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Abstract—To cope with sequential decision problems in non-
Markov environments, learning classifier systems using the in-
ternal register have been proposed. Since, by utilizing the action
part of classifiers, these systems control the internal register in
the same way as choosing actions to the environment, they do not
always work well. In this paper, we develop an effective learning
classifier system with two different rule sets for internal and
external actions. The first one is used for determining internal
actions, that is, rules for controlling the internal register. It
provides stable performance by separating control of the internal
register from the action part of classifiers, and it is represented
by “If [ external state] & [ internal state] then [internal action],” and
we call a set of the first rules the internal action table. The second
one is for selecting external actions as in the classical classifier
system, but its structure is slightly different with the classical
one; it is represented by “If [external state] & [ internal state] &
[internal action] then [external action].” In the proposed system,
aliased states in the environment are identified by observing
payoffs of a classifier and referring to the internal action table.
To demonstrate the efficiency and effectiveness of the proposed
system, we apply it to woods environments which are used in the
related works, and compare the performance of it to those of the
existing classifier systems.

Keywords—Learning classifier systems; Non-Markov environ-
ments; XCS; Internal register.

I. I NTRODUCTION

Although classifier systems with if-then rules which de-
velop through interaction with environments were initially con-
sidered as a computational model for cognition [12], [14], they
are now widely applied to many areas, including autonomous
robotics [8], [29], classification and data mining [33], [25],
[15], traffic signal control [2], [4], and FPGA design [6].

A framework of classifier systems was initially proposed
by Holland [11], [12], and subsequently a wide variety of clas-
sifier systems have been developed [7], [31], [32]. Especially,
XCS developed by Wilson [32] has been attracting a lot of
attention, and it is publicly recognized as one of the most
successful learning classifier systems. Before XCS, the fitness
of a classifier was calculated by using the expected payoff
or the strength in the traditional learning classifier systems,
and therefore there was a problem that classifiers which have
low expected payoffs but are required to find optimal policies
are eliminated by the procedure of genetic algorithms. To
overcome this difficulty, the degree of accuracy is used as the

fitness in XCS, and it is based on the difference between the
predicted payoff and the actually received payoff.

In this paper we deal with non-Markov environments or
partially observable Markov decision processes. In Markov
environments where the probability of being in a given state
depends on the current state and action but not on any past
states or actions, agents can select the optimal policy by appro-
priately utilizing the information of the environment. If even
in a Markov environment an agent can obtain only restrictive
information of the environment, such a process is called a
partially observable Markov decision process (POMDP). In
a POMDP, different states can exist even if agents obtain
the same information from the environment, and then the
agents are said to suffer from a perceptual aliasing problem.
In an aliased position or state, an agent cannot identify the
current situation only through the information obtained from
the environment by itself, and then it cannot select the next
optimal action. From this reason, one can understand that the
learning method of an agent in non-Markov environments is
similar to that of POMDPs.

Since XCS determines an action by using the information
about the environment at the current period, it is difficult
to select an appropriate action in a non-Markov environment
involving aliased states which cannot be discriminated only by
the information about the environment at the current period.
Several attempts using reinforcement learning and learning
classifier systems for finding optimal policies in a non-Markov
environment or a POMDP have been reported. For instance,
Pineau et al. [22] propose an algorithm based on reinforce-
ment learning for POMDPs, and apply it to a robot domain
problem where an agent searches for and tags a moving
opponent. Roy et al. [24] try to solve large scale POMDPs
problems by reducing the dimensionality of the problem space.
Shani et al. [26] present a learning model for POMDP based
on reinforcement learning with memories of tree structure.
Methods based on classifier systems such as ZCS [5] and
ACS [27] have been also developed and applied to the grid-
like woods environments which are benchmark problems for
POMDPs. Moreover, Lanzi and Wilson [20] develop XCSM
and XCSMH which are extensions of XCS, and intends to
resolve environmental aliasing by incorporating the internal
registers. In XCSM, both an external action which means an
action that the agent takes in the environment and an internal
action for controlling the internal register are specified in the
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action part of a classifier, and they are treated in the same
way. Although implementation for using the internal register
is simple and elegant, its performance is not always good as
we will show the experimental result. Moreover, it is difficult
to determine an appropriate size of the internal register, and
if it is too large for a given problem, the space of exploration
becomes larger than necessary. Recently, Hamzeh et al. [10]
develop the parallel specialized XCS (PSXCS), Zang et al.
[35] develop XCS with average reward (XCSAR) which the
Q-learning employed by XCS is replaced to R-learning not to
limit the length of action chains. Preen and Bull [23] introduce
discrete and fuzzy dynamical system within XCSF learning
classifier system [34].

In PSXCS, along the lines of the history window approach
[16] the information of the environments and the selected
actions are recorded and aliases states are identified by the
condition part of classifiers corresponding to the history of the
environments and the selected actions.

