
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

132 | P a g e
www.ijacsa.thesai.org

Web and Telco Service Integration: A Dynamic and

Adaptable Approach

Julián Rojas, Leandro Ordóñez-Ante, Juan Carlos Corrales

Telematics Engineering Group

University of Cauca

Popayán, Colombia

Abstract—The current evolution of the Web, known as Web

2.0 and characterized by providing a diverse global service

ecosystem, has marked a change in the role played by telecom

operators. In order to maintain high competitive market

dynamism and generate new revenue sources, many operators

seek to leverage the wide variety of existing Web services and

integrate them with its infrastructure capabilities. Such

integration leads to various challenges from a technological

perspective, where the heterogeneity on networks and the need

for highly qualified personnel for the development of these

services are highlighted. This paper is propose the definition of a

mechanism for integrating both Web and Telco services which

facilitates and speeds the development of new services,
considering the dynamic conditions of its execution.

Keywords—Web Services; Telco Services; JAIN SLEE;

Integration; Adaptation

I. INTRODUCTION

Currently there is a trend in the telecommunications
industry that has created a scenario in which a new model
known as Telco 2.0 [1] has been defined. This model relates
the concepts, services and Web 2.0 technologies with
traditional telecommunications features (Telco services),
allowing operators to expand their service portfolio and have a
greater impact on the market by reaching end-users with more
complex and personalized services. These new kind of services
are known as converged services due to its integration of
functionalities form the telecommunications domain (voice,
video and data) with Information Technology (IT) services
from the Web domain.

Such integration demands complex and robust platforms
that support the interoperability of different technologies and
communication protocols, characteristic of services from both
Telco and Web domains. Different approaches have been
proposed such as the SIP Servlets Specification [2], the
Ericsson Converged Service Studio [3], Alcatel-Lucent uReach
CSF (Converged Services Framework) [4], among others. An
alternative that stands out is the JAIN SLEE Specification [5],
which proposes a standard and robust environment for the
creation and execution of converged services, meeting the
rigorous performance requirements typical of Telco services
(high availability, low latency, asynchronous behavior, etc.)
and allowing its integration with Web technologies.

Generally Telco services belonging to an operator reside on
platforms located within its network, where they are managed

and executed. On the other hand, Web services tend to be
distributed applications that belong to 3rd party providers,
therefore integrating them to the operator infrastructure,
requires the development of modules that represent them and
manage the data interaction present during their invocation.
This implies an extra effort on developing terms considering
that, for each Web service that wants to be integrated, a module
must be designed and built.

Another issue related to the integration of Web and Telco
services over an operator network is that due to the distributed
nature of Web services, when failures occur on runtime, the
operator usually does not have access to the platforms where
Web services reside to address and correct them. Such failures
become a major issue and could compromise the correct
operation of converged services that relay on those Web
services. This issue poses the need for operators to implement
contingency mechanisms that adapt to Web service invocation
failures at runtime, in order to provide high quality converged
services.

This paper introduces the definition of a mechanism for
integrating Web and Telco services over a converged platform,
specifically JAIN SLEE. The proposed mechanism facilitates
the inclusion of Web services into telecommunications
networks by defining an interaction model between JAIN
SLEE and Web environments that allows integrating different
Web services without having to develop additional modules for
each Web service that wants to be integrated. The interaction
model also considers the dynamic conditions of Web services
invocation by detecting possible failures at runtime and
adapting to alternative ones, defined by the converged service
designer at creation time. The rest of the paper is arranged as
follows. Next section presents a conceptual base of the
different technologies related with this work. Section 3
describes different proposals that address the integration of
Web and Telco services. On section 4 is presented a detailed
description of the proposed integration mechanism. Section 5
presents the fault handling and adaptation functions included in
the mechanisms. Section 6 presents a case study through which
the proposed mechanism is evaluated. Finally, on section 7 are
presented the conclusions and future work.

II. BACKGROUND

The integration of Web and Telco services contemplates the
use of diverse technologies that comprise both domains.
Telecommunications protocols such as SIP, SS7 stack and

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

133 | P a g e
www.ijacsa.thesai.org

SMPP, and Web frameworks like WSDL/SOAP services and
Apache Axis2 are among the technologies that must be taken
into consideration. Is also important the platform that supports
the integration of these services, which determines how
converged services are built and executed. As stated before, the
selected platform for developing this proposal is the JAIN
SLEE specification. Next is presented a description of the main
technologies and concepts that comprises this proposal.

