you to choose the 
values of D, D', the cutoff threshold (1/Φ(P)), a, b and σ. The 
algorithm can provide a faster result than any brute-force 
algorithm. However, it needs many accurate parameters, which 
may be difficult to choose and may lead to errors in the results.  

 

Fig. 7. Abstract Pseudo Code Version for ProbCut Search without the alpha-
beta implementation 

Multi-ProbCut [16] algorithms generalize the idea of 
ProbCut by using additional cutoff thresholds and checks, 
including allowing more regression parameters and cutoff 
thresholds, using many depth pair and using internal iterative 
deepening for shallow searches. 

C. Breadth-First Search 

As mentioned before the BFS begins from the root node 
then it visits its first child after that it visits all its siblings from 
the same depth before it moves to the next depth. One of the 
problems with this technique; it requires huge memory to store 
node’s data. Many algorithms use this technique like NegaC* 
[17], MTD (f) [14], SSS* [4], B* [5] and Monte-Carlo search 
[18] algorithms, which discussed below.  

NegaC* [17] algorithm uses the minimal-window with fail-
soft Alpha-Beta algorithm like NegaScout [3] algorithm, but it 
parses the tree in Breadth-First way. The fail-soft technique 
uses two more variables than the Alpha-Beta algorithms to 
cutoff more branches.  

In Fig. 8 there is an abstract pseudo code implementation of 
the NegaC* algorithm.  

 

Fig. 8. An Abstract Pseudo Code Implementation of the NegaC* Algorithm 

MTD (f) [14] algorithm, which is an abbreviation for 
"Memory-enhanced Test Driver" also uses the minimal-
window technique like NegaScout [3] algorithm, but it does it 
efficiently. It was introduced as an enhancement to the Alpha-
Beta Algorithm as mentioned before. It also uses two more 
variables to determine the upper-bound and lower-bound. The 
normal Alpha-Beta algorithm uses only alpha and beta 
variables with -∞ & ∞ as a start and the values are updated one 
time at each call to make the only one returning value lies 
between the alpha and beta values. However, MTD (f) may 
search more than one time at each Alpha-Beta [12] call and use 
the returned bounds to converge toward it using the lower-
bound and upper-bound to make faster cutoffs of the tree. 
Furthermore, the algorithm uses a transposition table to store 
and retrieve data about portions of the search tree to use it later 
to reduce the over-head of re-examining same game state. 
However, it uses memory space to store this data, which 
required more memory space. 

Fig. 9 shows a pseudo code for the MTD (f) algorithm 
without the implementation of the Alpha-Beta algorithm which 
was described in Fig. 4. 

SSS* [4] is another famous breadth-first search algorithm, 
which is non-directorial search algorithm. The algorithm 
expands into multiple paths at the same time to get global-
information of the search tree. However, it searches fewer 
nodes than fixed depth-first algorithms like Alpha-Beta 
algorithm.  

The algorithm stores’ information for all active nodes 
which didn't solve yet in a list in decreasing order depends on 
their importance. The information consists of three parts: 

 N: a unique identifier for each node. 

 S: a status of each node whatever it's live or has been 
solved. 

 H: an important value for the node. 

int negaCStar (int min, int max, int depth) { 

 int score = min; 

 while (min != max) { 

  alpha = (min + max) / 2; 

  score = failSoftAlphaBeta (alpha, 

         alpha + 1, depth); 

  if ( score > alpha) 

   min = score; 

  else 

           max = score; 
    } 

    return score; 

} 

int alphaBetaProbCut(int α, int β, int depth) { 

 const float T(1.5); 

 const int DP(4); 

 const int D(8); 

   

 if ( depth == 0 ) return evaluate(); 

  

 if ( depth == D ) { 

  int bound; 

 

  // v >= β with prob. of at least p? 
// yes => cutoff */  

  bound = round( ( T * σ + β - b) / a ); 

  if ( alphaBetaProbCut( bound-1, bound,  

         DP) >= bound ) 

   return β; 

  

  // v <= α with prob. of at least p? 

// yes => cutoff */ 

  bound = round( (-T * σ + α - b) / a ); 

  if ( alphaBetaProbCut( bound, bound+1,  

          DP) <= bound ) 
   return α; 

    } 

    // the remainder of alpha-beta goes here 

    ... 