Reinforcement learning is a type of machine learning such
that an agent selects an action in an environment so as to
maximize the cumulated sum of reward function. The agent
receives the reward from the environment after taking an
action, and by repeating this procedure it learns to take an
appropriate policy so as to maximize the reward. In non-
Markov environments or POMDPs, the agent cannot always
obtain the optimal policy through the usual implementation
of reinforcement learning. By using some ideas such as
referring to the history of actions which are taken by the
agent and the perceived information about the environment
or reducing the dimensionality of the problem space, systems
of reinforcement learning are improved [9], [22], [24], [26],
[30]. Since reinforcement learning acquires exhaustive rules
for selecting appropriate actions to an intended problem and
then it holds a sufficient number of rules to deal with possible
states of the problem, it works efficiently for relatively small-
scale problems. However, for large scale problems or problems
with many aliased states, it may perform poorly because
of explosive growth in the number of rules and the use of
memories.

In classifier systems the idea of reinforcement learning
is implemented in a sense that Q-learning-like payoff is
computed, and classifier systems are extended so as to cope
with non-Markov environments or POMDPs [1], [10], [17],
[18], [20], [28]. An agent in a classifier system holds rules
in if-then type called classifiers, and it employs an action
specified in a classifier such that the condition of the classifier
matches the information from the environment. In particular,
don’t care denoted by # is introduced in the condition part
of classifiers, and conditions corresponding to # match all
states. By this capability the rules represented by classifiers are
generalized, that is, the agent acquires the ability to hold clas-
sifiers matching multiple different states of the environment.
Compared to reinforcement learning, it is thought that the
number of rules is smaller and memories are efficiently used in
classifier systems, and genetic algorithms can be applied to a
set of rules represented in if-then format without difficulty for
evolving the rule set suitably. From these features of classifier
systems, it is adequate to apply them to problems in non-
Markov environments or POMDPs.

In this paper, we develop a learning classifier system for

non-Markov environments or POMDPs where a mechanism
for controlling the internal register is separated from classifiers
and aliased states are identified by detecting fluctuation of the
payoffs received by classifiers. We call the proposed system
XCSAT (XCS with an internal Action Table) because it is
characterized by an internal action table which is a set of rules
for identifying aliased states. In XCSAT, after detecting the
fluctuation of payoffs which means the existence of aliased
states, the environmental information and the corresponding
update of the internal register are recorded in the internal
action table as a rule for updating the internal register. By
controlling the internal register through the information from
the internal action table, more efficient and stable performance
can be expected in XCSAT.

The remainder of this paper is organized as follows. After
describing non-Markov environments in section 2, we mention
the properties of XCSM and XCSMH developed by Lanzi and
Wilson [20] in section 3. In section 4, we propose a learning
classifier system with the internal action table, XCSAT, in
which aliased states are identified by detecting fluctuation of
payoffs and referring to the internal action table. The experi-
mental result of XCSAT is shown, compared with XCSM and
XCSMH in section 5, and finally, section 6 concludes with
some comments.

II. N ON-MARKOV ENVIRONMENTS

Markov environments have memoryless property, that is,
in Markov environments the probability of being in a given
state depends on the current state and action but not on any
past states or actions, and environments without such property
are said to be non-Markov environments. Learning classifier
systems for non-Markov environments have been proposed,
and to evaluate their performances, woods environments which
are grid-like non-Markov environments are used [1], [17], [18],
[20], [28].

First of all, to understand that it is difficult for learning
classifier systems which are not developed specially for non-
Markov environments to find an optimal policy in non-Markov
environments, we illustrate actions of an agent in a simple
woods environment termedWoods100[18], which is shown
in Fig. 1.

1 2 3 G 4 5 6

Fig. 1: Woods environment:Woods100

In Woods100, there are 7 cells which are cell 1 to cell 6 and
cell G meaning the goal, and the 7 cells are surrounded by the
walls. Although the agent can generally move to 8 possible
directions (N, S, E, W, NE, SE, NW, and SW) in a woods
environment. InWoods100, the agent in any of the 7 cells can
move only to W (left) or E (right). The agent starts from cell
1 or cell 6, and it tries to reach cell G. Since the agent moves
either to left or to right, the condition part of classifiers deals
with states of cells located on only both sides of the agent.

In Table I, classifiers which lead the agent in each cell
to the goal are enumerated, and “w” indicates the wall, “c”
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TABLE I: Classifiers corresponding toWoods100and cells

condition action
left right direction
w c right
c w left
c c right
c c left
c G right
G c left
(w: wall, c: corridor, G: goal)

cell

1
6

2, 5
2, 5
3
4

indicatesthe corridor, and “G” indicates the goal in the first
and second columns. Take a classifier in the first row of Table
I as an example. The first classifier means ”If [{left: w} and
{right: c}] then [external action: move right].” Therefore, one
finds that this classifier should be selected in cell 1, which is
given in the rightmost column of Table I.

Since there are 6 available cells except for the goal cell,
an optimal policy can be described by 6 classifiers as shown
in Table I, and there are two classifiers with the condition
parts matching both of the environmental states corresponding
to cells 2 and 5. Although the environmental information
perceived by the agent in cell 2 is the same as that in cell 5,
optimal actions in the two cells are different. From this fact,
these two cells are aliased states for the agent, and the agent
informed of only the environmental information at the current
period cannot find the optimal policy. Thus, it follows that a
woods environment such asWoods100is one of non-Markov
environments.

III. L EARNING CLASSIFIER SYSTEMS WITH INTERNAL
MEMORY

To cope with environmental aliasing, Lanzi and Wilson
[20] develop XCSM (XCS with internal memory) which is
an extension of XCS. In XCSM, a condition for the internal
register and an action for controlling the internal register are
added to the condition part and the action part of a classifier,
respectively.

