
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

68 | P a g e
www.ijacsa.thesai.org

A Comparative Study of Game Tree Searching

Methods

Ahmed A. Elnaggar

Computer Science Department

Modern Academy in Maadi

Cairo, Egypt

Mahmoud Gadallah

Computer Science Department

Modern Academy in Maadi

Cairo, Egypt

Mostafa Abdel Aziem

College of Computing and IT

AAST

Cairo, Egypt

Hesham El-Deeb

Computer Science Faculty

MTI University

Cairo, Egypt

Abstract—In this paper, a comprehensive survey on gaming

tree searching methods that can use to find the best move in two

players zero-sum computer games was introduced. The purpose

of this paper is to discuss, compares and analyzes various

sequential and parallel algorithms of gaming tree, including some

enhancement for them. Furthermore, a number of open research
areas and suggestions of future work in this field are mentioned.

Keywords—game tree search; searching; evaluation; parallel;

distributed; GPU

I. INTRODUCTION

Game playing; where a human play versus a computer have
a long history. In the earlier game playing programs, the
computer couldn't win a human because of the weakness of the
game tree algorithms for finding the best next-move or the
limitation of computer computation and memory space. The
advances in this field and the field of computer architecture
finally allowed computers to win humans in most complex
games, including chess. Many algorithms have already been
invented to find the best next-move for the computer, including
sequential algorithms such as MiniMax [1], NegaMax [2],
Negascout [3], SSS* [4] and B* [5] as well as parallel
algorithms such as Parallel Alpha-Beta algorithm [6]. These
Parallel algorithms are now modified to run not only on CPUs,
but also on GPUs [7] to provide a faster solution.

Almost all game playing programs use game trees to find
the next-best move. An example of a game tree for Tic-Tac-
Toe game [8] is shown in Fig. 1 The figure shows the
following:

 Each node represents a game state.

 The root represents the current game state.

 All the branches for a given node represent all the legal
moves for that node.

 The node that doesn't have any successor called a leaf.

Evaluation function is used to determine whatever a leaf
represents a win, lose, draw or just a score, in case the

algorithm was stopped before any player won, lose or the game
ended with a draw. The developers usually do that because in
more complex games, there is no practical algorithm that can
search in the entire tree in a reasonable amount of time even if
it uses the power of parallel processing. An example for this is
the checkers and chess game where they need to evaluate about
1020 and 1040 nodes respectively. WD is used as an estimation
of the number of nodes needs to be visited, where W represents
the average number of legal moves for each node, and D
represents the game length. Two solutions for this problem are
to use a fixed depth "D" or to use a specific time to stop
generating the tree.

There are many categorization methods for sequential game
tree. However, the most common categorization is based on
depth-first and breadth-first, which was used in this paper.
Depth-first search "DFS" [9] means the algorithm will start
from the root and explores as long as the depth limitation didn't
meet along each branch before backtracking. Breadth-first
search "BFS" [10] begins from the root and inspects all the
children of the root node before it inspects all the children of
each root children's node. The parallel algorithms are hard to
categorize as depth or breadth first since some parallel
algorithms work as follows: each core or each processor
inspects a child of the root using DFS or BFS. In the first case,
the distribution of the root’s children uses a BFS algorithm, but
each core or processor uses a DFS. In this case, it is called a
hybrid-system.

To make it clear for the reader, the paper was organized as
follows:

Section [II], presents a discussion for sequential game tree
algorithms categorized into depth-first & breadth-first
algorithms. Section [III], presents a discussion for parallel
game tree algorithms from the programming point of view and
from the hardware point of view. Section, [IV], provides an
analysis for depth algorithms and breadth algorithms based on
algorithm complexity for both time and memory. Section [V],
concludes the paper with some future work that can enhance
the current algorithms.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

69 | P a g e
www.ijacsa.thesai.org

II. SEQUENTIAL GAME TREE ALGORITHMS

As mentioned in the previous section, sequential algorithms
were categorized into depth-first search [9] and breadth-first
search [10]. Furthermore, the depth-first search algorithms
categorized again into brute-force search and selective search
[11]. The brute-force search is looking at every variation to a
given depth while the selective search is looking at important
branches only. Section [A], presents a discussion for the brute-
force search in depth-first search. Section [B], presents a
discussion for the selective search in depth-first search. Section
[C], presents a discussion for the breadth-first search.

Fig. 1. Game tree for Tic-Tac-Toe game using MiniMax algorithm.

A. Brute-Force algorithms in Depth-First Search

The most famous algorithms in brute-force search are
MiniMax [1], NegaMax [2], Alpha-Beta [12], NegaScout [3],
and Principle-Variation [13]. Following is a description of each
of these algorithms.

MiniMax [1] algorithm is a game tree algorithm that is
divided into two logically stages, the first one for the first
player which is the computer and the second one for the second
player which is the human. The algorithm tries to find the best
legal move for the computer even if the human plays the best
move for him. Which means, it maximizes the computer score
when it chooses the computer move, while minimizing that
score by choosing the best legal move for the human when it
chooses the human move.