} 
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Fig. 9. Pseudo Code for the MTD (f) Algorithm Without the Implementation 

of the Alpha-Beta algorithm Which was Described Previously in Fig. 4 

The core of the SSS* [4] algorithm depends on two phases: 

 Node Expansion: Top-down expansion of a Min 
strategy. 

 Solution: Bottom-up search for the best Max strategy. 

Fig. 10 shows the pseudo code for the SSS* algorithm 
using three function push, pop and insert to store, remove and 
update node information. 

Monte-Carlo Tree Search "MCTS" [18] algorithm made a 
breakthrough in game theory and computer science field. The 
algorithm is based on randomized exploration of the game tree. 
The algorithm also uses the results of previous examined 
values for nodes. Every time the algorithm runs it produces a 
better estimation of values. However, the game tree gradually 
grows in the memory, which is the main disadvantages of 
breadth-first algorithms. 

The algorithm consists of four phases, which is repeated as 
long as there is still time for the computer to think: 

 Selection phase, it starts from the root node; it traverses 
the game tree by selecting the most promising move 
until reaching a leaf node. 

 Expansion phase, if the number of visits reaches a pre-
determined threshold, the leaf is expanded to build a 
larger tree. 

 Simulation phase, calculates the outcome value of the 
leaf by performing a play-out at it. 

 Back-propagation phase, it traces back along the game 
tree path from the leaf to the root to update the values 
changed in the simulation phase.  

 

Fig. 10. Pseudo Code for the SSS* Algorithm 

Fig. 11 shows the pseudo-code for MCTS algorithm using 
the four phases described before. 

B* [5] is the final algorithm that will be described in the 
BFS. It finds the least-cost path from the node to any goal node 
out of one of more possible goals. The main idea of this 
algorithm is based on: 

 Stop when one path is better than all the others. 

 Focus the exploration on paths that will lead to 
stopping. 

The algorithm expands the searching based on prove-best 
and disprove-rest strategies. In prove-best strategy, the 
algorithm chooses the node with the highest upper-bound 
because it has a high probability to raise its lower bound higher 
than any other nodes' upper-bound when it expands. On the 
other hand, the disprove-rest strategy chooses the next highest 
upper-bound node because it has a good probability to reduce 
the upper-bound to less than the lower-bound of the best child 
when it expands.  

int SSS* (node n; int bound) 

{ 

   push (n, LIVE, bound); 

   while ( true ) { 

      pop (node); 

      switch ( node.status ) { 

      case LIVE: 

          if (node == LEAF) 

             insert (node, SOLVED, min(eval(node),h)); 

          if (node == MIN_NODE) 

             push (node.1, LIVE, h); 

          if (node == MAX_NODE) 
             for (j=w; j; j--) 

                push (node.j, LIVE, h); 

          break; 

      case SOLVED: 

          if (node == ROOT_NODE) 

             return (h); 

          if (node == MIN_NODE) { 

              purge (parent(node)); 

              push (parent(node), SOLVED, h); 

          } 

          if (node == MAX_NODE) { 
             if (node has an unexamined brother) 

                push (brother(node), LIVE, h); 

             else 

                push (parent(node), SOLVED, h); 

          } 

          break; 

      } 

   } 

} 

function MTDF(root, f, d){ 

 g := f 

 upperBound := +∞ 

 lowerBound := -∞ 

 while lowerBound < upperBound{ 

  if g = lowerBound then  

                β := g+1  

           else  

                β := g 

           g := AlphaBetaWithMemory (root,  β-1,  

     β, d) 

           if g < β then  

                upperBound := g  

           else  

                lowerBound := g 
 } 

      return g 

} 
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Fig. 11. Pseudo-Code for MCTS Algorithm 

In the next section, a discussion of most famous parallel 
game tree search algorithms is presented.   

