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Abstract—Cache replacement policies are developed to help 

insure optimal use of limited resources.  Varieties of such 

algorithms exist with relatively few that dynamically adapt to 

traffic patterns.  Algorithms that are tunable typically utilize off-

line training mechanisms or trial-and-error to determine optimal 

characteristics. 

Utilizing multiple algorithms to establish an efficient 

replacement policy that dynamically adapts to changes in traffic 

load and access patterns is a novel option that is introduced in 

this article. A simulation of this approach utilizing two existing, 

simple, and effective policies; namely, LRU and LFU was studied 

to assess the potential of the adaptive policy. This policy is 

compared and contrasted to other cache replacement policies 

utilizing public traffic samples mentioned in the literature as well 

as a synthetic model created from existing samples.  Simulation 

results suggest that the adaptive cache replacement policy is 

beneficial, primarily in smaller cache sizes. 

Keywords—cache replacement policy; high performance 

computing; adaptive caching; Web caching 

I. INTRODUCTION 

Caching in computing has been a proven form of 
performance enhancement for some time, most notably in 
memory paging [1] [2]. The basic premise is that objects that 
are frequently used or most likely to be used can be stored in a 
location that provides performance benefits by virtue of being 
temporally or locally near the consumer of the object.  
Temporally meaning that an object may be served more 
quickly from a given location when compared to the service 
time from another host location, possibly due to reduced 
latency of access from faster resources (disk, memory, etc.) or 
increased service bandwidth. Because cache resources are 
finite in size, however, one problem in caching is that there 
exists a wide variety of algorithms for replacing objects in a 
filled cache. 

Effective caching algorithms are necessary to insure users 
experience favorable performance benefits, especially in an 
environment as diverse and distributed as the Internet.  Such 
performance benefits are a reduction in the delay between the 
time a user requests an object and its delivery to the user. 

Since the Web has evolved, several caching algorithms 
have been suggested in literature; Balamash and Krunz‘s 
survey of replacement algorithms described no fewer than 
twenty different replacement schemes [3].  Each strategy 
utilizes different parameters to determine objects to replace – 
Balamash classified caching policies based on whether they 
utilized frequency, recency, or size information.  While some 
algorithms utilize a single traffic trait, others employ a 

functional approach to compute a derived ‗cost‘ of an object 
cache miss based on multiple parameters, thus removing the 
lowest ‗cost‘ object when a replacement is required.  Not 
surprisingly, the research has shown that functional 
approaches are generally more computationally complex than 
those based on a single attribute [3].  Due to the variety of 
approaches, metrics, and parameters utilized (sometimes 
singly and sometimes in combination), each algorithm has 
distinct performance characteristics. 

Since access patterns are unique to each environment, 
certain algorithms are more suitable than others depending on 
the traffic situation, and one single algorithm is not best in 
class for all situations.  A web server that functions as a search 
engine will have different traffic patterns, and thus unique 
cache architecture requirements, when compared to a 
university web portal, online encyclopedia, multimedia server, 
etc. [4]. Algorithm designers (such as [5]) have attempted to 
overcome this problem using one or more static parameters 
that can be tuned offline to optimize performance through 
analysis of historical object requests. 

Web caches are designed to provide apparent speed 
benefits to object requestors by offloading objects from the 
web server itself to a location that is physically or logically 
closer to the requestor and/or decreases the amount of load 
experienced by the web server [6].  A web cache typically 
stores its objects in some form of memory or disk.  Because 
these storage resources are finite, however, cache replacement 
policy algorithms are utilized to determine which objects to 
remove from the cache as new objects are accessed which are 
deemed more productive to cache [7].  Ideally, these 
replacement policy algorithms will always choose to keep the 
objects that will provide the best performance. 

Developing an algorithm that is optimal for all traffic 
patterns is a challenging problem.  Some algorithms attempt to 
overcome this problem using static tuning parameters that are 
set using offline training, trial-and-error, or possibly via an 
educated guess.  Others attempt to adapt dynamically, using 
computationally complex dynamic parameters that are based 
on historical object requests.  Because of the ubiquity of 
caching across a variety of computing environments – 
microprocessors, web, thin-clients, wireless devices, etc. – and 
the wide variety of possible differences in traffic and access 
patterns within and across these environments, researching 
methods for adaptive performance optimization is a worthy 
objective. 