A. Web Services

According to the W3C (World Wide Web Consortium)
definition, a Web service is a software system designed to
support interoperable machine-to-machine interaction over a
network. It has an interface described in a machine-processable
format (specifically WSDL). Other systems interact with the
Web service in a manner prescribed by its description using
SOAP messages, typically conveyed using HTTP with an
XML serialization in conjunction with other Web-related
standards [6]. Following such definition, Web services can be
characterized as distributed software components which can be
described, published, discovered and invoked with standard
protocols. Web services communicate using XML and Web
protocols, working internally and across the Internet. They
support heterogeneous interoperability and use SOAP for
service calls and WSDL for service descriptions [7].

B. Apache Axis2

The Apache Axis2 project is a Java-based implementation
of both the client and server sides of the Web services
equation. Designed to take advantage of the lessons learned
from Apache Axis 1.0, Apache Axis2 provides a complete
object model and a modular architecture that makes it easy to
add functionality and support for new Web services-related
specifications and recommendations [8].

Among the functionalities provided by Apache Axis2 is the
creation of implementation classes for both the server and
client using WSDL documents. This is a significant advantage
for dynamic invocation of Web Services considering that Web
service clients usually are hard coded implementations that
cannot be modified at runtime and are designed to deal with the
invocation and data interaction of a single Web service.
Therefore, Apache Axis2 is able to infer data requirements and
interactions of Web services from its WSDL description
documents and dynamically implement the necessary classes
for its invocation at runtime.

C. JAIN SLEE Specification

JAIN SLEE aims at defining a new kind of application
server designed for hosting carrier-grade Telco services. In
particular, a JSLEE container is designed for hosting
communication applications while typical application servers
have been designed for enterprise applications and they usually
do not consider high-availability and performance concerns.
JSLEE containers relay on an event based model, with
asynchronous interactions among components [9]. The atomic
element define by JSLEE is the SBB (Service Building Block).

An SBB is a software component that sends and receives
events, and performs computations based on the receipt of such
events and its current state. Events are used to represent
occurrences of importance that may occur at arbitrary points of

time. An event may asynchronously originate from different
sources such as communications protocol stacks, network
elements or from application components within the SLEE.
The SLEE deals with those events through elements called
resource Adaptors which adapt the particular interfaces of an
external resource into the interfaces and requirements of the
SLEE [10].

D. TelComp 2.0 Project

The present work is framed within the Project TelComp
2.0: Retrieval and Composition of Complex Components for
the Creation of Telco 2.0 Services [11], funded by
COLCIENCIAS and developed by the Telematics Engineering
Group of the University of Cauca. The TelComp 2.0 project
proposes the generation of a platform aimed to support the
process of creation, composition and execution of new
converged services, providing developers with tools that allow
them to articulate atomic services (Web/Telco) over a unified
environment for defining new value-added functionalities.
TelComp 2.0 execution environment is based on the JAIN
SLEE specification which must support the execution of Telco
services and its integration with Web services. Therefore, the
present proposal represents a major contribution to this project
by defining a dynamic and adaptable mechanism for
integrating Web and Telco services that facilitates and allows
automating the creation of converged services.

III. RELATED WORKS

There are several proposals that address the integration of
Web and Telco services, defining interaction models that
mainly focus on representing and exporting Telco service
functionalities as Web services so they can be composed in
business processes platforms such as BPEL (Business Process
Execution Language) or ESB (Enterprise Service Bus).

One of these proposals is the Parlay X specification which
details a set of simple web services that can be used as building
blocks for telecom applications. The key design point for all of
these web services was simplicity. Parlay-X combines sets of
communications functions into useful but non application
specific building blocks. The capabilities are restricted to those
which can be performed with a single SOAP message
exchange, since this simplifies use for the non-professional
programmer. The Parlay-X functions are documented in a self-
documenting XML interface [12]. Following this line of
development, in [7] is proposed a mechanism to encapsulate
Telco functionalities running on JAIN SLEE platforms as
WSDL/SOAP Web services, for them to be integrated with
other Web services through an ESB. However, such
encapsulation enforces a synchronous behavior of Telco
services and does not allow managing communication sessions
during the execution of converged services. Another approach
is the one presented in [13] where a set of design patterns to
represent Telco services behavior are proposed. The patterns
are implemented using Parlay X interfaces and composite
applications are built over a BPEL engine. This work address
the complexity of managing Telco service transactions on a
synchronous environment but this requires the extension of the
BPEL standard by adding additional parameters that consider
the asynchronous nature of Telco services, significantly
increasing the complexity of implementing such system.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

