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Abstract—Functional programming appears to be enjoying a 

renaissance of interest for developing practical, ―real-world‖ 

applications. Proponents have long maintained that the 

functional style is a better way to modularize programs and 

reduce complexity. What is new in this paper is we test this claim 

by studying the complexity of open source codes written in Scala, 

a modern language that unifies functional and object 

programming. We downloaded from GitHub, Inc., a portfolio of 

mostly ―trending‖ Scala repositories that included the Scala 

compiler and standard library, much of them written in Scala; 

the Twitter, Inc., server and its support libraries; and many other 

repositories, several of them production-oriented and 

commercially inspired. In total we investigated approximately 

22,000 source files with 2 millions lines of code and 223,000 

methods written by hundreds of programmers. To analyze these 

sources, we developed a novel compiler kit that measures lines of 

code and adaptively learns to estimate the cyclomatic complexity 

of functional-object codes. The data show, first, lines of code and 

cyclomatic complexity are positively correlated as we expected 

but only weakly which we did not expect with Kendall’s τ=0.258–

0.274. Second, 75% of the Scala methods are straight-line, that is, 

they have the lowest possible cyclomatic complexity. Third, 

nearly 70% of methods have three or fewer lines. Fourth, the 

distributions of lines of code and cyclomatic complexity are both 

non-Gaussian (P<0.01), which is as surprising as it is interesting. 

These data may offer new insights into software complexity and 

the large-scale structure of applications including but not 

necessarily limited to Scala. 
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I. INTRODUCTION 

Functional programming appears to be enjoying a 
renaissance of interest for writing practical applications. The 
turn toward functional programming is evident in recent 
introductions of new functional languages, revival of old ones, 
incorporation of functional semantics in non-functional 
languages, publications of trade texts focused on functional 
programming, proliferation of open source communities and 
tools dedicated to functional programming, and adoption of 
functional approaches by some firms in industry. While 
reasons for the newfound enthusiasm are likely varied, some 
proponents have argued that elaboration of the lambda 
calculus is well suited to writing modular programs that 
reduce complexity. 

What is new in this paper is we tested this latter claim and 
developed an experimental compiler kit to analyze the 
modularity and complexity of Scala, a modern language that 
unifies functional and object styles [1,2]. (While the focus is 
on Scala, the concept we present is more general and we posit 
adaptable to the functional style, whether in a pure functional 

language or a language like Java that recently incorporated 
lambda expressions beginning with version 8.) We then 
downloaded from GitHub.com

1
a portfolio of mostly 

―trending‖ Scala repositories that contain millions of lines of 
source in tens of thousands of files with hundreds of thousands 
of methods written by hundreds of programmers. A robust 
analysis of this data indicates that lines of code (LOC) and 
cyclomatic complexity (M) [3] are positively correlated, as we 
expected, but only weakly which we did not expect. In other 
words, LOC and M are clearly related though not necessarily 
interchangeable as suggested elsewhere in the literature for 
programs written with imperative languages. While we do not 
yet know if this new finding is unique to Scala, robust 
variability statistics indicate M is a more reliable estimate of 
complexity compared to LOC, confirming the distinction of 
the two metrics, at least for the Scala repositories on GitHub. 
The data furthermore shows an interesting non-Gaussian 
preponderance of short, straight-line methods, which also 
surprised us. That is, we assumed as a null hypothesis that 
LOC and M would be normally distributed about a mean value 
which they aren’t. These new findings may offer insights into 
software complexity and the large-scale structure of programs 
including, but not necessarily limited to, Scala. 

II. BACKGROUND 

Functional programming for much of its history has 
thrived largely in academic obscurity [4,5]. That may be 
changing. A renaissance of interest in ―real-world‖ 
applications of functional programming, languages, and styles 
has emerged in recent years [6,7,8,9,10,11,12]. Some 
investigators have observed that the renewed enthusiasm for 
functional programming is partly a response to the ―free lunch 
is over‖ dilemma posed by the advent of commodity multicore 
systems [13,14]. Others like Twitter, Inc., have switched to 
functional programming, and Scala in particular, for the 
advantages Scala purports to offer for scalability.