In this article, a novel adaptive approach to finding an 
efficient cache replacement policy for a given traffic pattern 
by sectioning the cache storage space into areas managed by 
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separate object replacement policies is introduced and 
assessed.  The overall cache space then utilizes a tuning 
algorithm to allow the overall cache to choose the best policy 
based on current access patterns.  This effort focuses on 
caching within a web environment.  However, the approach is 
extensible to other caching environments. In section II an 
overview of the most prominent cache replacement policies is 
provided, and in section III the adaptive cache replacement 
policy is described. The assessment approach and preliminary 
results are described in section IV. Last, section V highlights 
the conclusions. 

II. CACHE REPLACEMENT POLICIES 

A variety of cache replacement policy algorithms have 
been designed and evaluated in literature, with a goal of 
maximizing cache effectiveness as measured using 
performance metrics such as Hit Ratio.  Each algorithm 
generally utilizes one or more of three pieces of information 
about requested objects: recency of access, frequency of 
access, or size.  Algorithms range from those which are very 
simple in that they only use a single traffic parameter, such as 
LRU and LFU, to those which are very complex, using 
multiple parameters as well as statically tuned constants, such 
as Hybrid and GDSF. In the case of LRV, dynamic probability 
functions – built based on static algorithm analysis – are 
included but at the cost of implementation challenges and 
computational complexity. 

Evaluating the performance of replacement algorithms is 
typically accomplished using real-world web logs (also known 
as web traces).  These web logs are cleansed to remove non-
cacheable requests (such as cgi or other dynamically generated 
content), then run through a program to simulate the 
replacement algorithm by ‗playing back‘ the cleansed web 
log. The simulation process calculates benchmarks over a 
range of cache sizes.  The most common metrics are hit ratio 
(HR), or the ratio of cache hits to all requests; byte hit ratio 
(BHR), or the ratio of bytes returned from the cache to all 
bytes requested; and latency ratio (LR), or the delay 
experienced by a user for objects retrieved from the cache 
verses that experienced if no objects were cached.  Other 
effectiveness measures include reduced packets, or the ratio of 
network packets avoided due to caching to the total packets 
that would have otherwise been seen by the server; and 
reduced hops, a similar measure that focuses on network hops 
between client and server.  Balamash and Krunz define the 
most common measures as follows [3]: 
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Where: is = size of object i;
if = total number of object 

requests for object i; 
ih = total number of cache hits for object 

i; 
id = average server retrieval delay for object i; R = set of all 

requested objects. 

A. Least Recently Used (LRU) Algorithm 

The Least Recently Used algorithm essentially uses a 
single parameter to decide which object to remove from the 

cache:  time since last access.  The basic premise of the 
algorithm is that those objects that are most likely to be 
accessed will have been accessed more recently than those 
that are not as likely.  While simple to implement and 
requiring less computational power than most other 
algorithms, LRU has been outclassed by several other 
replacement algorithms: Balamash and Krunz‘s experiments 
showed that for large cache sizes, LUV, GDS, and Hyper-G 
produced better results for both HR and LR [3], while Bahn et 
al. found that for large cache sizes, LUV, Hybrid, Size, Mix, 
and sw-LFU performed better for HR and LUV was better for 
LR [5]. 

B. Least Frequently Used (LFU) Algorithm 

Another relatively simple algorithm, Least Frequently 
Used utilizes a frequency counter for each object in the cache.  
Objects that are most frequently accessed are thus more likely 
to remain in the cache and presumably provide benefit to 
future users.  Similar to LRU in terms of ease of 
implementation and complexity, this algorithm has also been 
surpassed by algorithms that are more efficient; Bahn et al. 
noted that LUV, LNC-R-W3, GDS, and LRV outperformed 
LFU for HR, BHR, and LR [5]. 