III. PARALLELISM IN GAME TREE SEARCH 

The technological advances of the computer architecture 
and the release of multiprocessors and multi-core computers, 
allows algorithms that can be partitioned into independent 
segments to be solved faster. Many enhancements were done 
on the sequential algorithms to make it run in parallel as well as 
new algorithms are designed for parallel computing. The 
problem of parallel computing is the trade-off between the 
overhead of communication and synchronization and the 
benefits of exploring many nodes in the same time in parallel. 
This made the speedup is sub-linear rather than linear. Section 
[A], presents a discussion of various techniques & algorithms 
made to solve these problems. Section [0], presents a 
discussion for the parallelism of the game search tree from the 
hardware point of view.  

A. Game Tree Parallelism Techniques & Algorithms 

As mentioned before many techniques were designed to 
solve the overhead problem. One of them is the "Shared Hash 
Table" technique, which stores information about nodes in the 
game tree so it could be used by any processor or core in the 
system. This reduces the communication over-head between 
processors or cores, especially if the processors are not on the 
same physical computer. 

Many algorithms use the previous technique as well as 
other techniques, including ABDADA, Parallel Alpha-Beta, 
Parallel PVS, YBWC and Jamboree and Dynamic Tree 
Splitting. Next, a description of each algorithm is presented. 

   ABDADA is a loosely synchronized and distributed 
search algorithm designed by Jean-Christophe. The algorithm 
uses the shared hash table technique as well as adding more 
information for each node like the number of processors 
searching this node. 

Parallel Alpha-Beta [6] is the parallel version of the 
previously discussed Alpha-Beta algorithm. The basic idea is 
splitting the search tree into sub-search trees and run each one 
in specific core or more in case of multi-core and one or more 
processor in case of multi-processor system. The problem of 
this algorithm is the complexity of implementing it. However, 
it can maximize the utilization of the cores or processors. The 
two methods of splitting the tree are showing in Fig. 12. 

 

Fig. 12. Partitioning of the Game Tree for Alpha-Beta Search  

PVS [13] algorithm expresses each node as a thread which 
can run in parallel. However, before running them in parallel, 
the problem of data dependency that exists among threads must 
be solved. A simple solution is to get the initial required value 
from the first node among any siblings then run the remaining 
siblings in parallel. The sequential and parallel tasks for PVS 
algorithm using two processors is showing in Fig. 13 while a 
pseudo code for the algorithm is showing in Fig. 14. 

 

Fig. 13. Sequential and Parallel Tasks by Two Processors using PVS  

YBWC and Jamboree algorithm [19] is shown in ,which 
based on a recursive algorithm that visits the first node in 
siblings before spawning the remaining sibling's nodes in 
parallel. It uses this technique because the first node may 
produce a cutoff so it does not waste the others processors’ 
time by searching in the sibling nodes or will produce better 

 

 

Data: root node 

Result: best move 

while (has time) do 

    current node ← root node 

 

    /* The tree is traversed 

    while (current node ϵ T ) do 

        last node ← current node 

        current node ← Select(current node) 

    end 

 

    /* A node is added 

    last node ← Expand(last node) 

 

    /* A simulated game is played 

    R ← P lay simulated game(last node) 

 

    /* The result is backpropagated 

    current node ← last node 

    while (current node ϵ T ) do 
        Backpropagation(current node, R) 

        current node ← current node.parent 

    end 

 

end 

 

return best move = argmaxN ϵ Nc (root node) 
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bounds, then the algorithm search the remaining siblings in 
parallel. A pseudo code of the algorithm is showing in Fig. 15. 

 

Fig. 14. Pseudo Code for PVS Algorithm Using Alpha-Beta Function  

Finally, DTS algorithm [20] is the most complex parallel 
game tree search algorithm and there are a few implantation of 
it. However, it gives the best performance in symmetric multi-
processors systems. A pseudo-code of the DTS algorithm 
presented in Fig. 16. 

Table I shows the speedup for the three algorithms 
compared using 1, 2, 4, 8, and 16 processors. 

TABLE I.  POPULAR GAME TREE PARALLEL ALGORITHMS SPEEDUP  

Algorithm 
Number of Processors 

1 2 4 8 16 

PVS 1.0 1.8 3.0 4.1 4.6 

YBWC 1.0 1.9 3.4 6.1 10.9 

DTS 1.0 2.0 3.7 6.6 11.1 

 

All the previous parallel algorithms need a parallel 
programming language or library that can handle threads and 
parallel computing. Many libraries and programming languages 
were released to support CPU parallelism in general. However, 
the most famous library that used in parallel game tree 
algorithms is MPI (Message Passing Interface) [21] which is an 
extension of C programming language. MPI handles the burden 
of synchronization, communication and distributed resources 
management. The latest version of MPI is version 2 which 
supports C++ and object-oriented programming. 