TABLE II: Classifiers of XCSM and the related information

no.
conditionpart action part

revised
left right register direction register

a w c 0 right 0
b c c 0 right 0
c c G 0 right 0
d c w 0 left 1
e c c 1 left 1
f G c 1 left 1
g w c 1 right 0
h c G 1 right 0
i c w 1 left 1
j G c 0 left 1

cell payoff

1 γ2R
2, 5 γR
3 R
6 γ2R

2, 5 γR
4 R

1 γ2R
3 R
6 γ2R
4 R

In Table II, we give an example of an optimal policy in
XCSM to Woods100, which can be obtained after enough
learning process. Since it is necessary for XCSM to discrim-
inate the two aliased states inWoods100, only the size of
two is required for the internal register. Let the initial value
of the internal register be 0. To utilize the internal register,
the value of the internal register and its new value to be

updated are added in the condition part and the action part
of classifiers, respectively, as seen in Table II. For example,
in classifiera given in Table II, a condition on the internal
register “if [internal register: 0] (if the internal register is
0)” is given in addition to a condition on the environmental
information “if [{left: w} and{right: c}] (if the left-side cell
is the wall and the right-side cell is the corridor),” and an
action to the internal register “[internal action: set 0] (set 0
in the internal register)” is also given in addition to an action
to the environment “[external action: move right].” Although
the information from the environment when being in cell 2 is
the same as that in cell 5 in XCS, since in XSCM the value
of the internal register is changed from 0 to 1 by classifierd
used at cell 6 which is located on the right side of cell 5 but
it is not changed to cell 2, cells 2 and 5 can be distinguished.
It should be noted that a set of classifiers shown in Table II is
an optimal policy, but there exist other sets of optimal policies
such as an optimal policy of the reversed procedure.

A classifier in XCSM has the same parameter set as those
of XCS: the predictionp, the prediction errorϵ, and the fitness
F . The predictionp is a payoff that the system expects if the
condition of the classifier conforms with the environmental
state and the action of the classifier is performed. The predic-
tion errorϵ estimates an error of the predictionp by using the
Q-learning-like payoff. The fitnessF means the accuracy of
the predictionp and it is a function of the prediction errorϵ.
Moreover, the learning process of XCSM is similar to that of
XCS, and it is slightly modified for introducing the internal
register.

Although XCSM can find an optimal policy as seen in
Table II, depending on environments, the sequence of actions
may not converge because actions to the environment and
to the internal register are determined according to received
rewards. We illustrate this difficulty by usingWoods100. Let
R denote the reward from the environment when the agent
reaches the goal, and any reward is not paid by arriving at
the other cells. When the sequence of actions converges, the
payoffs received by the classifiers are shown in the rightmost
column of Table 2, whereγ is a discount factor.

Assume that the following classifiera’ is included in the
system in addition to the set of classifiers given in Table II:

(a’) If [ {left: w} and{right: c}] & [ internal register: 0]
then [external action: move right] & [internal action: set 1].

Classifier a’ is the same as classifiera except for the
internal action, which means the value of the internal register
to be updated, in the action part of classifiers. Although, as a
matter of course, using classifiera’ instead of classifiera is not
optimal, the payoff of classifiera’ is γ2R which is the same
as that of classifiera if classifierse andb’ are used, whereb’
is the same as classifierb except for the internal action. Thus,
since the fitnessF is a function of the payoff, it is possible that
classifiera’ is substituted for classifiera, and therefore it is
difficult to generate an optimal policy stably. Beside, it should
be noted that when the size of the internal register becomes
larger, the performance of XCSM grows worse due to increase
of the search space.

To improve the performance of XCSM, XCSMH is also
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proposed as an extension of XCSM, and the following modi-
fications are remarked.

(i) The value of the internal register is changed only if
the environmental information perceived by the agent
changes as a result of the executed action to the
environment.

(ii) The actions to the environment and to the internal
register are performed in a stepwise fashion. After
the value of the internal register is determined by
the greedy method, the action to the environment is
selected by theϵ-greedy method.

For example, by reason of (i), it is not possible that the
direction to move to a cell of wall is chosen and the value of the
internal register is updated at the same time. The modification
of (ii) facilitates the combination of actions to the environment
and treatment of the internal register, and then it is thought that
the performance is improved.

However, XCSMH does not resolve the above mentioned
difficulty essentially, and we need some solution to effectively
manage the internal register. In this paper, focusing on fluctua-
tion of payoffs of classifiers used in aliased states, we propose
an effective learning classifier system with an internal action
table providing stable performances by separating the control
of the internal register from the action part of classifiers.

IV. CLASSIFIER SYSTEM WITH AN INTERNAL ACTION
TABLE

As we pointed out before, in non-Markov environments
or POMDPs, although XCSM can find an optimal policy,
depending on environments, its performance is not always
stable because actions to the environment and to the internal
register are determined according to received rewards. We
will show this fact by some computational experiments in the
following section. In this paper, we develop a learning classifier
system called XCSAT (XCS with an internal Action Table)
for non-Markov environments or POMDPs where controlling
the internal registers is separated from classifiers and aliased
positions or states are identified by detecting the fluctuation of
the payoffs received by classifiers. In XCSAT, after detecting
the fluctuation of payoffs, the corresponding environmental
information and the updated value of the internal register are
recorded into the internal action table as a rule for updating
the internal register. By introducing the above mentioned two
features simultaneously, XCSAT works efficiently for non-
Markov environments or POMDPs.