In Fig. 1 there is a simulation of MiniMax search for Tic-
Tac-Toe game [8]. Every node has a value calculated by the
evaluation function. For a given path, the value of the leaf
nodes passed back to its parent. An example for that the value
of any O's move will always choose the minimum value for the
computer, while the value for any X's move will always choose
the maximum value for the computer.

In Fig. 2 a pseudo code for the MiniMax algorithm [1] is
presented. The program first calls the function MiniMax which
starts the chain of calls for MaxMove and MinMove. Each time
MaxMove function or MinMove function is called it
automatically calls the other function until the game ended, or
it reached the desired depth.

NegaMax [2] algorithm is an identical algorithm for
MiniMax with only one slight difference. It uses only the

maximization function rather than using both maximization and
minimization functions. This can be done by negating the value
that is returned from the children from the opponent's point of
view rather than searching for the minimum score. This is
possible because of the following mathematical relation:

 Max (a, b) == -Min (-a, -b) (1)

Fig. 2. MiniMax Algorithm Pseduo Code

In Fig. 3 there is a pseudo code for NegaMax algorithm.
Clearly, (1) was used to simplify the MiniMax algorithm.

Alpha-Beta [12] algorithm is a smart modification that can
be applied to MiniMax or NegaMax algorithms. Kunth and
Moore proved that many branches could be pruned away of the
game tree which reduces the time needed to finish the tree, and
it will give the same result as MiniMax or NegaMax. The main
idea of the algorithm is cutting the uninteresting branches in the
game tree. The following examples illustrating the idea:
Max (8, Min (5, X)) and Min (3, Max (7, Y))
The result is always 8 in the first example and 3 in the second
example, no matter the values of X or Y. This means the
algorithm can cut the node X or Y with its branches. The
Alpha-Beta algorithm uses two variables (alpha & beta) to
detect these cases, so any value less than alpha or larger than

MinMax (GamePosition game) {

 return MaxMove (game);

}

MaxMove (GamePosition game) {

 if (GameEnded(game)) {

 return EvalGameState(game);

 }

 else {

 best_move < - {};

 moves <- GenerateMoves(game);
 ForEach moves {

 move <- MinMove(ApplyMove(game));

 if (Value(move) > Value(best_move)) {

 best_move < - move;

 }

 }

 return best_move;

 }

}

MinMove (GamePosition game) {
 best_move <- {};

 moves <- GenerateMoves(game);

 ForEach moves {

 move <- MaxMove(ApplyMove(game));

 if (Value(move) > Value(best_move)) {

 best_move < - move;

 }

 }

 return best_move;

}

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

70 | P a g e
www.ijacsa.thesai.org

beta will automatically cutoff without affecting the result of the
search tree.

The enhanced version of the NegaMax algorithm from Fig.
3 with Alpha-Beta property is shown in Fig. 4.

Fig. 3. NegaMax Algorithm Pseudo Code

Several enhancements for the Alpha-Beta algorithm was
published [13]; some of them is listed as follows:

 Move Ordering: The speed and the number of cutoffs of
the Alpha-Beta algorithm can change dramatically
depending on the moving search order. The best move
should be examined first, and then the second best move
and so on. This will maximize the effectiveness of the
algorithm. Many techniques developed to solve this
problem, including:

o Iterative deepening.

o Transposition tables.

o Killer Move Heuristic.

o History Heuristic.

 Minimal Window Search: Alpha-Beta algorithms
depend on the values of alpha and beta to cutoff the
branches, so by narrowing the search window by
changing the values of alpha and beta; it will increase
the possibilities of the cutoffs. Many algorithms such as
NegaScout [3] and MTD (f) [14] used this property to

improve the Alpha-Beta algorithm which discussed
below.

Fig. 4. Enhanced NegaMax with Alpha-Beta Property Pseudo Code

The NegScout [3] and Principal Variation Search [13]
algorithms were based on the scout algorithm which was an
enhanced version of the Alpha-Beta algorithm that can make
more cutoffs in the game tree. It contains a new test condition
that checks whatever the first node in the siblings is either less
than or equal to beta value or greater than or equal to the alpha
value. If the result of the condition is true, then the algorithm
cuts off the root node for these siblings, and if it is false, then it
searches the rest of the siblings to get the new values of alpha
and beta.

In Fig. 5 there is a pseudo code for the NegaScout [3]. It
looks like the same algorithm in Fig. 4 with the modification of
the minimal window search.

B. Selectivity algorithms in Depth-First Search

The main difference between the brute-force algorithms and
the selectivity algorithms; it doesn't depend on fixed depth to
stop looking in each branch. The most common techniques in
this category are Quiescence Search and Forward Pruning.