134 | P a g e
www.ijacsa.thesai.org

On [14] is presented a description and analysis of different
approaches to formally describe Telco service functionalities
for its integration on Web based execution environments. This
work presents an UML based modelling approach to describe
Telco services, that considers asynchronous behavior but does
not address execution or integration issues. Another type of
analysis is made on [15] where the advantages and
disadvantages of different programming frameworks are
considered for integrating Web applications on IMS (IP
Multimedia Subsystem) based telecommunications
architectures. This work presents a more convenient approach
from operators perspective, considering that Web applications
are integrated into its telecommunications infrastructure
without having to design or implement Web based platforms
for composing new converged services. However, the analysis
made mainly focus on the programming complexity of using
languages such as Java or Ruby for developing Web
applications that could be integrated into IMS environments,
but does not specifies how such integration should be carried
out. It is also important to highlight the work presented in [16]
where a model to describe and export Telco Services as Web
services is defined. Such model is based on the development
and inclusion of a SOAP resource adaptor to a JAIN SLEE
environment which receives invocation requests for activating
Telco services on the SLEE. As pointed out before, exporting
Telco services as Web services allows to integrate them into
Web based composition engines but does not permit to manage
asynchronous transactions from the converged services
execution flow perspective. Finally, the work presented in [17]
defines a converged platform for executing composed services,
comprising both Web and Telco domains. In this approach,
integration is achieved through a composition engine which
manages service invocations and data interactions in a
centralized manner. However, undesired scenarios during the
execution of converged services, such as possible invocation
failures are not considered. Without relying on adaptable
mechanisms, problems presented at runtime may cause major
failures, preventing converged services to carry out its
purposes.

Related works show a strong trend towards the integration
of Web and Telco services, by representing and describing
Telco services as Web services through initiatives such as
Parlay X, so they can be included in Web based composition
engines. Our approach pretends to achieve such integration by
defining an interaction mechanism to include Web services into
a Telco service capable environment like JAIN SLEE, where
asynchronous behavior and transaction based interactions can
be managed and executed. This type of integration helps to
reduce the complexity for operators to develop converged
services by not having to include Web based platforms within
its network infrastructures and using additional interfaces for
describing its Telco capabilities. We also consider the dynamic
behavior of Web service invocations by adding failure
detection and adaptive capabilities to the proposed interaction
mechanism.

IV. INTEGRATION MECHANISM

As stated before, this proposal is framed within the project
TelComp 2.0. Within this project a generalized structure for

building converged services has been defined, as shown on
Figure 1. The execution logic of a converged service is
managed by an orchestrator SBB which communicates with a
set of atomic services (Web or Telco) through firing and
receiving events. These events may be provided by resource
adaptors or defined by each atomic service as custom events
developed for specific tasks. An entity called Event Router,
defined by the JAIN SLEE specification, is responsible for
delivering events to its corresponding destinies.

Telco services implementation reside along with converged
services in the JAIN SLEE environment due to the capabilities
of this specification for supporting the execution of this kind of
services. On the other hand, Web services implementations are
distributed across the Internet, generally belonging to 3rd party
providers. Therefore, invoking Web services from within the
SLEE during the execution flow of converged services requires
a mechanism to generate requests and receive responses while
managing its data interactions. One possible approach is to
implement a JAIN SLEE module for each Web service that
wants to be invoked. However this is a complex and time
consuming task due to the large number of existing Web
Services.

Converged Service

Orchestraror SBB

Atomic Services

Service 1

Event
Router

Resource Adaptors (SIP, CAMEL, INAP, HTTP, etc.)

Service 2 Service n

JSLEE Environment

Fig. 1. Converged service general structure.

The proposed integration mechanism defines a generalized
and unique component to perform Web service invocations and
manage its data interactions. For this, two main modules are
defined. The first module is called Web Service Invocator and
is implemented as a JAIN SLEE application. This module is
responsible for representing Web services within the SLEE and
for communicating with other Telco services involved in the
execution flow of converged services. The second module is
called Dynamic WS Client which is implemented as a Java
Web application, based on the Apache Axis2 framework. This
module is responsible for dynamically creating Web services
invocation clients from its WSDL description documents.
Figure 2 presents a modular scheme of the integration
mechanism.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

135 | P a g e
www.ijacsa.thesai.org

WebWeb

Web Service Invocator

Event Router

JSLEE Environment

SBB

Invoke
WS Event

WS Response
Event

HTTP RA

Dynamic WS Client

Web Container

SOAP
Request

SOAP
Response

Fig. 2. Modular scheme of the integration mechasnism.