 2
 Yet 

functional programming proponents have long maintained that 
mathematical expressiveness of the functional style lends itself 
to modularization and reducing program complexity [15]. That 
there have been no empirical studies to support these latter 
suppositions has not stopped language designers, developers, 
and authors from arguing for more functional programming. 

We don’t fault functional programming enthusiasts. There 
isn’t even a consensus regarding what software complexity is, 
a conundrum in our view reminiscent of asking what beauty is, 

                                                           
1See GitHib, Inc., https://github.com/trending?l=scala, accessed: 6 June 2014 
2See C. Metz, ―Twitter jilts Ruby for Scala,‖ The Register, 

http://www.theregister.co.uk/2009/04/01/twitter_on_scala/, accessed 4 Jun 
2014 
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which Immanuel Kant tackled more than two centuries ago 
[16]. Perhaps the relationship between software complexity 
and aesthetics and matters of taste is more than a philosophical 
one for if software complexity were ―in the eyes of the 
beholder‖ it might account for the 100-plus different metrics, 
computational and cognitive, that propose to blindly quantify 
what is desirable and undesirable in code, the irony 
notwithstanding [17,18]. Our point is only to suggest that 
rather than inventing yet another metric for functional 
programs, we believed it more productive as an experiment to 
start with existing metrics, off-the-shelf, so to speak; refactor 
them only if needed; and see what the source code is telling 
us. 

As a candidate, M has its downsides, being imperfect and 
dated [19,20]. Furthermore there is no research on how to 
apply M to functional programs, which differ in some 
fundamental ways from imperative programs for which M had 
been originally developed. Still M remains the most widely 
known and often applied metric, standing singularly for its 
diverse implementations

3
 and published risk assessments by 

the Software Engineering Institute [21]. 

LOC, as a simple measure of complexity, is similarly dated 
and inadequate [22]. Some modern languages furthermore 
present semantic challenges for measuring LOC because of 
nested definitions and structures. Nevertheless the enduring 
importance LOC, despite their limitations, are evident in 
modern source editors, IDEs, operating systems, etc. which 
would be incomplete from a programming point of view 
without line counting facilities. 

Hatton observed for FORTRAN and C that M and LOC 
were statistically correlated, declaring M ―effectively useless‖ 
[23]. Perhaps Hatton made this claim because LOC was so 
obvious and simple that there had to be a better approach, 
although for our purposes we show this view of LOC is naïve 
at best. We don’t disagree with Hatton in principle; we would 
simply state the matter differently. Namely, we expect only as 
a working hypothesis that any other measure of software 
complexity is positively correlated with LOC since this view 
comports with commonsense and anecdotal experience. 

III. WHY SCALA? 

We were motivated to study Scala for a few reasons.  

1) Scala blends functional and object-oriented styles, 

which stood out for us as representative of the forward-

looking, modern turn toward practical functional 

programming. 

2) Scala is a Java Virtual Machine (JVM) language. This 

is complementary to the first item above and it means Scala 

                                                           
3 For only a smattering of languages see F. Kline, ―Cyclomatic Complexity 

Viewer,‖ http://www.codeproject.com/Articles/10705/Cyclomatic-

Complexity-Viewer, accessed 12 Aug 2013; G. Wilson, ―Cyclomatic 
complexity for Python code,― http://thegarywilson.com/blog/2006/cyclomatic-

complexity-for-python-code/, 9 Jul 2006, accessed 6 Jun 2014; G. Wilson, 

―Cyclomatic complexity for Python code,― 
http://thegarywilson.com/blog/2006/cyclomatic-complexity-for-python-code/, 

9 Jul 2006, accessed 6 Jun 2014; SonarSource, http://www.sonarqube.org/, 

accessed 6 Jun 2014; and Cyvis, ―Software Complexity Visualiser,‖ 
http://cyvis.sourceforge.net/cyclomatic_complexity.html, accessed 6 Jun 2014 

runs virtually everywhere (e.g., desktops, browsers, 

cellphones, tablets, and GPUs [24], and furthermore 

interoperates with a large installed base of legacy Java codes. 

Thus, a study of Scala may be of interest to a broader 

audience of programmers and researchers. 

3) Scala repositories are readily accessible as open 

source. Some of these repositories, as we show, are large, 

sophisticated, and deployed in a commercial / production 

capacity. 

