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Abstract—The RC4 stream cipher has shown to be quite
resilient to cryptanalysis for the 26 years it has been around.
The algorithm is still one of the most widely used methods of
encryption over the Internet today being implemented through
the Secure Socket Layer and Transport Layer Security protocols.
Genetic algorithms are a sub-class of evolutionary algorithms
that have been used to help solve many different problems of
optimization in a variety of disciplines. In this paper we will
examine the abilities of the genetic algorithm as a tool to help
solve the permutation that is stored as the state register of the
RC4 stream cipher. Finally, we will show that on average the
genetic algorithm can solve 100% of the keystream in 2121.5

generations.

I. INTRODUCTION

Over the past twenty years the Internet has evolved astro-
nomically as a tool for education, pleasure, and economics,
to name a few applications. In today’s society there are very
little tasks in one’s daily life which are not facilitated by the
Internet in some way, shape, or form. As the services available
over the Internet continue to expand, new and old problems of
security arise and must be accounted for in order to properly
facilitate these applications.

One of the largest sectors which continues to grow is
on-line banking and other electronic financial transactions
(conveniently distinguished as E-Commerce). These two appli-
cations face many of the same problems as traditional physical
banking, but also a new set of challenges that have amounted
due to the use of the Internet. The most obvious contemporary
issue is that of communication. Traditionally a customer simply
communicated with a bank teller where the environment could
be controlled as well as the manor of communication (i.e.
whether something could simply be conveyed through speech
or read privately by the customer). With the advent of on-
line banking there is an unknown communication between the
customer (client computer) and the teller (bank servers). The
very fact that on-line banking improves the ease of use for a
customer by virtually letting them do their banking anywhere
with an Internet connection also hinders their ability to know
specifically how their private communication with the bank
system is being conducted.

Besides this, there it also the convenient and ubiquitous
use of mobile computing. With advent of smart-phones, the
main use of the Internet is quickly shifting to being used
mainly in the mobile computing environment. According to
PewResearch [?] as of May 2013, 63% of adult cell owners
use their phones to go online and 34% of cell internet users

go online mostly using their phones, and not using some other
device such as a desktop or laptop computer. As can also
be seen on Table I, obtained from the United States Census
Bureau Data [?], the younger population, between the ages of
10 and 90 comprise over 60% of the population of the US, and
according to PewResearch, as can be seen on Table II, about
three-quarters of these have and use Smartphones.

TABLE I: Demographics of the US population, 2012

Cummulative
Age Population Percentage Percentage

All ages 308,827 100.0%
Under 5 20,110 6.5% 6.5%
5 - 9 20,416 6.6% 13.1%

10 - 14 20,605 6.7% 19.8%
15 - 19 21,239 6.9% 26.7%
20 - 49 124,607 40.3% 67.0%
50 - 59 42,842 13.9% 80.9%
60 - 64 17,501 5.7% 86.6%
65 & older 41,506 13.4% 100.0%

TABLE II: Smartphone owners in 2014 [?]

Have a
smartphone

All Adults 58%
Gender
a. Men 61%
b. Women 57%

Race
a. White 53%
b. African American 69%
c. Hispanics 61%

Age Group
a. 18 - 29 83%
b. 30 - 49 74%
c. 50 - 64 49%
d. 65+ 19%

With new attacks on Internet-based encryption protocols
coming to light in the past four months, a lot of focus has
shifted from traditional forms of cryptanalysis to methods
of circumvention to attack these ciphers. One cipher that is
still widely used and investigated is the RC4 stream cipher.
Due to it’s simplicity and robustness (efficient for both
software and hardware) [1], the RC4 stream cipher is one of
the most implemented encryption schemes online and over
computer networks. It’s usage is seen in the Secure Socket
Layer (SSL) [2] and Transport Layer Security (TLS) [3]
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protocols as well as the now obsolete Wired Equivalent
Privacy (WEP) [4] protocol. It is also used in Wi-Fi Protected
Access (WPA and WPA 2) protocols (when TKIP is not
selected by default).