// Search game tree to given depth, and return evaluation of

// root node.

int AlphaBeta(gamePosition, depth, alpha, beta)

{

 if (depth=0 || game is over)

// evaluate leaf gamePositionition from

// current player’s standpoint

 return Eval (gamePosition);

 // present return value

 score = - INFINITY;
 // generate successor moves

 moves = Generate(gamePosition);

 // look over all moves

 for i =1 to sizeof(moves) do

 {

 // execute current move

Make(moves[i]);

// call other player, and switch sign of

// returned value

cur = -AlphaBeta(gamePosition, depth-1,

 -beta, -alpha);
 // compare returned value and score

// value, update it if necessary

 if (cur > score) score = cur;

 // adjust the search window

 if (score > alpha) alpha = score;

 // retract current move

 Undo(moves[i]);

 // cut off

 if (alpha >= beta) return alpha;

 }

 return score;

}

// Search game tree to given depth, and return evaluation of

// root node.

int NegaMax(gamePosition, depth)

{

 if (depth=0 || game is over)

// evaluate leaf gamePositionition from

// current player’s standpoint

 return Eval (gamePosition);

 // present return value

 score = - INFINITY;

 // generate successor moves
 moves = Generate(gamePosition);

 // look over all moves

 for i =1 to sizeof(moves) do

 {

 // execute current move

 Make(moves[i]);

// call other player, and switch sign of

// returned value

 cur = -NegaMax(gamePosition, depth-1);

 // compare returned value and score

// value, update it if necessary
 if (cur > score) score = cur;

 // retract current move

 Undo(moves[i]);

 }

 return score;

}

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

71 | P a g e
www.ijacsa.thesai.org

Below is a discussion of the implementation of the Quiescence
Search technique [15] and ProbCut [16] algorithm that is based
on the Forward Pruning technique.

Fig. 5. NegaScout Algorithm Pseudo Code Using the Minimal Window
Search Principle

Quiescence Search [15] based on the idea of variable depth
searching. The algorithm follows the normal fixed depth in
most branches. However, in some branches the algorithm takes
a deeper look and increases the search depth. An example of
that is the chess game where in critical moves like checks or
promotions, the algorithms extend the depth to make sure there
is no threat exists.

In Fig. 6 there is an abstract pseudo code for the
Quiescence Search that extends the depth and checks if there is
any capture for pieces after a specific move or not.

Fig. 6. Abstract Pseudo Code Version for Quiescence Search

Forward Pruning technique completes the idea of the
variable depth, where it cuts-off unpromising branches.
However, this can lead to errors in the result. Many algorithms
implemented the idea of this technique, including N-Best
Selective Search, ProbCut and Multi-ProCut [16].

N-Best Selective Search only looks for the best N-best
moves at each node. All other siblings for the N-best moves
will automatically cutoff.

Both ProbCut Multi-ProCut algorithms use the result of
shallow search to determine the possibility that a deeper search
will change the value of alpha and beta or not.

ProbCut [16] algorithm uses the statistics’ correlation
techniques to cutoff branches, because it was discovered that
there is a strong correlation between values obtained from
different depth. The relation was described by Micheal Buro as
follows:

V_D = a * V_D’ + b + e (2)

Where V_D means the value of a given depth, a & b are
real numbers and e is a normally distributed error with zero
mean.

Since the value of a ≈ 1, b ≈ 0 and σ2 is small in most stable
evaluation function, the probability of V_D >= beta could be
predicted from the following equivalent equation:

 V_D’ >= ((1/ Φ(P))*σ + beta –b) / a (3)

Furthermore, the probability of V_D <= alpha could
predicted from the following equivalent equation:

 V_D’ <= (-(1/Φ(P)*σ + alpha –b) / a (4)

int Quiesce(int alpha, int beta) {

 int stand_pat = Evaluate();

 if(stand_pat >= beta)

 return beta;

 if(alpha < stand_pat)

 alpha = stand_pat;

 until(every_capture_has_been_examined) {

 MakeCapture();
 score = -Quiesce(-beta, -alpha);

 TakeBackMove();

 if(score >= beta)

 return beta;

 if(score > alpha)

 alpha = score;

 }

 return alpha;

}

// Search game tree to given depth, and return evaluation of

// root node.

int NegaScout(gamePosition, depth, alpha, beta)

{

 if (depth=0 || game is over)

// evaluate leaf gamePositionition from
// current player’s standpoint

 return Eval (gamePosition);

 // present return value

 score = - INFINITY;

 n = beta;

 // generate successor moves

 moves = Generate(gamePosition);

 // look over all moves

 for i =1 to sizeof(moves) do

 {

 // execute current move
Make(moves[i]);

// call other player, and switch sign of

// returned value

cur = -NegaScout(gamePosition, depth-1,

 -n, -alpha);

 if (cur > score) {

 if (n = beta) OR (d <= 2)

 // compare returned value and

// score value, update it if

// necessary

score = cur;

else
score = -NegaScout

(gamePosition,depth-1,

 -beta, -cur);

}

 // adjust the search window

 if (score > alpha) alpha = score;

 // retract current move

 Undo(moves[i]);

 // cut off

 if (alpha >= beta) return alpha;

 n = alpha+1;
 }

 return score;

}

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

72 | P a g e
www.ijacsa.thesai.org

In Fig. 7 there is an abstract implementation for the
ProbCut algorithm. Remember it's up to you to choose the
values of D, D', the cutoff threshold (1/Φ(P)), a, b and σ. The
algorithm can provide a faster result than any brute-force
algorithm. However, it needs many accurate parameters, which
may be difficult to choose and may lead to errors in the results.