4) The Scala open source community provided us with the 

requisite tools to develop our own tools. We are referring 

mainly to the Scala plugin for Eclipse (see below) that was 

created and over the years improved by the Scala community. 

5) We are Scala programmers. We have used Scala for 

teaching and research purposes and we were thus curious to 

know how our anecdotal experience compared with empirical 

data. 

IV. SCLASTIC 

The main problems, conceptual and programming, were 
how to apply LOC and M to Scala. In summary, the issue for 
LOC is how to interpret inner definitions. The issue for M is 
handling standard library and user-defined high-order 
predicate functions. 

Thus, we sought to implement an experimental compiler 
kit capable of solving these problems for a large sample of 
Scala source codes. We call this kit, Sclastic since it operates 
in an ―elastic‖ manner, that is, it learns to dynamically 
estimate M by discovering the signatures of high-order 
functions that take predicate (i.e., Boolean-returning) function 
objects as parameters and storing this information in a 
database that Sclastic consults during a separate pass. 

Sclastic is itself mostly written in Scala and the source is 
hosted on GitHub.

 4
Sclastic is not in the portfolio of 

repositories we analyze. 

At a high level, the main body of Sclastic has three phases, 
each comprising one or more passes. The first phase, the de-
commenter, removes comments and empty lines from the 
input file, which it stores as an in-memory stream of string 
objects. The second phase, the parser, filters the string stream 
and identifies lexical objects, methods, scopes, and decision 
points, which we describe below. The final phase, the method 
compiler, analyzes the parse stream and calculates lines counts 
and estimates M for each method. 

This three-phase process outputs a list of Scala objects that 
other parts of the Sclastic kit analyze for statistical and report 
generation purposes. 

A. Definitions 

For the purposes of this paper, we have the following 
definitions. 

 Line. A Scala line is a sequence of zero or more 
characters terminated by a newline character or the end 

                                                           
4See ―Sclastic,‖ http://github.com/roncoleman125/Sclastic, accessed 6 June 
2014 
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of file. In the degenerate case, an empty line has only a 
newline character or is the end of file. A line may 
contain one or more comments. A de-commented line 
is a line with all comments removed. 

 Method. A method is a Scala class member function. 
The function may return an object or it may be void 
returning in which case it may also be called a 
procedure. The method may have zero or more formal 
parameters. Every method is composed of at least one 
non-empty line. 

B. Line counts 

Per the definition above, counting lines in Scala source, in 
the simplest cases, is simple. Consider the snippet below. 

1: class A { 

2:   def evens(input: List[Int]):     

         List[Int] = { 

3:     input.filter(p => p % 2 == 0) 

4:   } 

5: } 

Snippet 1 

The evens method of class A, given a list of integers, 
returns a new list with only the even numbers from the input 
list. (Note: Scala ignores indents and most whitespace. We 
added line numbers only for readability; they are not part of 

Scala syntax.) In this case, the line count of evens which 
Sclastic reports, is the number of lines between and including 

the inner curly braces of evens, that is, three. 

Curly braces, however, are often optional in Scala. 

Consider the snippet of class B below. 

1: class B { 

2:   def evens(input: List[Int]) =  

         input.filter(p => p % 2 == 0) 

3: } 

Snippet 2 

This evens method is functionally equivalent to the one 

from class A. However, Sclastic compiles evens in this case 
giving a line count of one. 

Counting lines is even subtler since Scala permits inner 
definitions of classes and methods. That is, it is possible to 
define classes within classes, methods within methods, and 
combinations thereof with arbitrary nesting depth. Consider 

the snippet below, which implements evens with the closure, 

iseven. 

1: class C { 

2:   val TWO = 2 

3:   def evens(input: List[Int]): 

         List[Int] = { 

4:     def iseven(a: Int): Boolean = 

            a % TWO == 0 

5:     input.filter(p => iseven(p)) 

6:   } 

7: } 

Snippet 3 

While the ―nominal‖ line count of evens is four (i.e., 
lines 3 – 6), the ―effective‖ line count is three (i.e., lines 3, 5 

and 6). The nominal and effective line count of iseven is 
one (i.e., line 4). 

Note furthermore that class C has an implied constructor 

which initializes the member, TWO, whenever an instance of C 

comes into existence. (In Scala, a val type is a read-only 

―value‖ or constant, final in Java.)  