To check whether or not a position that the agent have
arrived is an aliased one, XCSAT focuses on the fluctuation
of payoffs received by classifiers. The maximum and the
minimum payoffs are recorded together with the corresponding
periods of time. If the difference between the maximum and
the minimum is larger than the threshold after a given amount
of periods had elapsed, XCSAT judges that the payoffs of the
classifier fluctuate.

If the payoffs of the classifier executed at the present
moment, say periodt, does not fluctuate and the payoff
fluctuation is observed at periodt− 1, XCSAT judges that the
environment at periodt − 1 is an aliased state. To utilize the
information about such aliased states, the system records the

external state, the internal state and the internal action which
are observed and selected at periodt − 2 into the internal
action table. By referring to the internal action table with the
information about the aliased states each period, XCSAT can
identify each aliased state and select an appropriate action for
the aliased state.

A. Rule representation and the internal action table

In the proposed method, states of the environment are
identified by observing the payoffs received by classifies and
referring to the internal action table. To do so, the system
stores rules for updating the internal register in the internal
action table. Unlike XCSM and XSCMH, XCSAT does not
use classifiers to control the internal register, but to this end
it uses the internal action table in which the history of use of
the internal register is stored.

To describe the learning procedure of XCSAT, we define
the following technical terms. Let “anexternal state” be an
environmental state, “aninternal state” be the value of the
internal register, “anexternal action” be an action taken by
the agent to the environment, and “aninternal action” be the
value of the internal register to be updated.

Using these terms, we represent a classifier in XCSM or
XCSMH by the following if-then rule:

If [ external state] & [ internal state]
then [external action] & [ internal action].

It should be noted that aninternal action is specified in the
action part of a classifier in XCSM or XCSMH. In contrast, a
classifier in XCSAT is expressed as

If [ external state] & [ internal state] & [ internal action]
then [external action],

where, in the action part, there does not exist aninternal
action, but it is in the condition part. Theinternal actionin the
condition part is utilized to update the parameters of a classifier
when the classifier is selected to activate to the environment.
Apart from classifiers, rules for updating the internal register
are stored in the internal action table in the following form:

If [ external state] & [ internal state] then [internal action].

If the environmental state and the value of the internal
register coincide with the values of theexternal stateand
internal stateof a rule in the internal action table, respectively,
the value of the internal register is updated by using the value
of the internal actionof the rule in the internal action table for
updating the internal register. Since the value of the internal
register is determined as just described, classifiers in XCSAT
have no information aboutinternal actionsin the action part.

B. Update and usage of the internal action table

UsingWoods100shown in Fig. 1 and Table II, we illustrate
the fluctuation of payoffs received by classifiers used in
aliased states. Assume that the sequence of actions of the
agent converges through enough learning process. A payoff of
classifierc which is used at cell 3 and leads to the goal, cellG,
and that of classifierf which is used at cell 4 and also leads to
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cell G are the same valueR. If classifierb is instantly used at
cell 2 and then classifierc is used at cell 3, classifierb receives
the payoff ofγR, whereγ is a discount factor. However, if,
after classifiere, which should be used ideally at cell 5, is used
at cell 2, the agent returns to cell 2, classifierb is used at cell
2 and then finally classifierc is used at cell 3, then classifier
b receives the payoff ofγ3R. If classifiere is used at cell 2
repeatedly, the payoff of classifierb becomes smaller. Thus,
the payoff of classifierb ranges fromγ3R to some small value,
and as for classifiere, a similar fluctuation of the payoff can
be observed. Moreover, since the payoffs of classifiersa andd,
which should be used ideally at cells 1 and 6, respectively, are
calculated from those of classifiersb ande, they also fluctuate.
From this observation, if the payoff of a classifier used at a
certain cell, say cellx, fluctuates and cellx is adjacent to a cell
such that the payoff of the corresponding classifier does not
fluctuate, it can be inferred that an environmental state when
being in cellx is an aliased state. To utilize such information,
rules for identifying aliased states are stored in the internal
action table.

Although, in XCSAT, an external action which is an action
taken by the agent to the environment is selected among
classifiers matching the environmental state, an internal action
for updating the internal register is determined by finding a
rule conforming with the external state and the internal state
in the internal action table. As we mentioned above, the form
of rules in the internal action table is “If [external state:
· · · ] & [ internal state: · · · ] then [internal action: · · · ],” and a
rule conforming with the external state and the internal state
perceived by the agent is searched in the internal action table.
An internal action of the rule selected from the internal action
table is performed. By doing so, XCSAT can identify aliased
states and select appropriate external actions. Eventually, the
fluctuation of classifiers’ payoffs disappears and an optimal
policy can be found. If the payoff fluctuation of classifiers is
still observed, it follows that there exist aliased states which
are not identified by the system yet.