In recent years, focus has been drawn to implementing
genetic algorithms as a tool for cryptanalysis. These tools,
from the evolutionary algorithms family, have been used in the
past to help solve permutation problems such as the traveling
salesman problem ( [5], [6], [7], [8]). Since the state register
of RC4 (see Section I-A1) is a permutation, the researchers
would like to investigate the effectiveness of using a genetic
algorithm to attempt and solve the permutation sequence of
the RC4 state register.

This paper is organized into several sections to present our
findings. We will first present the reader with a background of
the RC4 stream cipher and genetic algorithms in Sections I-A
and I-B respectively. Next, we will propose an implementation
of a genetic algorithm in Section II. This will be followed
up with an examination and discussion of the results of
our experiments in Section III. Finally, we will conclude
our findings and present any future avenues of research in
Sections IV and V respectively.

The following paper proposes a genetic algorithm to try
and solve for the state register permutation of the RC4 stream
cipher. The operators that will be investigated include: partially
mapped crossover, edge recombination crossover, swap muta-
tion, and inversion mutation. In addition, an adaptive mutation
method will be utilized in order to reduce the occurrence of a
candidate solution becoming stuck in a local optimum over the
vast search space. Finally, this paper will show that on average
the genetic algorithm will be able to discover 100% of the
keystream and replicate the state register in 2121.5 generations.

A. RC4 Overview

The RC4 stream cipher was invented by Ron Rivest
in 1987 while working at RSA Security and designed as
a non-linear feedback shift register (non-LFSR). It is a
stream cipher meaning: given identical initialization keys, the
algorithm will produce the same keystream for all parties
involved in the communication. RC4 allows the initialization
key K to be of length 40 to 2048 bits. The cipher produces
a keystream z of word size n from a state register S of size
2n consisting of all bit permutations of a n-bit word. Two
word sized index pointers, i and j, are used to help perform
permutations on the register S. Generally RC4 is implemented
with n = 8 bit words.

There are two algorithms that make up RC4. The first
algorithm is called the key scheduling algorithm (KSA) and
is used in conjunction with K to initialize the shift register S
into a pseudo-random ordering (see Algorithm 1). The second
algorithm, the pseudo-random generation algorithm (PRGA),
uses the register S to produce a pseudo-random keystream z
of n-bit words during each iteration of the PRGA loop. The
keystream generation process is witnessed in Algorithm 2.

Algorithm 1 Key Scheduling Algorithm (KSA) for RC4
Input: Shared Key K
Output: State Register S
for i = 0→ 2n − 1 do
Si ← i

j ← 0
for i = 0→ 2n − 1 do

j ← j + Si +Ki mod 2n

Swap(Si, Sj)
return(S)

Encryption works by dividing the plaintext P into n-bit
words and xor’ing them with the keystream z to produce the
ciphertext C. This can be expressed as:

E(P, z) = P ⊕ z = C

Decryption is done by xor’ing each n-bit word of C with the
keystream z producing P . Decryption can be represented as:

D(C, z) = C ⊕ z = P

Algorithm 2 Pseudo-random Generation Algorithm (PRGA)
for RC4

Input: State Register S
Output: Keystream bytes z
i← 0
j ← 0
while 1 do
i← i+ 1 mod 2n

j ← j + Si mod 2n

Swap(Si, Sj)
z ← SSi+Sj mod 2n

output(z)

1) RC4 State Register: The state register S is represented
in the following way. The register as a whole is represented as
an array S while each word in the array is represented as S[i],
where i ∈ {0, . . . , 2n − 1} making up a unique permutation.
Within each permutation value of S[i], there exists a binary
value denoted as b(i) where i ∈ {0, . . . , n}. An illustration
of this representation can be seen in Figure 1. The standard
word size is n = 8 bits which implies that the total storage
of a particular candidate solution in the algorithm is 2048 bits
or 256 bytes; practical implementations of RC4 would require
2064 bits to account for the two index pointers (i and j).