C. Size Algorithm 

The Size algorithm is another simple algorithm - size is the 
only measure utilized for eviction evaluation [8].  When an 
eviction is required, Size removes the largest object currently 
in the cache with the idea that users are less likely to re-
request larger objects.  Smaller objects, then, are more likely 
to remain in the cache long-term [3].  Additionally, this allows 
for a larger number of objects to remain in the cache, 
potentially improving hit rates for some traffic patterns.  
Algorithm implementation is simple when compared to 
algorithms using multiple parameters, but exhibits generally 
poor performance:  Balamash et al. found that the Size 
algorithm was a middle-of-the-pack performer for HR and 
absolute worst for BHR and LR using a simulated DEC trace 
and compared against LUV, GDS, Hyper-G, LRU, and Hybrid 
algorithms. 

D. Least Unified Value (LUV) Algorithm 

The LUV algorithm is a more complex functional 
algorithm that ―trie[s] to get the benefit of both LRU and LFU 
in one unified scheme [3]‖.  Each object in the cache is 
assigned a value that is used during a replacement operation; 
the object with the lowest value is removed.  Values for each 
object (i) are assigned by the following formula: 
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Where: 
iC  is the cost of object i; is  is the size of object i;

  is a static parameter in the range 0 ≤  ≤ 1; 
ik ,  is the time 

since the k
th

 reference to object i. 

Bahn et al. did not describe a mechanism for determining 
λ, simply mentioning training as an approach without 
providing implementation details [5], while Katsaros and 
Manolopoulos suggested trial-and-error [9].  An obvious 
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drawback to either methodology is that the resulting parameter 
may not provide efficient object replacement as request 
patterns change.  Interestingly, a value of zero for λ causes the 
algorithm to behave very similar to LFU, while behavior 
similar to LRU results when λ is set to one. 

E. Hybrid Algorithm 

Wooster et al., presented a cache policy that utilizes 
several objects and request traffic statistics in a functional 
computation that derives a cost (or value) for each member or 
potential member of the cache [10].  The Hybrid formula is 
defined as: 

                                in sW

isbsi fbWrttV
/

)()/(    

Where: si= size of object i; fi= total number of object 
requests for object i; rtts= round trip time from cache to server 
s; bs= bandwidth from cache to server s; Wb and Wn= tuned 
parameters. 

Balamash and Krunz noted that Wb is tuned based on the 
―importance of the connection time relative to the connection 
bandwidth [3]‖, while Wn is tuned based on the ―importance of 
frequency information relative to the size of the object [3].‖  
These parameters are static; though they can be tuned for each 
implementation, they do not change over time within the 
context of the implementation.  Similar to LUV, the authors 
do not provide a methodology for determining the static 
parameters Wb and Wn other than experimentation utilizing 
trace files, which can result in less efficient cache 
performance. 

F. Mix Algorithm 

Niclausse et al. presented an extension to the Hybrid cache 
policy that adds a parameter of time since last access to the 
functional cost computation [7].  The Mix formula is defined 
as: 
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Where: si= size of object i; fi= total number of object 
requests for object i; di = average server retrieval delay for 
object i; trefi= current date and time of last request for object 
i; r1, r2, r3, r4= tuned parameters. 

The authors noted that tuning the parameters utilized by 
the algorithm is not a trivial task and did not present a 
methodology for doing so.  However, their trace simulation 
experiments found that using a value for r1 that was much 
smaller than r2, r3, and r4 gave optimal performance, and their 
published results used 1, 0.1, 0.1, and 0.1 for the respective 
parameters. Though the algorithm utilizes several performance 
characteristics as well as tuned parameters in an attempt to 
create an efficient replacement algorithm, experimentation by 
Balamash found that the algorithm was one of the worst 
performers, generally bested by even LRU and being superior 
only to Size. 