 

Fig. 15. Pseudo Code for Jamboree Algorithm  

 

Fig. 16. Pseudo Code for DTS Algorithm   

DTS(root) 
{ 

while (Stopping_criterion() == false) 

{ 

           //One processor search to ply = N 

  SearchRoot(root); 

 

          //Detect free processors, and begin tree split 

Split(node v); 

 

//Initialize new threads. 

ThreadInit(); 
 

          //Copy a “split block” to begin a new search 

CopytoSMP(node v); 

SearchSMP(node v); 

} 

ThreadStop(); 

} 

 

jamboree(CNode n, int α, int β, int b) 

{ 

if (n is leaf) 

return static_eval(n); 

 

c[] = the childen of n; 

b = -jamboree(c[0], -β, -α);    

if (b >= β) return b; 

if (b >  α) α = b; 

 

In Parallel: for (i=1; i < |c[]|; i++) 

{ 
s = -jamboree(c[i], -α - 1, -α); 

 

if (s >  b) 

b = s; 

if (s >= β 

abort_and_return s; 

if (s >  α) 

{ 

//Wait for the completion of previous  

iterations of the parallel loop 

s = -jamboree(c[i], -β, -α); 
 

if (s >= β) 

abort_and_return s; 

if (s >  α) 

α = s; 

if (s >  b) 

b = s; 

}  

} 

   return b; 

} 

 

PVSplit (Node curnode, int alpha, int beta, int result) 

{ 

 if(cur_node.is_leaf) 

  return Evaluate(cur_node); 

 

 succ_node = GetFirstSucc(cur_node); 

 score = PVSplit(curnode, alpha, beta); 

  

if(score > beta) 

  return beta; 
 if(score > alpha) 

  alpha = score; 

  

//Begin parallel loop 

 while(HasMoreSuccessors(curnode)) 

{ 

  succ_node = GetNextSucc(curnode); 

  score = AlphaBeta(succnode,alpha,beta); 

   

  if(score > beta) 

   return beta; 
  if(score > alpha) 

   alpha = score; 

 }//End parallel loop 

 return alpha; 

} 
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Another trending library for artificial intelligence 
algorithms that runs on CPU is Microsoft Task Parallel Library 
(TPL) [22]. This library uses the concept of finite CPU-bound 
computation based on task notation and the concept of 
replicating task using work-stealing technique. It is more 
effective to develop parallel algorithms such as DTS and 
YBWC. 

Other programming libraries were designed to run parallel 
algorithms in GPU rather than CPU, including CUDA [23]. 
However, few algorithms were implemented using these 
libraries because of the complexity of programming search 
trees using these libraries. On the other hand, the implemented 
algorithms that tested on GPU showed a better speedup than 
the CPU. 

B. CPU & GPU for Parallel Game Tree Search  

In the previous fifteen years, all researches focused on 
designing parallel algorithms that can run in parallel on multi-
cores or multi-processors. However, the new trend of search 
trees field is to design and implement algorithms that can run 
on parallel on the GPU. Early the GPU was built just for 
graphic computing.  

However, in the last 10 years the GPU became a platform 
for general parallel processing computing. The idea of GPU is 
to have hundreds or thousands of simple cores that can run 
threads in parallel with higher GFLOPS than the CPU. On the 
other hand, the CPU contains few powerful cores or few 
powerful multi-processors that can run more instructions and 
have a faster clock speed than the GPU. As mentioned before 
few algorithms were modified to support GPU. However, in the 
next five years many AI algorithms will designed to use the 
power of GPUs. Fig. 17 shows the CPU and GPU architecture. 

 

Fig. 17. Difference Between CPU and GPU Architecture 

In the next section, an analysis of the previous algorithms 
based on several criteria is presented. 