B. Genetic Algorithms

Genetic Algorithms (GAs) were introduced as a viable
optimization algorithm by John Holland in 1975 [9]. The
algorithm utilizes methods found in biology to help evolve
a set of candidate solutions (called chromosomes) to solve
an optimization problem using a cost function over time (
[10], [11], [12], [13]). GAs are members of the evolutionary
family of algorithms due to their implementation of various
evolutionary operators such as reproduction and mutation.
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Fig. 1: State Register bit/byte Representation

Solution strength is measured by fitness and is determined
by a fitness function f(x) which quantifies the quality of the
solution with a desired requirement [14]. A group of solutions
or population are a small sample of all possible solutions,
thus there is no guarantee that a best fit solution will be the
global optimum for the problem. Reproduction or crossover
is conducted each generation of the algorithm so the stronger
candidate solutions have a better probability of entering the
next generation of the algorithms life cycle. This is known as
selection. To ensure that a population does not converge too
quickly on a local optimal solution, a process called mutation is
also introduced in the reproduction process. A basic algorithm
of a GA can be seen in Algorithm 3.

Algorithm 3 General Genetic Algorithm
Input: Generate initial population p of size N randomly
while Max iteration not met or fitness not satisfactory do

for i = 1→ N/2 do
Select p1 and p2 from population
(c1, c2)← Crossover(p1, p2)
Mutate(c1)
Mutate(c2)
Insert c1 and c2 into newpoulation

Replace population with newpopulation
for i = 1→ N do

fitness(pi)

C. Related Work

One of the first uses of genetic algorithms to aid in the
cryptanalysis of a cipher was in 1993 by Richard Spillman.
He chose to attack the Knapsack cipher using a genetic
algorithm [15]. A GA was utilized to decrypt cipher text
letter by letter with an average decryption time of 84 seconds
making the attack a practical use of a soft computing
method. In [16], a genetic algorithm was used to attack the
Chor-Rivest Knapsack public key crypto system with very
promising results in all test cases. This also happened to be
the first public attack on the crypto system. The algorithm
was able to attack the cipher with a minimal search space as
well as a very small number of generations. The encryption
algorithm uses modular multiplication as well as logarithmic

functions implying that a genetic algorithm should be able to
tackle the far simpler arithmetic involved in the RC4 stream
cipher. Brown et al. made use of a genetic algorithm to
attack a substitution permutation network. While the study
was intended to find weak keys, it was later noted that a GA
would be a good tool to attack the scheme [17]. The research
used SwM as a genetic operator to attack the network and
it was also a method proposed to attacking other relevant
crypto systems such as AES and 3DES. Surprisingly, no work
has been done on the cryptanalysis of RC4 using genetic
algorithms.

In [18], it was found that the use of a genetic algorithm
could be used to break a simplified implementation of Data
Encryption Standard (DES) called S-DES. The research
was successful in retrieving the key used for encryption
as well as performing the task in less than 1/5 the time
it would take to brute force the key (remember this is
S-DES and is far easier to brute force than regular DES
would be). The following paper will utilize several different
methods than the research just mentioned. The first area
is the method used as a crossover method; the previous
paper used a ring crossover method that does not respect the
properties of ordered chromosomes such as permutations.
The second deviation is the use of letter frequency analysis
as the fitness function which is unnecessary for our GA since
we are solving for the keystream and not a decrypted plaintext.

Genetic Algorithms have had a recent introduction as a
form of not only cryptanalysis, but steganography as well.
In [19], researchers used a genetic algorithm to encode image
information in a watermark that could then be hidden or kept
in plain sight within the image. The method utilized by the
researchers was also highly resilient to many common attacks
of detection [19]. What makes this paper relevant is that the
watermarking problem is encoded as a permutation problem.
As a result, the authors examine several ordered crossover
(OX) methods including partially mapped crossover (PMX)
and edge recombination crossover (ER) as well as a method
called cycle crossover (CX) that was not chosen for this task
due to its larger computational needs over the other methods
proposed. The authors also experimented with both the swap
mutation method (SwM) and the inversion mutation method
(InvM).
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Fig. 2: Example of the steps involved in edge recombination crossover (ER)
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II. PROPOSED GENETIC ALGORITHM

The proposed GA will try to solve for the permutation that
is represented as the state register S in RC4 using a variety
of crossover and mutation methods. Due to the requirements
of a permutation, special crossover and mutation algorithms
must be implemented in order to not destroy the ordered
property of a candidate solution. An attempt to brute-force the
permutation would work out to 256! = 8.578x10506 possible
permutations. Any improvement on this value can be seen as
an improvement on such an approach.