G. Greedy Dual Size with Frequency (GDSF) Algorithm 

Jin and Bestavros proposed the GDSF algorithm, which is 
a functional algorithm similar in approach to Mix in that it 
utilizes several object statistics, but different in that it utilizes 

only one pre-tuned parameter [11].  The GDSF formula is 
defined as: 

                  LscfV iiii  /   

Where: si = size of object i; fi = total number of requests 
for object i; ci= the cost of bringing object i into the cache; L= 
a runtime factor which starts at zero when the cache is 
initialized and represents the value of the most recent object to 
be replaced. 

Arlitt et al. noted that the best HR is achieved when ci is 
set to one [12].  The runtime factor L works as follows:  when 
the cache is first initialized, L is set to zero.  L remains zero 
until the cache becomes full and an object needs to be 
removed from the cache.  The algorithm determines the object 
with the lowest value, Vi, and removes it from the cache.  The 
runtime parameter L is set to the value of Vi for the ejected 
object.  This process continues throughout the life of the cache 
such that L is an ever-increasing parameter. 

Shi and Zhang, attempting to find single optimal 
algorithms for HR, BHR, and LR separately, instead found 
that GDSF performed best for all three metrics simultaneously 
when compared to LRU, LFU, and GDS [13]. 

H. Lowest Relative Value (LRV) Algorithm 

After extensive analysis of web traces, Rizzo and Vicisano 
proposed a complex (and, according to Bahn et al., ―difficult‖ 
to implement) algorithm called Lowest Relative Value [14][3].  
The algorithm utilizes separate computations based on 
whether the object is being requested for the first time or a 
subsequent time: 
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Where: si= size of object i; ci= the cost of loading object i 
into the cache; t= time since last request for object i; Pn= 
probability of access of n+1 given access of n times; D(t)= 
cumulative distribution function of object inter-access time. 

The probability functions Pn and D(t) are based on 
―extensive analysis of trace data [5],‖ but are computed 
dynamically [14].  Rizzo provides an estimation for 

computing D(t) as: )log()(
1
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parameter that ―accounts for the periodicity of frequent 
references to popular documents [14]‖ and c is further defined 

by the equation: )log()(
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While Bahn, et al. did not examine the effectiveness of 
LRV, their treatment of the algorithm noted that the Vi 
equation needed to be calculated for every object in the cache 
each time an object was removed. Additionally, the LRV 
authors stated that the probability functions were iterative in 
nature.  While the algorithm is adaptive to traffic, then, it is 
not only difficult to implement but also computationally 
complex. 

I. Advanced Replacement Cache (ARC) Algorithm 

Megiddo and Modha constructed a dynamically adaptive 
cache policy that attempted to strike a balance between object 
request frequency and recency.  Their policy implements two 
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LRU cache areas:  one is a list of LRU-ordered objects that 
have been requested only once and the other is a list of LRU-
ordered objects that have been requested two or more times 
[15].  They define their algorithm as 

ARC(c)   Initialize T1 = B1 = T2 = B2 = 0, p = 0.  

 x - requested page. 

Case I.    x ∈ T1 ∪ T2 (a hit in ARC(c) and 

DBL(2c)): 

 Move x to the top of T2. 

Case II.  x ∈ B1 (a miss in ARC(c), a hit in 

DBL(2c)): 

 Adapt p = min{c,p + max{|B2|/|B1|, 1} }.  

 REPLACE(p).  

 Move x to the top of T2 and place it in the 

cache. 

Case III. x ∈ B2 (a miss in ARC(c), a hit in 

DBL(2c)): 

 Adapt p = max{0,p - max{|B1|/|B2|, 1} }.  

 REPLACE(p). 

Move x to the top of T2 and place it in the 

cache. 

Case IV. x ∈ L1 ∪ L2 (a miss in DBL(2c) and ARC(c)): 

case (i) |L1| = c: 

if |T1| < c then delete the                                     

LRU page of B1. 

REPLACE(p). 

else delete LRU page of T1 and remove it from 

the cache. 

case (ii) |L1| < c and |L1| + |L2| ≥ c: 

if |L1| + |L2| = 2c then delete the LRU page of 

B2. 

REPLACE(p). 