IV. GAME TREE ALGORITHMS ANALYSIS  

As the game tree was categorized according to specific 
criteria, the evaluation of the previous algorithms is categorized 
according to specific criteria ; which are: 

 Completeness: whatever if the algorithm finds a 
solution if one exists. 

 Time Complexity: the number of nodes generated. 

 Space Complexity: the maximum number of nodes in 
memory during the search. 

 Optimality: whatever if the algorithm always finds the 
least-cost or the best solution. 

The following terms were used to measure the time and 
space complexity: 

 B: maximum branches factor. 

 D: depth of the best solution. 

 M: maximum depth of the state space. 

 L: depth cut-off 

Table II compares the various sequential algorithm 
categories based on the previous criteria. 

TABLE II.  SEQUENTIAL ALGORITHMS ANALYSIS 

Criterion Breadth-

First 

Depth-

First 

Depth-

Limited 

Iterative 

Depending 

Completeness Yes No Yes, if l >= d Yes 

Time b
d
 b

m
 b

l
 b

d
 

Space b
d
 bm bl bd 

Optimality Maybe No No Maybe 

 

All algorithms that fall into any of the categories should 
match the mentioned table criteria value. However, this is the 
worst-case scenario. In most cases, a better space and time 
values may be found. An example of that is the Alpha-Beta 
algorithm where the average time is equal b3m/4. 

The complexity analysis of parallel game tree searching 
algorithms is more difficult than the sequential algorithms. 
Usually, the parallel game tree searching algorithms could be 
analyzed in terms of: 

 Time complexity T (n): How many times steps are 
needed? 

 Processor complexity P (n): How many processors are 
used? 

 Work complexity W (n): What is the total work done by 
all the processors? 

The sequential Minimax algorithm with alpha-beta 
modification has a time complexity of O(bm) in the worst case, 
O(b3m/4) in the average case and O(bm/2) in the best case; where 
b is the branching factor and m is the maximum depth of the 
search tree. The total work done by the parallel alpha-beta 
algorithm equals the total work done by the sequential 
algorithm. Hence, table III summarizes the time complexity of 
the parallel alpha-beta algorithm in the best, average and worst 
case.By increasing the number of processors or cores, the 
algorithm could provide a better speed-up. However, it will 
never reach the ideal speedup, because of the communication 
overhead between nodes for sharing alpha and beta values as 
well as the synchronization overhead. 
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TABLE III.  PARALLEL ALGORITHMS ANALYSIS 

Criterion Case Complexity 

Time Complexity 

worst          
  

 
  

average          
     

 
  

best          
    

 
  

Processor Compleixty 

worst 

             average 

best 

Work Compleixty 

worst              

average                 

best                
 

Besides the normal criteria that will make you choice any 
game searching algorithms; which includes the amount of 
memory you have, if you need an optimal solution or not, and 
the time you need to solve, etc.. An important criterion is the 
nature of the problem or the nature of the game and the nature 
of the hardware architecture you have.    

V. CONCLUSIONS & FUTURE WORK 

A discussion of various game tree-searching algorithms was 
presented in this paper, including sequential and parallel 
algorithms. The popular sequential algorithms were covered in 
details the common algorithms in both depth-first and breadth-
first. Furthermore, an overview of common parallel algorithms 
as well as the hardware architecture for parallel game tree 
searching was presented. In the end, an analysis the algorithms 
based on four criteria was discussed. 

The use of service-oriented approach to expand the 
searching trees into a distributed system will solve many 
distributed issues, while using tasks technology rather than 
threads to implement the parallel algorithms to maximize the 
utilization of multi-core computers. Another suggestion is to 
implement the search algorithms using the OpenCL library 
which allows the code to run on both GPU and CPU, or CUDA 
library to produce a massive parallel game tree searching 
algorithm.  

The new feature of dynamic parallelism in CUDA v5.5 
allows recursion based algorithms to run faster on the GPU, by 
eliminating the CPU initialization time of each kernel. 
Furthermore, the unified memory in CUDA 6.0 creates a pool 
of management memory that is shared between the CPU and 
GPU, which make the development of complex games easier. 
Both the dynamic parallelism and unified memory features can 
improve the speedup of current AI game tree searching 
algorithms. 
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