Fig. 7. Abstract Pseudo Code Version for ProbCut Search without the alpha-
beta implementation

Multi-ProbCut [16] algorithms generalize the idea of
ProbCut by using additional cutoff thresholds and checks,
including allowing more regression parameters and cutoff
thresholds, using many depth pair and using internal iterative
deepening for shallow searches.

C. Breadth-First Search

As mentioned before the BFS begins from the root node
then it visits its first child after that it visits all its siblings from
the same depth before it moves to the next depth. One of the
problems with this technique; it requires huge memory to store
node’s data. Many algorithms use this technique like NegaC*
[17], MTD (f) [14], SSS* [4], B* [5] and Monte-Carlo search
[18] algorithms, which discussed below.

NegaC* [17] algorithm uses the minimal-window with fail-
soft Alpha-Beta algorithm like NegaScout [3] algorithm, but it
parses the tree in Breadth-First way. The fail-soft technique
uses two more variables than the Alpha-Beta algorithms to
cutoff more branches.

In Fig. 8 there is an abstract pseudo code implementation of
the NegaC* algorithm.

Fig. 8. An Abstract Pseudo Code Implementation of the NegaC* Algorithm

MTD (f) [14] algorithm, which is an abbreviation for
"Memory-enhanced Test Driver" also uses the minimal-
window technique like NegaScout [3] algorithm, but it does it
efficiently. It was introduced as an enhancement to the Alpha-
Beta Algorithm as mentioned before. It also uses two more
variables to determine the upper-bound and lower-bound. The
normal Alpha-Beta algorithm uses only alpha and beta
variables with -∞ & ∞ as a start and the values are updated one
time at each call to make the only one returning value lies
between the alpha and beta values. However, MTD (f) may
search more than one time at each Alpha-Beta [12] call and use
the returned bounds to converge toward it using the lower-
bound and upper-bound to make faster cutoffs of the tree.
Furthermore, the algorithm uses a transposition table to store
and retrieve data about portions of the search tree to use it later
to reduce the over-head of re-examining same game state.
However, it uses memory space to store this data, which
required more memory space.

Fig. 9 shows a pseudo code for the MTD (f) algorithm
without the implementation of the Alpha-Beta algorithm which
was described in Fig. 4.

SSS* [4] is another famous breadth-first search algorithm,
which is non-directorial search algorithm. The algorithm
expands into multiple paths at the same time to get global-
information of the search tree. However, it searches fewer
nodes than fixed depth-first algorithms like Alpha-Beta
algorithm.

The algorithm stores’ information for all active nodes
which didn't solve yet in a list in decreasing order depends on
their importance. The information consists of three parts:

 N: a unique identifier for each node.

 S: a status of each node whatever it's live or has been
solved.

 H: an important value for the node.

int negaCStar (int min, int max, int depth) {

 int score = min;

 while (min != max) {

 alpha = (min + max) / 2;

 score = failSoftAlphaBeta (alpha,

 alpha + 1, depth);

 if (score > alpha)

 min = score;

 else

 max = score;
 }

 return score;

}

int alphaBetaProbCut(int α, int β, int depth) {

 const float T(1.5);

 const int DP(4);

 const int D(8);

 if (depth == 0) return evaluate();

 if (depth == D) {

 int bound;

 // v >= β with prob. of at least p?
// yes => cutoff */

 bound = round((T * σ + β - b) / a);

 if (alphaBetaProbCut(bound-1, bound,

 DP) >= bound)

 return β;

 // v <= α with prob. of at least p?

// yes => cutoff */

 bound = round((-T * σ + α - b) / a);

 if (alphaBetaProbCut(bound, bound+1,

 DP) <= bound)
 return α;

 }

 // the remainder of alpha-beta goes here

 ...

}

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

73 | P a g e
www.ijacsa.thesai.org

Fig. 9. Pseudo Code for the MTD (f) Algorithm Without the Implementation

of the Alpha-Beta algorithm Which was Described Previously in Fig. 4

The core of the SSS* [4] algorithm depends on two phases:

 Node Expansion: Top-down expansion of a Min
strategy.

 Solution: Bottom-up search for the best Max strategy.

Fig. 10 shows the pseudo code for the SSS* algorithm
using three function push, pop and insert to store, remove and
update node information.