Put x at the top of T1 and place it in the cache. 
Subroutine REPLACE(p) 

if (|T1| ≥ 1) and ((x ∈ B2 and |T1| = p) or (|T1| > p)) then 
move the LRU page of T1 to the top of B1 and remove it from 
the cache. 

else move the LRU page in T2 to the top of B2 and remove 
it from the cache. 

In their implementation, T1 and T2 represent the list of 
most recently requested objects in lists L1 and L2, respectively.  
Similarly, B1 and B2 represent the list of least recently 
requested objects in lists L1 and L2, respectively.  The 
parameter p dynamically adjusts such that the overall cache 
contains ―the p most recent [objects] from L1 and c-p most 
recent [objects] from L2.― [15]. The authors‘ experimental 
results show that the ARC algorithm does outperform LRU in 
their trials. Unfortunately, the experiments were performed 
using traffic traces specific to their research facility rather than 
publicly available traces, making direct comparisons to other 
published algorithms impossible. 

III. ADAPTIVE REPLACEMENT POLICY 

Memory-based caching being finite in nature is typically 
governed by a single cache-replacement policy. A simplified 
and generalized architecture for a cache area x governed by 
replacement policy R is depicted in figure 1. 

 

Size:  x

Policy:  R

 
Fig. 1. Simple Cache Architecture 

This article focuses on an adaptive cache replacement 
policy that allows for a short period of possibly less efficient 
cache performance while still providing some cache benefits, 
directly leading to an efficient algorithm choice without the 
need for trace file collection or offline training.  The approach 
is similar to that of ARC, except that it is adaptable to 
replacement policy choices other than LRU and possibly 
extensible to more than two policies. The rest of this section 
outlines the new multiple-algorithm approach to dynamically 
choosing an efficient replacement policy. 

The new approach modifies the simple cache architecture 
by splitting its finite area into n separate parts, each governed 
by a distinct replacement policy, Ri.  In such an architecture, 
each partition would start with size x/n.  Figure 2 depicts this 
generalized architecture. 

Size:  x/n

Policy:  R0

...

Size:  x/n

Policy:  R1

Size:  x/n

Policy:  Rn

 
Fig. 2. Generalized n-Policy Cache Architecture 

Considering a two-parts cache architecture, a second 
modification allows for the size of each area y and y’ to adjust 
dynamically based on traffic patterns while their combined 
sizes are never greater than x, as illustrated in figure 3.  
Caches are initialized to be completely empty, so a cache 
system has no history on which to base the loading or removal 
of objects.  The multi-algorithm approach primes each cache 
area with objects as they are being requested.  The priming 
process alternates loading objects between the two caches, y 
and y’, until both areas are full.  Additionally, a cached object 
can exist in only one area at a time, not both simultaneously.  
During the load process, the cache policies continue to work 
normally – if a cached object is re-requested, it is provided by 
the cache area from which it resides.  If one area becomes full 
during the priming phase, the other area continues to be filled 
until it, too, is completely primed. 

Once primed, a secondary algorithm begins to dynamically 
adjust the size of the caches based on which area is serving the 
most cache hits.  This is accomplished using a dynamic 

parameter  that is initially set to x/2 and is used to calculate 
the current size of each cache area, mathematically: 

y           xy'  

 

Size:  ρ

Policy:  R

Size:  x - ρ

Policy:  R’
 

Fig. 3. Two-Policy Cache Architecture with Parameter 
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When area y experiences a cache hit,  is increased by the 
size of the object being requested.  Alternatively, when area y’ 

sees a hit,  is decreased by the requested object size.  If the 
total size of all objects cached for an area exceeds the dynamic 
size, cache replacement policies kick in and objects are 
removed until the total object size is less than or equal to the 
dynamic allocation. 

The initial theory behind the new multi-algorithm 
replacement policy hypothesized that a cache area x would 
adapt to changing traffic patterns in a manner similar to that of 
ARC.  Instead, another interesting result emerged from the 
simulation results:  the overall area x generally converges to 
either replacement policy R or R’, depending on which policy 
yields best results for the traffic pattern. The multi-algorithm 
policy is outlined as follows: 

Given: 

L1 is list using LRU policy 

L2 is list using LFU policy 

x is total cache size 

0 < |L1| ≤ ρ  and  ρ < |L2| ≤ x 

LFRU3 (x) Initialize L1 = L2 = 0, ρ = x/2.  

o - requested object. 