Sclastic interprets constructors as initializer methods. 
Thus, while the constructor’s nominal line count is seven (i.e., 
lines 1 – 7), its effective line count is three (i.e., lines 1, 2, and 
7). 

We define the nominal line count to be the number of lines 
of a lexical scope including inner definitions. The effective 
line count is the number of lines of a lexical scope not 
including inner definitions. For purposes of this paper, we use 
only the effective line count. 

C. Hard signatures 

The cyclomatic complexity given by McCabe [5] is 

M = E – N + 2 P (1) 

where E and N are the number of edges and nodes, 
respectively, in the program flow graph and P is the number of 
exit points for a given method. 

A simplification is to use predicate counting [5,33]. It 
counts decision points, i.e., statements that contain Boolean 
expressions where an alternate path though the code might be 
selected. If π is a function, which returns the number of 
decision points within a method, then the cyclomatic 
complexity can also be calculated as follows: 

M = π + 1 (2) 

McCabe [5] shows that Equations 1 and 2 give the same 
result for a method whe P=1. In both cases, the smallest value, 
M=1, means the method consists only of a ―basic block‖ or 
―straight-line‖ code. 

Using Equation 2 makes calculating M straight forward for 
languages like Java. In this case, the decision point signatures 
are the selection and looping statements: if, switch-case, for, 
while, and do-while. Since these statements may also contain 
Boolean expressions connected by logical-and and/or logical-
or operators, respectively, && and | | are also decision points 
in the context of selection and looping statements. For 
instance, we count an if statement as one decision point while 
we count an if statement with an embedded && or | | as two 
decisions points. 

There is yet another simplification which we assume. 
Namely, if the Boolean expression in the selection or loop is 
constant true (i.e., there is no decision), it is still counted as a 
decision point, even though the Boolean expression will never 
be false. 

As the table below suggests, there is an incomplete 
correspondence between Java and Scala decision point 
signatures. 
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TABLE I. JAVA AND SCALA DECISION POINT SIGNATURES 

Java Scala 

if if 

for for (possibly) 

while while 

do-while N/A 

switch-case match-case 

&&, | | &&, | | 

N/A higher-order functions 

First, we ignore the do-while. It doesn’t exist in Scala. 

As for the Scala for statement, it behaves like the Java for-
each statement. That is, it operates on a collection and visits 

every element unconditionally. The Scala for statement may 
contain an if keyword. However, this case is covered by the if 
signature in Table 1. 

We say the above signatures are ―hard‖ in the sense that 
their signatures are part of the language. Furthermore, we 
hard-code them in a program table we call the ―book‖ which 
Sclastic searches when it parses the input source. 

D. Hard signatures 

Scala also makes decisions in the context of higher-order 
functions that take Boolean-returning function objects. We call 
these higher-order functions, predicate contexts. 

Consider Snippet 1. The function literal, p => p % 2 

== 0, determines whether an element of the List collection 
is even. The problem is that we must search the source for all 

references to predicate contexts like filter. As we show, 
the Scala standard library has hundreds of such methods, the 
signatures of which we can put in the book with the hard 
signatures. 

Doing so solves only part of the problem. It does not allow 
for the Scala standard library to incorporate new predicate 
contexts or refactor old ones. Furthermore, a programmer may 
extend the Scala standard library and add new predicate 
contexts or create new classes and predicate contexts that are 
independent of the Scala standard library. 

Our solution to these problems was to make two passes 
over the input during the parser phase. During the first pass the 
parser identifies method definitions that are predicate contexts, 
that is, ―soft‖ signatures, which the parser adds to the book. 
During the second pass, the parser queries the book to identify 
decision points, hard and soft. (In practice, there are in fact 
two books, a ―hard‖ one, which is ―hard-coded‖ into Sclastic, 
and a ―soft‖ one, which is created dynamically and stored in a 
datbase. A configuration switch tells Sclastic to generate the 
soft one and stop or load the soft one and continue analyzing 
the source.) 

E. Soft signature miss rate 

The book may still be incomplete. Namely, decision points 
that reference predicate contexts, which are not in the portfolio 
of repositories, will not be in the book. One solution is to 
inflate the portfolio with repositories until the book is 
―closed,‖ namely, all references to predicate contexts are 

contained in the book. We consider this approach definitive 
but impractical. The universe of Scala repositories is likely 
large and not necessarily completely hosted by GitHub. 