We demonstrate a process of updating the internal register
by usingWoods 100shown in Fig. 1. Examples of classifiers
and the internal action table of XCSAT are given in Tables
III and IV. In the course of repetition of trials inWoods100,
suppose that the fluctuation of payoffs received by a classifier
is observed and it is revealed that an environmental state
when being in cell 2 is an aliased state. At this point, a
rule for the internal register “If [{left: w} and {right: c}] &
[internal register: 0] then [internal action: set 1]” is recorded
in the internal action table, and this rule for the internal
register corresponds to cell 1. Moreover, at the same time,
a new classifier corresponding to the same external state
and the internal state that the value of the internal register
is 1 ([internal register: 1]) is added into the system. More
specifically, the following classifier is generated: If [{left: w}
and{right: c}] & [ internal register: 1] & [ internal action: set
1] then [external action: move right].

In general, if XCSAT finds an aliased position or state,
a rule for identifying the aliased state is recorded in the
internal action table. By referring to the internal action table,
XCSAT can efficiently distinguish positions of the agent. More
precisely, if the payoffs received by the classifier executed at
periodt does not fluctuate and the payoff fluctuation at period

TABLE III: Classifiers of XCSAT for woods100 and the related
information

no.
conditionpart action part

external state internal internal external
left right register action action

a w c # # right
b c c 1 1 right
c c G # # right
d c w # # left
e c c 0 0 left
f G c # # left

cell payoff

1 γ2R
2, 5 γR
3 R
6 γ2R

2, 5 γR
4 R

TABLE IV: Internal action table of XCSAT for woods100

no.
conditionpart action part

external state internal internal
left right register action

a w c 0 1
b c w 1 0

cell

1
6

t − 1 is observed, it is judged that the environment at period
t−1 is an aliased state. To execute this procedure successfully,
XCSAT records the external state, the internal state and the
internal action which are observed and selected at periodt−2
in the internal action table. Thereafter, by referring to the
internal action table, it acquires ability to distinguish such
states of the environment. The data insertion of the internal
action table and the generation of the corresponding classifier
are summarized as follows.

Step 1 Refer to the internal action table, and then if
XCSAT finds a rule with the condition matching
the current environment and the internal register,
update the internal register to the value specified
by the rule.

Step 2 Execute an action specified by a selected classifier.
Step 3 If the payoff fluctuation is observed, set the flag

for update on and return to Step 1. Otherwise, go
to Step 4.

Step 4 If the flag is on, go to Step 5. Otherwise, return
to Step 1.

Step 5 Add the information of the external state, the
internal state and the internal action which are
observed and selected at the period before last in
the form of
If [ external state: · · · ] & [ internal state: · · · ] then
[internal action: · · · ],
into the internal action table. Moreover, add a
new classifier consisting of the information from
the environment, the value of the internal register,
the updated value of the internal register and the
executed external action at the last period in the
form of
If [ external state: · · · ] & [ internal state: · · · ] &
[internal action: · · · ] then [external action: · · · ].
Then, after setting the flag off, return to Step 1.

Some explanatory remarks on this procedure follows.

• After the elapse od the given periods, say1000 peri-
ods, XCSAT starts to refer the internal action table
because it needs enough learning time for external
environments except aliased states.
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• In Step 3, if the difference between the maximum
and the minimum of the payoffs received by the
selected classifier is larger than the threshold, XCSAT
concludes that the payoff fluctuation of the classifier
is observed.

• The rules for the internal register are not deleted
unless the number of rules exceeds the capacity for the
internal action table, and if it exceeds the capacity, the
rule with the lowest use is replaced with a new rule
for the internal register.

• If two or more aliased states adjoin and there exist
multiple such adjoining aliased states, the fluctuation
of the payoffs could not be always suppressed. When
the payoff fluctuation cannot be suppressed within a
given amount of periods after the last update of the
internal action table, even if the condition of Step 4 is
not satisfied, with a given probability a new rule for
the internal register is added into the internal action
table.

C. Algorithm of XCSAT

The algorithm of XCSAT is summarized as follows.

Step 1 After perceiving the current external and internal
states, XCSAT finds all the classifiers satisfying
these conditions. A set of these classifiers are
called the match set[M ].

Step 2* If a rule matching the perceived external and
internal states is found in the internal action table,
an internal action specified by the rule is executed.
Otherwise, reset the internal register, i.e., set 0 at
the internal register.

Step 3 For classifiers with the executed internal action
in [M ], a prediction array is calculated by using
the prediction and the fitness. From the prediction
array, an external action is determined by the
greedy or theϵ-greedy method. A set of classifiers
with the selected external action in[M ] is called
the action set[A].

Step 4 After updating the parameters of each classifier
in [A], the genetic operations of reproduction,
crossover and mutation are performed to the con-
dition part of the classifiers.

Step 5* If the condition based on the payoff fluctuation for
updating the internal action table is satisfied, the
corresponding external state, internal state, and
internal action are recorded in the internal action
table.

Step 6 If the agent reaches the terminal position, the
algorithm stops. Otherwise, go to Step 1,

It should be noted that as mentioned in the previous
subsection, to find appropriate actions for non-aliased states,
for the given initial ceratin periods, XCSAT does not refer the
internal action table, and therefore Steps 2 and 5 marked with
an asterisk, which involve reference and update to the internal
action table, are skipped in the initial certain periods, namely
it performs the same procedure as that of XCS.