Case I. o  L1 (a miss in LFU, a hit in LRU): 
If L1 is primed, L2 is primed, ρ> 

sizeof(o), and ρ +sizeof(o)< x 

Adapt ρ = ρ + sizeof(o).   

Move o to the top of L1.  

If |L2| > x - ρ, evict LFU objects until 

|L2| ≤ x – ρ and mark L2 as primed. 

Case II. o  L2 (a miss in LRU, a hit in LFU): 
If L1 is primed, L2 is primed, x - ρ > 

sizeof(o), and ρ - sizeof(o) > 0  

Adapt ρ = ρ - sizeof(o).  

Increase frequency of o in L2.  

If |L1| > ρ, evict LRU objects until |L1| 

≤ ρ and mark L1 as primed. 

Case III. o  L1  L2 (a miss in LRU and LFU): 
If ((L1 is not primed and L1 has fewer 

entries than L2) 

or (L1 is not primed and L2 is primed) 

or (L1 is primed and L2 is primed and ρ 

< x/2)) 

and ρ + sizeof(o) < x 

(LRU is doing better or needs primed) 

add o to the top of L1. 

Else 

If ((L2 is not primed and L2 has fewer 

entries than L1) 

or (L2 is not primed and L1 is 

primed) 

or (L1 is primed and L2 is primed))  

and ρ - sizeof(o) > 0 

(LFU is doing better or needs 

primed) 

add o to L2 with frequency of 1.  

ρ remains unchanged. 

If |L1| > ρ, evict LRU objects until 

|L1| ≤ ρ and mark L1 as primed. 

If |L2| > x - ρ, evict LRU objects 

until |L2| ≤ x - ρ and mark L2 as 

primed. 

IV. PRELIMINARY RESULTS 

An experiment was designed to assess the effectiveness of 
the adaptive policy using two algorithms where the cache was 
split into two parts. LRU algorithm was chosen for policy R 
and the LFU algorithm was chosen for policy R’. These 

policies were chosen due to their computational simplicity 
[16] and the fact that many if not most existing policies utilize 
recency and/or frequency in their design [3]. 

Two traces from the Internet Traffic Archive [17] were 
chosen to carry out the validation process:  one from Digital 
Equipment Corporation (DEC) and another from the 
Environmental Protection Agency (EPA).  The trace files were 
chosen primarily based on how they performed under 
simulation; DEC generally performed better using the LRU 
policy whereas EPA generally showed a preference for the 
LFU policy.  Additionally, the DEC trace files were 
previously utilized in algorithm research by in [5], [16], [11], 
[3], and [14] while the EPA trace files were used in [18]. 
Finally, a third trace file was created to alternate requests from 
the DEC and EPA trace files in order to craft a synthetic trace 
file for analysis that mimicked two simultaneous unique traffic 
patterns. 

These web traces were applied using a cache simulator 
written by Pei Cao, known as Uniform [19].  Employed in 
other research ([20], [21], and [22]) and written in C, this 
application readily facilitated the simulation of the LRU 
replacement policy. The simulator was enhanced by 
implementing the LFU policy as well as the adaptive policy, 
LFRU3, in order to simulate these policies along with the 
already available LRU. Additionally, each policy utilized a 
threshold mechanism that existed in the initial simulator and 
was implemented in newly added policies (LFU and LFRU3).  
The threshold process refused to cache objects above a certain 
size (250kB in this experiment) so that one large object could 
not ‗pollute‘ the cache, meaning that a request for one large 
object would not cause many smaller and possibly more 
beneficial objects to be removed. 