We have chosen instead to model the potential severity of 
the problem by estimating the probability of a soft signature 
not being in the book when it is needed—the soft signature 
miss rate. First, we have the probability of declared imports 
that that do not have corresponding package exports in the 
portfolio. This is the package miss rate. However, the soft 
signature miss rate is likely a fraction of the miss package rate 
since not every imported package contains predicate contexts. 
For instance, Java imports will not have predicate contexts. In 
general, the majority of Scala repositories in the portfolio do 
not contain predicate contexts. Thus, the soft signature miss 
rate is a joint probability, namely, the missing package rate 
times the probability that a package has predicate contexts, 
assuming the two are mathematically independent. 

For a random sample of repositories, we model the soft 
signature miss rate, S, as follows: 

S ≈ k × w (3) 

where k is the observed missing package rate and w is the 
observed fraction of repositories that contain packages with 
predicate contexts. We observe the parameters, k and w, using 
the law of succession [25] and frequency data extracted from 
the portfolio. 

Finally, there are reasons we suggest to exclude the Scala 
compiler / standard library repository from the portfolio. 
However, our analysis always includes in the book soft 
signatures from the entire portfolio of repositories, that is, 
including the Scala repository. 

V. EXPERIMENTAL DESIGN 

In this section, we describe the experimental design and 
give summary statistics for the portfolio. 

A. Data 

We created a portfolio of all the Scala repositories that 
GitHub identified as trending. This term, ―trending,‖ is 
GitHub terminology, which by GitHub’s definition means a 
repository that ―the GitHub community is most excited about‖. 
The important thing is that GitHub selects these repositories 
when we specify the language, ―scala.‖ GitHub returns the 
respective ―trending‖ repositories as hyperlinks on several 
web pages. 

The portfolio starts as a collection of downloaded zip files 
which are inputs to Sclastic. The portfolio includes the Scala 
compiler / standard library which are written largely in Scala

5
; 

the Twitter, Inc., server and libraries
6

; several, large 
commercially inspired repositories such as Lift [26] and 
Akka

7
; and many smaller and lesser known repositories for 

computational finance, graphics, games, networking, web 

                                                           
5See ―Scala: Object-Oriented Meets Functional,‖ http://scala-lang.org, 
accessed 6 Jun 2014 
6See ―Twitter is built on open source software,‖ http://twitter.github.io/, 

accessed 30 Jun 2013 
7See ―Akka,‖ http://akka.io/, accessed 6 June 2014 
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services, crypto-graphics, and artificial intelligence, among 
others. 

In the case of Twitter, Inc., of its 42 repositories on 
Twitter’s home page on GitHub

6
, three were found to be 

―trending‖ and the rest we included in the portfolio for the 
sake of curiosity and possible future research. The other 
exception was Casbah

8
, a repository we had used for initial 

testing. 

We downloaded 262 repositories in total. 85% of the 
repositories were trending and the rest, 15%, were non-
trending, being the 39 Twitter repositories and Casbah. This 
portfolio consisted of 21,596 source files with 2,391 KLOC 
(1,519 KLOC with comments and empty lines removed), and 
223,493 methods. 

The book has 1,187 soft signatures. 471 or approximately 
40% are from the Scala repository. The remaining 60% are 
made from 77 other repositories. The portfolio exports 3,667 
unique packages and imports 89,131 packages, 81,285 or 
91.2% of which Sclastic found in the portfolio. 

The table below gives statistics on the ten largest 
repositories in the portfolio ranked by number of methods.  
(All counts are ×1000.) 

TABLE II. TEN LARGEST REPOSITORIES IN THE PORTFOLIO. 

 
 
Repository 

 
Methods 

 
% tot.  

Raw 
LOC 

Stripped 
LOC 

1 Scala 57 26 401 247 

2 Scala Test 17 7 300 170 

3 Delite 9 4 62 41 

4 Lift 9 4 106 58 

5 Akka 8 4 105 66 

6 SBT-0.13 7 3 45 36 

7 Spire-2.10.0 5 2 23 17 

8 Scalaz-Seven 5 2 42 28 

9 Finagle 5 2 56 41 

10 BIDMat 4 2 16 14 

These ten largest repositories account for 56% of the 
methods and 47% of the executable LOC in the portfolio. 