Let the ith classifier be denoted bycli. Similarly to those
of XCS [3], [20], the main parameters of classifiercli are the

predictioncli.p, the prediction errorcli.ϵ, and the fitnesscli.F .
These parameters are updated based on the payoffP received
by a classifier and the other parameters. A classifier in the
action set[A] receives the following Q-learning-like payoff:

P =

{
R, when reaching the termination position
P−1 + γmaxPA, otherwise,

(1)
whereR is the reward from the environment,P−1 is the payoff
at the previous period,PA is the prediction array at the current
period, andγ is a discount factor. For a given external action
ai, an element ofPA is calculated as follows:

PA(ai) =
∑

clk∈[M ]m̂,ai

clk.p · clk.F
/ ∑

clk∈[M ]m̂,ai

clk.F , (2)

where [M ]m̂,ai is a set of classifiers in[M ] such that an
internal action is the executed internal action̂m and an
external actionis ai. In Step 3, by using the prediction array
PA, an external action is determined.

The prediction cli.p and the prediction errorcli.ϵ are
updated as follows:

cli.p = cli.p+ β(P − cli.p), (3)
cli.ϵ = cli.ϵ+ β(|P − cli.p| − cli.ϵ), (4)

whereβ is the learning rate. The smaller the prediction error
cli.ϵ, the larger the fitnesscli.F becomes. To this end, the
accuracycli.κ is defined as

cli.κ =

{
1 if cli.ϵ < ϵ0

α
(

cli.ϵ
ϵ0

)−ν

otherwise,
(5)

whereα, ν, and ϵ0 are parameters, the fitnesscli.F is calcu-
lated as follows:

cli.F = cli.F + β(cli.κ
′ − cli.F ), (6)

wherecli.κ′ = cli.κ/
∑

clk∈[A] clk.κ.

As for the genetic operations described in Step 4, if the
average elapsed time periods of classifiers in the action set
[A] after the last genetic operations for them is larger than
a given time periodθGA in advance, the genetic algorithm
are executed to the parts of classifiers describing the external
conditions. Overgeneral rules in XCSAT are removed in the
same way as in XCS. That is, since the prediction errors of
overgeneralized classifiers become large and then their fitness
in the genetic algorithm described in Step 4 degrades, such
classifiers are not reproduced eventually. Two classifiers are
chosen by using the roulette wheel selection, and the one-point
crossover is applied to them. If a gene chosen for mutation is
#, which means “don’t care,” the perceived external state is
filled in the gene. Otherwise, it is exchanged for #.

To judge the fluctuation of the payoffs in Step 5, the
maximal payoffcli.pmax and the minimal payoffcli.pmin are
recorded together with the corresponding periodscli.tmax and
cli.tmin. Let P be the payoff of classifiercli. If P > cli.pmax,
the maximal payoffcli.pmax is updated, and similarly ifP <
cli.pmin, the minimal payoffcli.pmin is updated. Letcli.exp
be the number of updating, andθp and θt be parameters. If
cli.pmax − cli.pmin < θp and cli.exp > θt, XCSAT judges
that the payoff of classifiercli does not fluctuate. Otherwise, it
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judges that the payoff of the classifier fluctuates. Furthermore,
let θr be a parameter. If the elapsed time periods after the
last update of eithercli.pmax or cli.pmin is larger thanθr, the
not yet updated parameter and the update countercli.exp are
initialized.

V. COMPUTATIONAL EXPERIMENT

To demonstrate the effectiveness of XCSAT, we perform
a computational experiment by using a woods environment
Woods10112 , and compare XCSAT with XCSM and XCSMH.
Furthermore, with another eight woods environments [1], [17],
[20], [21], [28], we examine the performance of XCSAT.

A. Woods10112
In XCSAT, the agent perceives substances of the adjacent

eight cells (N, S, E, W, NE, SE, NW, and SW), and it
distinguishes among “wall,” “corridor,” and “the goal” of
substance of each of the cells. As seen in Fig. 2,Woods10112
is a separated symmetric woods environment, and the agent
tries to move from any cell labeled as S to one of the cells
labeled as G in the shortest possible route.

SS G

A A1 2

SS G

A A3 4

Fig. 2: Woods environment:Woods10112

Since, in the cells labeled as A1, A2, A3, and A4, sub-
stances of the eight cells that the agent perceives are the same,
the agent cannot distinguish these states of the environment.
In cells A1, A2, A3, and A4, “move upper right,” “move
upper left,” “move lower right,” and “move lower left” are
appropriate actions, respectively.

An episode is defined as a process from starting at cell S
to reaching cell G. Let one trial be 8000 episodes; the periods
until episode 6000 are served for exploring or learning, and the
remaining 2000 episodes are used for test of the performance.
While theϵ-greedy method which includes stochastic selection
of actions is employed in the learning periods, the greedy
method in which an action with the largest prediction is chosen
with certainty is used in the test periods. To examine the
performances of XSCAT, XCSM and XCSMH, data from
the last 1000 episodes are used for each trial, and their
performances are evaluated by the average of 30 trials. The
parameters used in the computational experiment are shown
in Table V. In the experiment, we use XCSM and XCSMH
programs of our own making according to the procedure given
in Lanzi and Wilson [20]. The sizes of the internal registers
in three programs, XCSAT, XCSM and XCSMH, are all 4 for
the seven problems in sections 5.1 and 5.2, and they are 6 and
8 for the two problems,Lab1 andLargeMaze, in section 5.3.,
respectively.