The GA will evaluate the fitness of a candidate solution
based on how well it can replicate the keystream that will
be provided. Each keystream will be 256 bytes in length as
suggested in [20] to find a unique solution. The fitness value
will be an integer value from 0 to 256 representing how many
bytes of the keystream were successfully replicated using a
candidate state register.

Through various testing of different parameters for the GA,
a population of size 5 has been selected to help evolve the best
solution. For the proposed experiments, tournament selection
has also been chosen as the selection method with a tournament
size of 2. Finally, elitism will also be implemented which
ensures that the best solution from a generation is carried
over to the next one. This in turn does not allow the genetic
operators to accidentally destroy the best solution found thus
far by selection.

A. Proposed Crossover Methods

Traditional single-point and two-point crossover methods
would destroy the permutation represented in the chromosome.
Due to this constraint, ordered crossover methods are
employed.

The first algorithm used for ordered crossover is partially
mapped crossover (PMX). This method resembles two-point
crossover in that two points are selected and the bits (bytes
in our case) between them are exchanged to create two new
children. It differs when the original parents are added to
the child chromosomes, each value is added to the child
in order of appearance until that value is already present
in the child from the original crossover. At this point the
duplicated value is replaced in the child chromosome by one
of the values that was removed also due to the initial crossover.

The second method used is edge recombination crossover
(ER). This method uses an adjacency matrix which is a list of
each node and their respected neighbours. A master adjacency
matrix is constructed by taking the union (∪) of the two parent
matrices. From the new matrix, a starting node is randomly
selected and removed from all neighbouring sets and the node
is appended to the empty child list. The next node appended is
the smallest nodes set of the previous set. In the event which
there are multiple sets that are the smallest, the set to use is
randomly chosen. The process is repeated until the child list
is the same length as the parent chromosome. A full example
of ER is seen in Figure 2.

B. Proposed Mutation Methods

Similar to the crossover methods, the mutation methods
employed must uphold the permutation property that exists
for the candidate solution.

The first method for mutation that is called the swap
mutation method (SwM). This form of mutation is very
straight forward and is conducted by selecting two random
indices in the state register and simply swapping their contents.

The second mutation method that is implemented is the
inversion mutation method (InvM). This algorithm also pre-
serves the permutation requirement of the chromosome. The
process requires two indices in the chromosome to be selected
with the sub-sequence between the two indices being simply
reversed.

1) Adaptive Mutation Method: The GA will also use an
adaptive mutation method. The default rate of mutation is set to
4% but there is a ceiling mutation rate also set at 15%. During
the iterations, the best fitness is sampled at a predetermined
rate proportional to the total amount of iterations. If the fitness
appears to stagnate over these samples, the mutation rate is
increased by 1% until it hits the ceiling rate in order to
encourage more diversity in the population. Conversely if the
fitness seems to improve over this period, the mutation rate
will decrement by 1% until it is back to the original rate of
mutation.

III. EXPERIMENTS AND DISCUSSION

In the following section we will present the results of our
experiments (see Section III-B) and evaluate the data collected
(see Section III-C).

A. Equipment Used

All experiments were conducted on an Intel i7 dual-core
CPU running at 2.8 GHz. The machine had 4 Gb of DDR3
RAM available to it. All three methods of exploration were
programmed using C and were compiled with gcc version
4.2.1. Aside from certain programming optimizations including
reducing any use of system functions that could be time in-
tensive (i.e. malloc() and free()), optimizations at the compiler
level were done using the -O3 flag built into the gcc compiler.