For defining a generalized module for invoking different
Web services, it must be considered that despite been described
in a standardized manner using WSDL documents; they present
a high heterogeneity regarding its data interactions. Input and
output parameters of Web services are of different types, being
simple data as integers or strings, or more complex such as
arrays. The number of inputs and outputs of Web services is
another important factor to be considered. For example, a
weather Web service may require one input (location) to
generate a weather forecast, returning two outputs (temperature
and forecast), while a currency convertor Web service may
require three inputs (source, target and value) to generate the
equivalency between to different currencies, returning one
output (result). Invoking these Web services requires different
methods to create the invocation requests with the
corresponding input parameters and receive its responses with
the corresponding output data. Below are described the Web
Service Invocation and Dynamic WS Client modules and how
is addressed Web service data interaction heterogeneity.

A. Web Service Invocator

As pointed out above, Web Service Invocation module has
been implemented as a JAIN SLEE application. The interaction
with this module is made through an initial event which
contains the required data for a Web service invocation, and a
response event which contains the invocation results, as shown
on Figure 2. To deal with different number of input and output
parameters with different data types, it has been defined a data

managing interaction mechanism using Java HashMaps. A
HashMap is a data structure used to implement associative
arrays based on a Key/Value model. The initial event contains
a HashMap which includes all the input parameters (name and
value) of a Web service for its invocation. Same as the initial
event, the response event also contains a HashMap which
includes all the output parameters, associating its names and
values.

Once an initial event is received by the module, it extracts
all the parameters contained in the HashMap and builds a
HTTP GET request addressed to the Dynamic WS Client
module to perform the Web service invocation. Table I shows
the parameters that are extracted from the HashMap and
included in the HTTP request.

TABLE I. WEB SERVICE INVOCATION PARAMETERS

Parameter Description

serviceWSDL

This parameter reference the URL of the Web service

WSDL. For example:

operationName

This parameter contains the name of the specific operation

that wants to be invoked form the Web service. For

example:

inputs

This parameter contains the name and value of the

different inputs required for the Web service for its

execution. For example:

The HTTP response returned by the Dynamic WS Client,
which contains the output parameters resulting from invoking a
Web service, presents such information using a predefined
XML structure which will be described later. Web Service
Invocator module extracts the data contained in the HTTP
response through an XML parser and generates a HashMap
that presents the outputs in a Name/Value manner which is
included in the response event. Table II presents an example of
the output HashMap, resulting from the invocation of a weather
Web Service.

TABLE II. OUTPUT HASHMAP STRUCTURE EXAMPLE

Key Value

HashMaps represent a very convenient mechanism to
present the output parameters of a Web service due to their
capacity of relating different type of data such as primitive
variables, or arrays.

B. Dynamic WS Client

This module receives the HTTP GET request coming from
the Web Service Invocator module which contains all the
parameters needed to invoke a Web service. Using the Apache
Axis2 functions, it retrieves the WSDL of the Web service and

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

136 | P a g e
www.ijacsa.thesai.org

maps the input parameter values to create an appropriate client
that generates SOAP requests to the Web service. Upon
receiving a SOAP response, it takes the output parameter
values and generates an XML document which organizes the
information. Figure 3 presents an example of a Web service
response structured through an XML document.

Fig. 3. Example of response structured as an XML document.

The response XML documents are defined by a structure
which contains a main tag called outputs that encapsulate all
the output parameters of a Web service response. A specific
parameter is represented by the tag output which contains the
name of the parameter and its corresponding value. To
represent parameters as arrays, its content is separated in
different output structures which have the same name but
possibly a different value. Having output structures with the
same name allows the Web Service Invocator module to
identify arrays and build them to be included in the response
HashMap, preventing them to be considered as independent
parameters. Once the XML document including all the output
parameter has been created, the Dynamic WS Client module
generates an HTTP 200 OK response including the XML
document and addressed to the Web Service Invocator Module.

V. FAULT HANDLING AND ADAPTATION

The fault handling and adaptation functions added to the
integration mechanism are aimed to detect possible failures
during the invocation of Web services and to adapt the
mechanism for invocating backup services which are defined at
creation time, allowing converged services to carry out its
purpose. Based on the service fault taxonomy defined in [18],
the fault handling mechanism identifies two different types of
faults:

 Service Provider Faults: reference possible faults that
occur on platforms hosting Web services
implementation. For example a Web service being
unavailable won’t be able to process and respond
invocation requests.