In Fig. 3 and Fig. 4, we compare the performances of
XCSAT, XCSM, and XCSMH, varying the exploration rate
ϵ in the ϵ-greedy method in the learning periods. The rate of

TABLE V: Parameters

learningrate β = 0.2 discount factor γ = 0.71
periods for GA θGA = 25 crossover probability pc = 0.75

mutation probability pm = 0.025 accuracy parameters α = 0.1, ν = 5
payoff range θp = 5 updating counter θt = 30

periods for updating θr = 10

convergence in Fig. 3 is the percentage of success in the 30
trials, and the success means that the agent exactly takes a
shortest route and reaches the goal in the last 1000 episodes
in the test periods. Aside from this, the rate of convergence
in Fig. 4 is the percentage in the 30 trials that the agent takes
the same fixed route including the shortest route in the last
1000 episodes. Therefore, the term “the convergence” means
that the agent takes the same route for a given starting point
in the last 1000 episodes.

XCSAT
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Fig. 3: Convergence on the shortest routes
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Fig. 4: Convergence on fixed routes

As seen in Fig. 3 and Fig. 4, while XCSM and XCSMH can
hardly find the shortest routes, the agent in XCSAT pursues
the shortest routes with great accuracy. Although the rate of
convergence on the shortest routes in XCSMH is slightly larger
than that of XCSM, for the convergence on another fixed route,
the rate of XCSM is larger than that of XCSMH. The number
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of steps taken from the starts to the goals in XCSM and
XCSMH is larger than 12 on an average, and thus it follows
that the routes taken by the agent in these systems converge
some fixed routes including unnecessary actions because the
number of steps for the shortest routes is 4.

B. Performance verification

We continue to examine the performance of XCSAT by
using other 6 woods environments which are depicted in Fig. 6
in the appendix, and the summary data of them are given in
Table VI [17], [20], [21], [28].

TABLE VI: Woods environments for the computational exper-
iment

woods environment number of all states number of aliased states
woods101 11 4
woods102 28 10

maze7 10 2
mazeF4 11 2
maze10 19 13

Littman57 15 8

In these woods environments, starting cells are randomly
chosen from among non-goal cells. We evaluate the perfor-
mances by measuring the number of steps taken from the starts
to the goals. In the experiment, if the number of actions taken
by the agent is larger than 10000 and the agent still does not
reach the goal, the current episode terminates and the next
episode begins with a new starting cell. The exploration rate
is fixed at ϵ = 0.5. The other experimental conditions and
the parameters are the same as those in the computational
experiment forWoods10112 given in section V-A.

The result of the computational experiment is given in
Fig. 5 and Table VII. The performances of the three systems
XCSAT, XCSM and XSCMH are compared on the basis of the
data of the last 1000 episodes for the 30 trials. The termbest
in Fig. 5 and Table VII means the minimum among the results
of the 30 trials where the result of each trial is the average of
the last 1000 episodes. Therefore, we note that thebest is not
always the optimum. The termsmeanandworstalso mean the
average of the 30 trials and the maximum among the 30 trials,
respectively.

In Fig. 5,best, mean, worst, and the range of the steps taken
by the agent from the starts to the goals are given graphically.
In particular,meanis denoted by a circle,bestandworst are
denoted by bars, and the range of the steps is represented by
vertical lines. In Table VII, the minimal steps among the three
systems are emphasized by boldface, and for reference the
average steps of the shortest routes are given in the rightmost
column. For example, the average of shortest steps ofmazeF4
is calculated by summing up the numbers of the shortest steps
to the goal for all cells and dividing the number of cells, i.e.,

(4 + 3 + 2 + 1 + 0 + 4 + 5 + 5 + 6 + 7 + 6)/11 = 3.90.

As seen in Table VII, the number of steps of XCSAT for
each of the six woods environments is close to the average
step of the shortest routes. Thebest of XCSMH is smaller
than that of XCSM, and XCSMH provides comparable result
to that of XCSAT. However, themeanandworst of XCSMH

TABLE VII: Results of the computational experiment (steps)

woods environment XCSAT XCSMH XCSM
average of

shortest steps
mean 2.70 22.38 3.19

woods101 best 2.62 2.64 2.64 2.45
worst 2.85 295.92 4.11
mean 3.28 6.29 6.73

woods102 best 3.00 4.23 4.93 2.57
worst 3.73 14.63 12.45
mean 4.19 44.51 38.57

maze7 best 3.90 3.90 4.93 3.70
worst 7.75 392.63 126.26
mean 4.40 116.89 35.72

mazeF4 best 4.09 4.11 4.18 3.90
worst 5.54 1171.19 133.47
mean 6.51 12.08 46.45

maze10 best 5.70 6.39 8.20 4.32
worst 8.54 61.76 173.39
mean 4.19 3.89 6.85

Littman57 best 3.47 3.47 5.52 3.47
worst 5.99 5.14 9.87
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Fig. 5: Results of the computational experiment (steps)

are obviously larger than those of XCSAT, and in some woods
environments themeanand worst of XCSMH sometimes are
larger than those of XCSM. This means that the learning
performance of XCSMH is not stable, and we consider that
this difficulty is attributed to the problem described in section
III. In contrast, XCSAT works well in finding the shorter
routes to the goal, and then the performance of XCSAT is
stable as seen Table VII. As we discussed in section V-A, also
from the viewpoint of the convergence given in Fig. 3 and
4, the performance of XCSAT is more stable than those of
XCSM and XCSMH. In general, the performance of XCSAT
is superior to XCSM and XCSMH except forLittman57 .
In the experiment forLittman57 , XCSMH shows the best
performance but the performance of XCSAT is also good.
Both of XCSAT and XCSMH find the shortest routes, and the
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difference between the mean steps of them is only 0.3 steps.