Monte-Carlo Tree Search "MCTS" [18] algorithm made a
breakthrough in game theory and computer science field. The
algorithm is based on randomized exploration of the game tree.
The algorithm also uses the results of previous examined
values for nodes. Every time the algorithm runs it produces a
better estimation of values. However, the game tree gradually
grows in the memory, which is the main disadvantages of
breadth-first algorithms.

The algorithm consists of four phases, which is repeated as
long as there is still time for the computer to think:

 Selection phase, it starts from the root node; it traverses
the game tree by selecting the most promising move
until reaching a leaf node.

 Expansion phase, if the number of visits reaches a pre-
determined threshold, the leaf is expanded to build a
larger tree.

 Simulation phase, calculates the outcome value of the
leaf by performing a play-out at it.

 Back-propagation phase, it traces back along the game
tree path from the leaf to the root to update the values
changed in the simulation phase.

Fig. 10. Pseudo Code for the SSS* Algorithm

Fig. 11 shows the pseudo-code for MCTS algorithm using
the four phases described before.

B* [5] is the final algorithm that will be described in the
BFS. It finds the least-cost path from the node to any goal node
out of one of more possible goals. The main idea of this
algorithm is based on:

 Stop when one path is better than all the others.

 Focus the exploration on paths that will lead to
stopping.

The algorithm expands the searching based on prove-best
and disprove-rest strategies. In prove-best strategy, the
algorithm chooses the node with the highest upper-bound
because it has a high probability to raise its lower bound higher
than any other nodes' upper-bound when it expands. On the
other hand, the disprove-rest strategy chooses the next highest
upper-bound node because it has a good probability to reduce
the upper-bound to less than the lower-bound of the best child
when it expands.

int SSS* (node n; int bound)

{

 push (n, LIVE, bound);

 while (true) {

 pop (node);

 switch (node.status) {

 case LIVE:

 if (node == LEAF)

 insert (node, SOLVED, min(eval(node),h));

 if (node == MIN_NODE)

 push (node.1, LIVE, h);

 if (node == MAX_NODE)
 for (j=w; j; j--)

 push (node.j, LIVE, h);

 break;

 case SOLVED:

 if (node == ROOT_NODE)

 return (h);

 if (node == MIN_NODE) {

 purge (parent(node));

 push (parent(node), SOLVED, h);

 }

 if (node == MAX_NODE) {
 if (node has an unexamined brother)

 push (brother(node), LIVE, h);

 else

 push (parent(node), SOLVED, h);

 }

 break;

 }

 }

}

function MTDF(root, f, d){

 g := f

 upperBound := +∞

 lowerBound := -∞

 while lowerBound < upperBound{

 if g = lowerBound then

 β := g+1

 else

 β := g

 g := AlphaBetaWithMemory (root, β-1,

 β, d)

 if g < β then

 upperBound := g

 else

 lowerBound := g
 }

 return g

}

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

74 | P a g e
www.ijacsa.thesai.org

Fig. 11. Pseudo-Code for MCTS Algorithm

In the next section, a discussion of most famous parallel
game tree search algorithms is presented.

III. PARALLELISM IN GAME TREE SEARCH

The technological advances of the computer architecture
and the release of multiprocessors and multi-core computers,
allows algorithms that can be partitioned into independent
segments to be solved faster. Many enhancements were done
on the sequential algorithms to make it run in parallel as well as
new algorithms are designed for parallel computing. The
problem of parallel computing is the trade-off between the
overhead of communication and synchronization and the
benefits of exploring many nodes in the same time in parallel.
This made the speedup is sub-linear rather than linear. Section
[A], presents a discussion of various techniques & algorithms
made to solve these problems. Section [0], presents a
discussion for the parallelism of the game search tree from the
hardware point of view.

A. Game Tree Parallelism Techniques & Algorithms

As mentioned before many techniques were designed to
solve the overhead problem. One of them is the "Shared Hash
Table" technique, which stores information about nodes in the
game tree so it could be used by any processor or core in the
system. This reduces the communication over-head between
processors or cores, especially if the processors are not on the
same physical computer.

Many algorithms use the previous technique as well as
other techniques, including ABDADA, Parallel Alpha-Beta,
Parallel PVS, YBWC and Jamboree and Dynamic Tree
Splitting. Next, a description of each algorithm is presented.

 ABDADA is a loosely synchronized and distributed
search algorithm designed by Jean-Christophe. The algorithm
uses the shared hash table technique as well as adding more
information for each node like the number of processors
searching this node.

Parallel Alpha-Beta [6] is the parallel version of the
previously discussed Alpha-Beta algorithm. The basic idea is
splitting the search tree into sub-search trees and run each one
in specific core or more in case of multi-core and one or more
processor in case of multi-processor system. The problem of
this algorithm is the complexity of implementing it. However,
it can maximize the utilization of the cores or processors. The
two methods of splitting the tree are showing in Fig. 12.