 Communication Faults: reference possible faults that
may occur due to network issues. For example sending
to a Web service an invocation request over a network
holding heavy traffic may result on a delayed response
or no response at all.

The detection of Service Provider Faults is made by
capturing exceptions generated in the Dynamic WS Client
module during the invocation of Web services. Once an
exception is captured, it sends a HTTP error response to the
Web Service Invocator module. On the other hand,

Communication Faults are detected by establishing an
execution timer for every invocation request sent by the Web
Service Invocator module. The maximum waiting time for a
Web service response is configured by the converged service
developer at the creation stage. The timer is set using the Timer
Facility defined by the JAIN SLEE specification. Once a fault
is detected, the Web Service Invocator module adapts itself to
perform the invocation of backup Web services defined at
creation time through a list provided by the converged service
developer. The adaptation process is formally defined in
algorithm 1.

Algorithm 1: Adaptation Process for Web Service

Invocation

INPUTS:

OUTPUTS:

BEGIN

while is active do

 if then

 end if

end while

if then

 if then

 else do

 for in do

 if then

 break

 end if

 end for

 end if

else do

 for in do

 if then

 break

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

137 | P a g e
www.ijacsa.thesai.org

 end if

 end for

end if

END

As stated before, Web Service Invocator module initiates a
Web service invocation by creating an HTTP request which
includes the invocation parameters ().
Immediately after sending the request to the Dynamic WS
Client module, it sets a timer which indicates the maximum
waiting time () for a response. While waiting, if a
response is received the timer is deactivated and the response is
analyzed. If the response corresponds to an HTTP 200 OK
response, the output parameters are retrieved
() and the response event is fired. Otherwise,
either if the response did not arrive within the established time
or if it corresponds to an HTTP error response, backup Web
services () retrieved from the list ()
provided by the converged service developer are invoked until
a successful invocation is achieved. However if no successful
invocation is completed an error in the execution flow of the
converged service will be produced. This adaptation
mechanism helps to reduce the probability of major faults
occurring during the execution of converged services.

VI. IMPLEMENTATION AND CASE STUDY

The implementation of the Web Service Invocation and
Dynamic Web Service modules was made over the Mobicents
JAIN SLEE server and Apache Tomcat Web container
respectively. A functional test of the integration mechanism
was performed through a converged service called Twitter
Financial Message which is composed of two Web services
(Finance WS and Twitter WS) and two Telco services (Receive
IM and Send IM). This service initiates its execution upon
receiving a SIP instant message (Receive IM) from the user
containing the code name of a NASDAQ stock from which the
user wants to know its current value. With the code name is
invoked a Web service (Finance WS) that returns the stock
current value. Then, the stock information is sent
simultaneously to the user as an instant message (Send IM) and
as a private message in the Twitter account of the user through
a Web service (Twitter WS). Figure 4 shows the converged
service diagram and Figure 5 presents the implementation
modules needed for its execution.

Through the modules developed, invoking and integrating
Web services into a Telco environment requires only for
converged service developers to specify data flow between
component services, leaving Web service clients’
implementation details to the modules.

Start

Receive IM

Finance WS

End

Twitter WS Send IM

Fig. 4. Twitter Financial Message diagram.

To test the adaptation functions of the integration
mechanism was set an undesired scenario where Twitter WS
was made unavailable. As a backup Web service, another
instance of Twitter WS was configured with a different name.

The test results show that the mechanism adapts to invoke a
backup Web service in an average time of 41.9 milliseconds
after detecting a fault, indicating a high performance of the
adaptation process as seen in Figure 6.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented a dynamic and adaptable approach for
integrating Web and Telco services in JAIN SLEE
environments. This approach defines a generalized set of
modules which allow invoking Web services regardless of their
functionality or required data structure. The proposed
mechanism facilitates for developers to invoke Web services
and integrate them into the execution flow of converged
services, by only specifying the data flow required by each one
without having to deal with the implementation details of Web
service clients. An adaptation mechanism that detects faults
occurred during the invocation of Web services is also
implemented with very satisfying results. The adaptation
process is carried out in a transparent manner from the user
perspective, adapting to invoke backup Web services defined at
the creation stage, upon the detection of failures with very low
execution times. Such process helps reducing the probability of
major faults during the execution of converged services.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

138 | P a g e
www.ijacsa.thesai.org

WEBWEB
SIP
RA

Receive
IM

Send
IM

Twitter
Financial
Message

Web
Service

Invocator

Mobicents JAIN SLEE

HTTP
RA

Apache Tomcat

Dynamic
WS Client

Twitter WS

Finance WS

Fig. 5. Implementation of Twitter Financial Message.