The performance of the three primed with thresholding 
versions of the three algorithms were compared to determine 
the effectiveness of LFRU3.  Figures 4-6 depict the 
performance using the DEC, EPA, and synthetic DECEPA 
trace files, respectively. For the DEC trace the adaptive policy, 
LFRU3, has nearly the same performance as the best 
algorithm (LRU) for smaller cache sizes and very close in 
performance at the largest cache size, as shown in figure 4.  
This indicates that LFRU3 successfully converged to the 
better of the two algorithms in all test cases. 

In the EPA simulations the new two-algorithm policy 
chose the better (LFU) algorithm in two scenarios – cache 
sizes of 0.05% and 10% of maximum (5 simulations).  For 
these five simulations, then, LFRU3 successfully converged to 
the better of the two algorithms 40% of the time. It is 
encouraging to note that at the 0.05% cache size, where the 
LRU algorithm and LFU algorithm showed the most dramatic 
performance differential, the adaptive policy successfully 
converged to the better of the two algorithms, as shown in 
figure 5. 

The synthetic simulation showed the most promise.  In this 
simulation the new approach was actually superior to the other 
algorithms for smaller cache sizes.  It delivered an 8% HR 
improvement over LFU and 48% improvement over LRU for 
the 0.05% cache size.  At 0.5% cache size, the results were 
less pronounced but still superior:  1.4% HR improvement 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 5, No. 7, 2014 

110 | P a g e  

www.ijacsa.thesai.org 

0

0.1

0.2

0.3

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
it

 R
a

te
 

Portion of Trace Processed 

LFRU3-thresh-priming LFU-thresh-priming
LRU-thresh-priming

over LFU and 9.6% better than LRU, as shown in figure 6. 
Figures 7 and 8 depict the HR for these two cache sizes over 
simulation time. 

Fig. 4. HR vs. Cache Size (percentage of DEC Trace) 

 
Fig. 5. HR vs. Cache Size (percentage of EPA Trace) 

 
Fig. 6. HR vs. Cache Size (percentage of DECEPA) 

Results in Figure 7 illustrate that for the smallest cache, 
LFRU3 performs consistently better than the other algorithms, 
and all three algorithms have consistent performance 
throughout the life of the simulation.  Thus, the convergence 
to superior performance over the other algorithms occurs very 
early in the lifecycle of the cache and remains constant 
throughout, a very encouraging result. 

 
Fig. 7. HR vs. Sim. Time Size (0.05% Synthetic Trace) 

 
Fig. 8. HR vs. Sim. Time Size (0.5% Synthetic Trace) 

The next largest cache shows LRU starting strong but 
quickly being surpassed by both LFU and the new approach, 
with LFRU3 consistently better than LFU throughout the 
examination period, as shown in figure 8.  While in this case 
the new policy is not superior at the first examination period 
(10% of the trace), it quickly exceeds the performance of the 
initial best performer and shows gradual improvement and 
superior performance throughout the remainder of the cache 
lifecycle. 

For Byte Hit Rate (BHR), the performance gain was not as 
pronounced. As Figure 9 illustrates, the LFRU3 policy slightly 
edges the next-best performer, LFU, at the smaller size, but 
performance at other sizes varies.  Reduced latency (LR), a 
measure of the reduction of time spent waiting for objects, 
shows promise.   
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Figure 10 shows that LR is nearly identical to that for HR 
– LRFU3 is the best LR performer for the two smallest caches. 

 
Fig. 9. BHR vs. Cache Size (percentage of Striped Trace) 

 
Fig. 10. LR vs. Cache Size (percentage of Striped Trace) 

V. CONCLUSIONS 

Caching for Web documents is a hugely beneficial 
function, and much research has been published on cache 
replacement policies. While the replacement algorithms 
themselves may factor in one, a few, or many parameters 
related to the objects and their request history, a multi-
algorithm policy has not been attempted. While this article 
focuses on a two-policy architecture, it is expected that it can 
be effective for more than two policies. 

Simulations of the multi-algorithm cache replacement 
policy shows that it is a viable approach that can adapt itself to 
the better of two replacement policies in many instances, and 
provide superior performance in some others.  The empirical 
results support that the adaptive policy works particularly well 
in environments with limited cache sizes. 
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