Fig. 12. Partitioning of the Game Tree for Alpha-Beta Search

PVS [13] algorithm expresses each node as a thread which
can run in parallel. However, before running them in parallel,
the problem of data dependency that exists among threads must
be solved. A simple solution is to get the initial required value
from the first node among any siblings then run the remaining
siblings in parallel. The sequential and parallel tasks for PVS
algorithm using two processors is showing in Fig. 13 while a
pseudo code for the algorithm is showing in Fig. 14.

Fig. 13. Sequential and Parallel Tasks by Two Processors using PVS

YBWC and Jamboree algorithm [19] is shown in ,which
based on a recursive algorithm that visits the first node in
siblings before spawning the remaining sibling's nodes in
parallel. It uses this technique because the first node may
produce a cutoff so it does not waste the others processors’
time by searching in the sibling nodes or will produce better

Data: root node

Result: best move

while (has time) do

 current node ← root node

 /* The tree is traversed

 while (current node ϵ T) do

 last node ← current node

 current node ← Select(current node)

 end

 /* A node is added

 last node ← Expand(last node)

 /* A simulated game is played

 R ← P lay simulated game(last node)

 /* The result is backpropagated

 current node ← last node

 while (current node ϵ T) do
 Backpropagation(current node, R)

 current node ← current node.parent

 end

end

return best move = argmaxN ϵ Nc (root node)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

75 | P a g e
www.ijacsa.thesai.org

bounds, then the algorithm search the remaining siblings in
parallel. A pseudo code of the algorithm is showing in Fig. 15.

Fig. 14. Pseudo Code for PVS Algorithm Using Alpha-Beta Function

Finally, DTS algorithm [20] is the most complex parallel
game tree search algorithm and there are a few implantation of
it. However, it gives the best performance in symmetric multi-
processors systems. A pseudo-code of the DTS algorithm
presented in Fig. 16.

Table I shows the speedup for the three algorithms
compared using 1, 2, 4, 8, and 16 processors.

TABLE I. POPULAR GAME TREE PARALLEL ALGORITHMS SPEEDUP

Algorithm
Number of Processors

1 2 4 8 16

PVS 1.0 1.8 3.0 4.1 4.6

YBWC 1.0 1.9 3.4 6.1 10.9

DTS 1.0 2.0 3.7 6.6 11.1

All the previous parallel algorithms need a parallel
programming language or library that can handle threads and
parallel computing. Many libraries and programming languages
were released to support CPU parallelism in general. However,
the most famous library that used in parallel game tree
algorithms is MPI (Message Passing Interface) [21] which is an
extension of C programming language. MPI handles the burden
of synchronization, communication and distributed resources
management. The latest version of MPI is version 2 which
supports C++ and object-oriented programming.

Fig. 15. Pseudo Code for Jamboree Algorithm

Fig. 16. Pseudo Code for DTS Algorithm

DTS(root)
{

while (Stopping_criterion() == false)

{

 //One processor search to ply = N

 SearchRoot(root);

 //Detect free processors, and begin tree split

Split(node v);

//Initialize new threads.

ThreadInit();

 //Copy a “split block” to begin a new search

CopytoSMP(node v);

SearchSMP(node v);

}

ThreadStop();

}

jamboree(CNode n, int α, int β, int b)

{

if (n is leaf)

return static_eval(n);

c[] = the childen of n;

b = -jamboree(c[0], -β, -α);

if (b >= β) return b;

if (b > α) α = b;

In Parallel: for (i=1; i < |c[]|; i++)

{
s = -jamboree(c[i], -α - 1, -α);

if (s > b)

b = s;

if (s >= β

abort_and_return s;

if (s > α)

{

//Wait for the completion of previous

iterations of the parallel loop

s = -jamboree(c[i], -β, -α);

if (s >= β)

abort_and_return s;

if (s > α)

α = s;

if (s > b)

b = s;

}

}

 return b;

}

PVSplit (Node curnode, int alpha, int beta, int result)

{

 if(cur_node.is_leaf)

 return Evaluate(cur_node);

 succ_node = GetFirstSucc(cur_node);

 score = PVSplit(curnode, alpha, beta);

if(score > beta)

 return beta;
 if(score > alpha)

 alpha = score;

//Begin parallel loop

 while(HasMoreSuccessors(curnode))

{

 succ_node = GetNextSucc(curnode);

 score = AlphaBeta(succnode,alpha,beta);

 if(score > beta)

 return beta;
 if(score > alpha)

 alpha = score;

 }//End parallel loop

 return alpha;

}

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

76 | P a g e
www.ijacsa.thesai.org

Another trending library for artificial intelligence
algorithms that runs on CPU is Microsoft Task Parallel Library
(TPL) [22]. This library uses the concept of finite CPU-bound
computation based on task notation and the concept of
replicating task using work-stealing technique. It is more
effective to develop parallel algorithms such as DTS and
YBWC.