B. Results

Several experiments were conducted on word sizes 6, 7,
and 8. Of the results collected, PMX and SwM were shown
to be the best operators for the state register problem. Further,
adaptive mutation was shown to be a successful method of
not allowing the candidate solutions to fall into a local optima
too early. The results of utilizing both PMX and SwM with
adaptive and non-adaptive mutation are exhibited in Table III.
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n
6 7 8

Generations non-adaptive adaptive non-adaptive adaptive non-adaptive adaptive
10000 4.5 4.7 4.7 4.2 3 3.8

100000 8.4 10.6 11.6 11.3 10.5 10.5
1000000 11.8 11.8 17.4 16.9 18.1 20.7

10000000 12.8 16.2 21.4 23.9 29.5 26.2

TABLE III: Best average fitness for word size n using a genetic algorithm

The graph in Figure 4 shows that the fitness increases
logarithmically and increases consistently for all sizes of the
problem.

1) Comparison of Crossover Operators: Two crossover
operators were examined. The operators were PMX and
ER. While it was found that ER was more successful when
solving the traveling salesman problem [21], when solving the
RC4 permutation problem, PMX was found to be a far better
technique. It is predicted that due to the requirement that the
register produces the keystream consecutively, PMX disturbs
the candidate solution far less than ER. Thus PMX maintains
the integrity of higher fitness solutions in the crossover phase.

PMX was able to evolve a solution far better than ER by
almost 10%. This is shown in Figure 5 where n = 6 and adap-
tive mutation is utilized. Both methods grow logarithmically,
but the ER method just does not produce the results that the
PMX achieves. Finally ER was far more time consuming when
running the GA (especially for generations of 1 million and
greater).

2) Comparison of Mutation Operators: The two ordered
mutation operators chosen were SwM and InvM. Each of these
approaches preserves the permutation property of the state
register S. Experiments confirmed that SwM was a far better
candidate for evolving fitness than InvM. The improvements
that SwM improved the percentage fitness over InvM are seen
in Figure 3. In fact, InvM seemed to reduce the best fitness
found after about 1 million generations. This is believed to be
the case because SwM make a number of small changes to the
to the candidate solution while InvM makes a larger impact
on the solution and can potentially mutate the entire solution
if the indexes randomly selected were 0 and 2n − 1.

C. Discussion

From the results displayed in Figure 4, we were able
to extrapolate an equation for the curve of n = 8. Using
logarithmic regression we were able to derive Equation 1.
This equation allowed us to determine on average how many
generations it would take before 100% of the keystream could
be recovered.

f(x) = 0.0131306222ln(x)− 0.1065234375 (1)

Using Equation 1, it can be predicted that on average the
keystream could be completely replicated after approximately
4.0x1036 or approximately 2121.5 generations. This attack
would be a great improvements over other theoretical attacks
such as [22] which had a complexity of 2241. While this

attack has a large complexity in terms of computer power
necessary to conduct it, it is still a great improvement over
8.578x10506, which is what is needed to brute-force the state
register permutation. Finally if the GA was implemented as a
hardware chip, it could pump out one generation each cycle.

IV. CONCLUSIONS

In closing, we presented a genetic algorithm capable of
evolving a candidate solution to try and solve the permutation
of the state register S. Further, we added the capability
for the GA to utilize adaptive mutation in order for the
population to converge at a far slower rate since the search
space is so vast to begin with (8.578x10506). We also did
a comparison of two common ordered crossover operators
and two common ordered mutation operators and found that
PMX out-performed ER for this type of problem while SwM
proved to be a much better mutation operator than InvM for
the same problem.

It has been shown that for different sizes of the permutation
problem that the best fitness improves logarithmically over
generations. Finally, it was derived through extrapolation that
on average 100% of the keystream could be derived in about
2121.5 generations. This attack is far better than previously
outlined theoretical attacks.

V. FUTURE WORK

Other operators for ordered problems such as cycle
crossover should be investigated to confirm whether the ones
examined in this paper were the best candidates for this
particular problem. The GA could be parallelized to further
improve the running time of the algorithm and allow higher
amounts of generations to be tested in reasonable time.

It would also be interesting to see how well the GA fairs
with other encryption algorithms which would also make an
interesting study of the versatility of the GA when used for
cryptanalysis.
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Fig. 3: Swap mutation vs. inversion mutation for n = 6 using adaptive mutation

Fig. 4: Genetic algorithm best average fitness for various word sizes n
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