As for Littman57, which is composed of 15 states including
8 aliased states, XCSMH works slightly better than XCSAT,
and the performance of XCSM is also reasonable. For maze7
or mazeF4, however, XCSMH and XCSM operate inefficiently
despite the fact that maze7 or mazeF4 is composed of 10 or
11 states and there are only two aliased states in both of them.
This performance is thought to be due to the property of the
optimal actions. That is, optimal actions are the same in the
aliased states of Littman57, while they are different actions
in those of maze7 or mazeF4. XCSAT works well in both
problems because it finds an appropriate action efficiently by
referring the internal action table.

C. Performance and adaptability for larger problems

The average numbers of all states and aliased states of the
woods environments dealt with in section V-B are 15.7 and 6.5,
respectively. To examine the effectiveness of XCSAT to lager
problems, we use a woods environmentLab1 [1] which is 5
times as large as the woods environments in section V-B, and
we also provide a new woods environmentLargeMaze which
is 10 times as large as them. These woods environments are
depicted in Fig. 7 of the appendix.

To cope with the larger problems, we revise the condition
for judging the payoff fluctuation of a classifier. The condition
given in section IV is thatcli.pmax − cli.pmin < θp and
cli.exp > θt, and if this condition is satisfied, XCSAT judges
that the payoffs of the classifier does not fluctuate. Since
the difference betweencli.pmax and cli.pmin depends on the
size of a problem and the payoff of a classifier decreases
according to the discount factorγ every period of time, by
using the discount factorγ, we employ a modified condition
γcli.pmax < cli.pmin instead ofcli.pmax − cli.pmin < θp. The
remaining procedure for judging the payoff fluctuation is the
same as before, and the value ofγ is set atγ = 0.9 due
to increase of the problem size. The system with the revised
condition for judging the payoff fluctuation is denoted by
XCSATγ. The number of trials is 20. The other experimental
conditions and the parameters are the same as those in the
computational experiment for the six woods environments
given in section V-B.

In this computational experiment, the performances are
evaluated by the average of 20 trials, and we define trials to be
valid for measurement as follows: (i) the average steps from
the start to the goal is not larger than 100; (ii) a trial, which
consists of 8000 episodes, finishes in 5 hours or less.

No trial of XCSM and XCSMH satisfies the two condi-
tions. In XCSAT and XCSATγ, 13 and 14 trials out of the
20 trials meet the conditions forLab1, respectively, and 5
and 6 trials meet them forLargeMaze, respectively. That
is, XCSM and XCSMH are no longer workable for larger
scale maze problems such asLab1 and LargeMaze, while
XCSAT or XCSATγ properly works in more than a half
of the whole trials forLab1 and in a quarter of them for
LargeMaze. From this result of the computational experiment
together with the data shown in the previous subsections, it is
understood that the proposed learning classifier systems with
an internal action table, XCSAT and XCSATγ, demonstrate
superior performance, compared to XCSM and XCSMH.

Since inLargeMaze, the numbers of all states and aliased
states are large and there exist many possible routes from the
starts to the goals, compared toLab1, the number of valid
trials of LargeMaze is smaller that ofLab1, and the steps
taken by the agent from the starts to the goals inLargeMaze
are larger than those ofLab1. The performances of XCSAT
and XCSATγ are summarized in Table VIII in a way similar
to Table VII. As seen in Table VIII, the data supports the
superiority of the performance of XCSATγ compared to that
of XSCAT, and then the modified condition for judging the
payoff fluctuation to larger problems is shown to be effective.

VI. CONCLUSION

In this paper, we develop a learning classifier system with
an internal action table (XCSAT) to deal with sequential
decision problems in non-Markov environments. In XCSAT,
controlling the internal register is separated from classifiers,
and aliased states are perceived by detecting fluctuation of the
payoffs received by classifiers. After recognizing the existence
of aliased states, the environmental information and the cor-
responding update of the internal register are recorded in the
internal action table as a rule for updating the internal register.
XCSAT identifies the perceived aliased state by referring to
the internal action table.

By performing computational experiments where 9 woods
environments are used, we demonstrate the effectiveness of
XCSAT. In particular, XCSAT works well for woods environ-
ments such that the number of states are about 20 and the
fraction of aliased positions is about 30% as used in Lanzi
[18] and Lanzi and Wilson [20].

The success probability of learning for the larger problems
by the proposed classifier systems (XCSAT and XCSATγ) are
not high, therefore further improvement of the classifier system
should be a future work.
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APPENDIX
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Fig. 6: Woods environments
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