Other programming libraries were designed to run parallel
algorithms in GPU rather than CPU, including CUDA [23].
However, few algorithms were implemented using these
libraries because of the complexity of programming search
trees using these libraries. On the other hand, the implemented
algorithms that tested on GPU showed a better speedup than
the CPU.

B. CPU & GPU for Parallel Game Tree Search

In the previous fifteen years, all researches focused on
designing parallel algorithms that can run in parallel on multi-
cores or multi-processors. However, the new trend of search
trees field is to design and implement algorithms that can run
on parallel on the GPU. Early the GPU was built just for
graphic computing.

However, in the last 10 years the GPU became a platform
for general parallel processing computing. The idea of GPU is
to have hundreds or thousands of simple cores that can run
threads in parallel with higher GFLOPS than the CPU. On the
other hand, the CPU contains few powerful cores or few
powerful multi-processors that can run more instructions and
have a faster clock speed than the GPU. As mentioned before
few algorithms were modified to support GPU. However, in the
next five years many AI algorithms will designed to use the
power of GPUs. Fig. 17 shows the CPU and GPU architecture.

Fig. 17. Difference Between CPU and GPU Architecture

In the next section, an analysis of the previous algorithms
based on several criteria is presented.

IV. GAME TREE ALGORITHMS ANALYSIS

As the game tree was categorized according to specific
criteria, the evaluation of the previous algorithms is categorized
according to specific criteria ; which are:

 Completeness: whatever if the algorithm finds a
solution if one exists.

 Time Complexity: the number of nodes generated.

 Space Complexity: the maximum number of nodes in
memory during the search.

 Optimality: whatever if the algorithm always finds the
least-cost or the best solution.

The following terms were used to measure the time and
space complexity:

 B: maximum branches factor.

 D: depth of the best solution.

 M: maximum depth of the state space.

 L: depth cut-off

Table II compares the various sequential algorithm
categories based on the previous criteria.

TABLE II. SEQUENTIAL ALGORITHMS ANALYSIS

Criterion Breadth-

First

Depth-

First

Depth-

Limited

Iterative

Depending

Completeness Yes No Yes, if l >= d Yes

Time b
d
 b

m
 b

l
 b

d

Space b
d
 bm bl bd

Optimality Maybe No No Maybe

All algorithms that fall into any of the categories should
match the mentioned table criteria value. However, this is the
worst-case scenario. In most cases, a better space and time
values may be found. An example of that is the Alpha-Beta
algorithm where the average time is equal b3m/4.

The complexity analysis of parallel game tree searching
algorithms is more difficult than the sequential algorithms.
Usually, the parallel game tree searching algorithms could be
analyzed in terms of:

 Time complexity T (n): How many times steps are
needed?

 Processor complexity P (n): How many processors are
used?

 Work complexity W (n): What is the total work done by
all the processors?

The sequential Minimax algorithm with alpha-beta
modification has a time complexity of O(bm) in the worst case,
O(b3m/4) in the average case and O(bm/2) in the best case; where
b is the branching factor and m is the maximum depth of the
search tree. The total work done by the parallel alpha-beta
algorithm equals the total work done by the sequential
algorithm. Hence, table III summarizes the time complexity of
the parallel alpha-beta algorithm in the best, average and worst
case.By increasing the number of processors or cores, the
algorithm could provide a better speed-up. However, it will
never reach the ideal speedup, because of the communication
overhead between nodes for sharing alpha and beta values as
well as the synchronization overhead.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

77 | P a g e
www.ijacsa.thesai.org

TABLE III. PARALLEL ALGORITHMS ANALYSIS

Criterion Case Complexity

Time Complexity

worst

average

best

Processor Compleixty

worst

 average

best

Work Compleixty

worst

average

best

Besides the normal criteria that will make you choice any
game searching algorithms; which includes the amount of
memory you have, if you need an optimal solution or not, and
the time you need to solve, etc.. An important criterion is the
nature of the problem or the nature of the game and the nature
of the hardware architecture you have.

V. CONCLUSIONS & FUTURE WORK

A discussion of various game tree-searching algorithms was
presented in this paper, including sequential and parallel
algorithms. The popular sequential algorithms were covered in
details the common algorithms in both depth-first and breadth-
first. Furthermore, an overview of common parallel algorithms
as well as the hardware architecture for parallel game tree
searching was presented. In the end, an analysis the algorithms
based on four criteria was discussed.

The use of service-oriented approach to expand the
searching trees into a distributed system will solve many
distributed issues, while using tasks technology rather than
threads to implement the parallel algorithms to maximize the
utilization of multi-core computers. Another suggestion is to
implement the search algorithms using the OpenCL library
which allows the code to run on both GPU and CPU, or CUDA
library to produce a massive parallel game tree searching
algorithm.