Fig. 6. Performance Adaptation Tests.

This work comprises an important contribution to the
TelComp 2.0 project, specifically on the automation of
converged service creation and composition. As future work, is
proposed to automate the process of retrieving backup services
based on functional and semantic analysis, without needing to
be specified by the developer at creation time. Other approach
that could be addressed is to include REST services into the
integration mechanism, considering the large proliferation of
this type of services. Another future approach is the design and
development of a monitoring mechanism which enables to be
aware of the current status of all services and detect undesired
behaviors that may compromise the proper operation of
converged services.

VIII. ACKNOWLEDGEMENTS

The authors would like to thank University of Cauca and
TelComp2.0 project (Code: 1103-521-28338 CT458-2011) for
supporting and financing this work and the MSc. students

Julián Andrés Rojas and Leandro Ordoñez.

REFERENCES

[1] Jong-Lok Yoon, “Telco 2.0: a new role and business model,” Commun.
Mag. IEEE, vol. 45, no. 1, pp. 10–12, 2007.

[2] JSRs: Java Specification Requests, “JSR 289: SIP Servlet v1.1.” 2008.

[3] Ericsson, “Ericsson Converged Service Studio.” 2013.

[4] uReach Technologies, “Converged Services Framework.” 2013.

[5] JSRs: Java Specification Requests, “JSR 240: JAIN SLEE (JSLEE)
v1.1.” 2008.

[6] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris,

and D. Orchard, “Web Services Architecture, W3C Working Group
Note 11.” W3C Technical Reports and Publications, 2004.

[7] K. Rezabeigi, A. Vafei, and N. Movahhedinia, “A Web Services based
Architecture for NGN Services Delivery,” World Acad. Sci. Egineering

Technol., vol. 43, 2008.

[8] Apache Software Foundation, “Apache Axis2 User’s Guide.” 2012.

[9] P. Falcarin and C. Venezia, “Communication Web Services and JAIN-
SLEE Integration Challenges,” Int. J. Web Serv. Res., vol. 5, no. 4, p.

5978, 2008.

[10] P. Falcarin and L. Walter, “An Aspect-Oriented Approach for Dynamic
Monitoring of a Service Logic Excecution Environment,” IEC Annu.

Rev. Commun., vol. 59, pp. 237–242, 2006.

[11] Grupo de Ingeniería Telemática, “TelComp2.0 Project Website,” 2013.
[Online]. Available: http://190.90.112.7:8080/TelComp-SCE/.

[12] L. Zygmunt, “Parlay/OSA - a New Way to Create Wireless Services.”

The Parlay Group, 2003.

[13] P. Baglietto, M. Maresca, M. Stecca, A. Manzalini, R. Minerva, and C.

Moiso, “Analysis of design patterns for composite telco services,” in
Intelligence in Next Generation Networks (ICIN), 2010 14th

International Conference on, 2010, pp. 1–6.

[14] E. Bertin and N. Crespi, “Describing Next Generation Communication
Services: A Usage Perspective,” Lect. Notes Comput. Sci., vol. 5377, pp.

86–97, 2008.

[15] A. asanovi , N. Suljanovi , A. Muj i , and R. Sernec, “Dynamic
Languages Integration Path for Telecom Applications,” in Digital

Telecommunications, 2009. ICDT ’09. Fourth International Conference
on, 2009, pp. 133–137.

[16] C. Venezia and P. Falcarin, “Communication Web Services

Composition and Integration,” in Web Services, 2006. ICWS ’06.
International Conference on, 2006, pp. 523–530.

[17] J. Niemoller, E. Freiter, K. Vandikas, R. Quinet, R. Levenshteyn, and I.

Fikouras, “Composition in Converged Service Networks: Requirements
and Solutions,” in International Workshop on Business Systems

Management and Engineering, 2010.

[18] I.-Y. Chen, G.-K. Ni, C.-H. Kuo, and C.-Y. Lin, “A BPEL-Based Fault-
Handling Architecture for Telecom Operation Support Systems.,”

JACIII, vol. 14, no. 5, pp. 523–530, 2010.

34

35

36

37

38

39

40

41

0 1 2 3 4 5 6 7 8 9 10

Ti
m

e
in

 m
ill

is
ec

o
n

d
s

Adaptation tests