The new feature of dynamic parallelism in CUDA v5.5
allows recursion based algorithms to run faster on the GPU, by
eliminating the CPU initialization time of each kernel.
Furthermore, the unified memory in CUDA 6.0 creates a pool
of management memory that is shared between the CPU and
GPU, which make the development of complex games easier.
Both the dynamic parallelism and unified memory features can
improve the speedup of current AI game tree searching
algorithms.

REFERENCES

[1] S. Russell and P. Norvig, Artificial intelligence: a modern approach, 3rd
ed. Prentice Hall Press, 2009, p. 1152.

[2] G. T. Heineman, G. Pollice, and S. Selkow, “Path Finding in AI,” in

Algorithms in a Nutshell, 1st ed., O’Reilly Media, 2008, pp. 213–217.

[3] H.-J. Chang, M.-T. Tsai, and T. Hsu, “Game Tree Search with Adaptive
Resolution,” in Advances in Computer Games SE - 26, vol. 7168, H. J.

Herik and A. Plaat, Eds. Springer Berlin Heidelberg, 2012, pp. 306–319.

[4] [4] U. Lorenz and T. Tscheuschner, “Player Modeling, Search
Algorithms and Strategies in Multi-player Games,” in Advances in

Computer Games SE - 16, vol. 4250, H. J. Herik, S.-C. Hsu, T. Hsu, and
H. H. L. M. (Jeroen. Donkers, Eds. Springer Berlin Heidelberg, 2006,

pp. 210–224.

[5] Y. Tsuruoka, D. Yokoyama, and T. Chikayama, “Game-Tree Search
Algorithm Based on Realization,” ICGA J., vol. 25, no. 3, pp. 145–152,

2002.

[6] V. Manohararajah, “Parallel Alpha-Beta Search on Shared Memory
Multiprocessor,” Computer Engineering University of Toronto, 2001.

[7] D. Strnad and N. Guid, “Parallel alpha-beta algorithm on the GPU,”
CIT, vol. 19, no. 4, pp. 269–274, 2011.

[8] J. Habgood and M. Overmars, “Clever Computers: Playing Tic-Tac-

Toe,” in The Game Maker’s Apprentice SE - 13, Apress, 2006, pp. 245–
257.

[9] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, “Depth-first search,”

in Introduction to Algorithms, 3rd ed., MIT Press, 2009, pp. 603–612.

[10] W. Ertel, “Search, Games and Problem Solving,” in Introduction to
Artificial Intelligence SE - 6, Springer London, 2011, pp. 83–111.

[11] M. Schadd, “Selective Search in Games of Different Complexity,”

Maastricht University, 2011.

[12] D. Knuth, Selected Papers on Analysis of Algorithms. California: Center
for the Study of Language and Information, 2000.

[13] M. H. M. Winands, H. J. van den Herik, J. W. H. M. Uiterwijk, and E.
C. D. van der Werf, “Enhanced forward pruning,” Inf. Sci. (Ny)., vol.

175, no. 4, pp. 315–329, 2005.

[14] K. Shibahara, N. Inui, and Y. Kotani, “Adaptive Strategies of MTD-f for
Actual Games,” in CIG, 2005.

[15] M. Schadd and M. Winands, “Quiescence Search for Stratego,” in

BNAIC, 2009, pp. 225–232.

[16] A. X. Jiang and M. Buro, “First Experimental Results of ProbCut
Applied to Chess,” Adv. Comput. Games, vol. 10, 2003.

[17] D. Rutko, “Fuzzified Tree Search in Real Domain Games,” in Advances

in Artificial Intelligence SE - 13, vol. 7094, I. Batyrshin and G. Sidorov,
Eds. Springer Berlin Heidelberg, 2011, pp. 149–161.

[18] J. Hashimoto, A. Kishimoto, K. Yoshizoe, and K. Ikeda, “Accelerated

UCT and Its Application to Two-Player Games,” Adv. Comput. Games,
2011.

[19] [19] J. Steenhuisen, “Transposition-Driven Scheduling in Parallel Two-
Player State-Space Search,” Delft University of Technology, 2005.

[20] T. A. N. Ying, L. U. O. Ke-lu, C. Yu-rong, and Z. Yi-min, “Performance

Characterization of Parallel Game-tree Search Application Crafty,” vol.
4, no. 2, pp. 2–7, 2006.

[21] D. Jakimovska, G. Jakimovski, A. Tentov, and D. Bojchev,

“Performance estimation of parallel processing techniques on various
platforms,” in Telecommunications Forum (TELFOR), 2012 20th, 2012,

pp. 1409–1412.

[22] D. Leijen, W. Schulte, and S. Burckhardt, “The design of a task parallel
library,” Acm Sigplan Not., vol. 44, no. 10, pp. 227–242, Oct. 2009.

[23] D. B. Kirk and W. M. W. Hwu, Programming Massively Parallel

Processors: A Hands-on Approach. Morgan Kaufmann, 2012, p. 496.