B. Setup 

We used Eclipse
9
, Indigo service release 2 to develop and 

run Sclastic with the Scala 2.92 compiler and the Scala IDE 
plugin 3.0.0

10
. 

We have one Korn shell script. It computes the package 
miss rate given a list of imports and a list of imports that have 
no declared class or package in the source. We also have one 
C program. It calculates, Kendall’s τ [27] and MADM [28] 
statistics. 

C. Nonparametric methods 

A visual inspection of the distributions of M and LOC 
suggested the data probably were non-Gaussian. This was in 

                                                           
8See ―MongoDB,‖ http://10gen.com, accessed 6 June 2014 
9See ―Eclipse,‖ http://eclipse.org, accessed 15 Feb 2013 
10See ―Scala IDE for Eclipse,‖ http://scala-ide.org/, accessed 12 Aug 2013 

fact confirmed by the Kolmogorov-Smirnov (K-S) test [27]. 
Thus, we used only robust statistical measures like the K-S 
test. Two other methods we use are Kendall’s τ and median 
absolute deviation from the median or MADM. Kendall’s τ is 
a rank-based measure of correlation, a nonparametric analogue 
of Person’s r. MADM is a rank-based measure of variability 
which might be considered a nonparametric analogue of the 
coefficient of variation. We calculate both of these statistics 
using the kendall.c program included in the Sclastic 
repository. The interested reader may wish to consult the 
source code and/or the literature for more details about these 
statistics. 

D. Scatter plots 

Our intensions for the scatterplots were to paint a picture 
of the qualitative relationship between M and LOC. However, 
since both M and LOC are discrete integer values, we found a 
simple scatterplot gives a terrace-like picture, obscuring many 
data points that may be overlaid by other data points. This 
loses much information. The scatterplots we use attempt to 
correct this problem by rendering data points at not at x=M×q 
and y=LOC×q but x=Ω(M×q+η0) and y=Ω(LOC×q+η1). Here 
q is a scaling constant that converts the respective value to 
pixel units (q is the same in both cases); η0 and η1 are uniform 
random deviates on the interval [-0.50, 0.50); and Ω rounds to 
the nearest integer. In other words, we render each point 
without bias within one scaled unit of its location in the chart. 

VI. RESULTS 

Thus, per Equation 3 we estimate k = 0.088 and w = 
(1+78) / (262+2), namely, in accordance with the law of 
succession [25]. Our ―best guess‖ of the soft signature miss 
rate is S ≈ 0.026. 

All results are based on source after the comments and 
empty lines have been removed. Furthermore, since the Scala 
complier/standard library repository is by far the largest in the 
portfolio, we analyzed the portfolio with this repository and 
without it to check for any possible bias the Scala repository 
may have had on the overall results. The table below gives the 
summary statistics for the portfolio with and without the Scala 
repository. 

TABLE III. SUMMARY STATISTICS WITH AND WITHOUT THE SCALA 

REPOSITORY  

 Portfolio w/o Scala repos. 

τ 0.258 0.274 

Median M 1.0 1.0 

Median LOC 2.0 2.0 

MADM (M) 0.0 0.0 

MADM (LOC) 1.0 2.0 

Hard decision points 126,432 96,732 

Soft decision points 122,202 110,996 

The scatter plots below include the Scala 
compiler/standard library repository and excludes it 
respectively. 
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Fig. 1. Scatter plot M (horizontal axis) vs. LOC (vertical axis) including the 
Scala compiler/standard library repository. Both axes have range [0,50]. 

 
Fig. 2. Scatter plot M (horizontal axis) vs. LOC (vertical axis) excluding the 

Scala compiler/standard library repository. Both axes have range [0,50]. 

M is the horizontal axis and LOC, the vertical axis. The 
ranges of M and LOC on each axis are 0 - 50 (inclusive) which 
account for >99% of the data points. 

The table below gives the distribution of the first ten M per 
method values across the entire portfolio. 

TABLE IV. DISTRIBUTION OF M MEASUREMENTS 

M Freq. % of total  cum. % 

1 167,717 75.1 75.1 

2 25,527 11.0 86.1 

3 10,969 4.9 91.0 

4 6,013 2.6 93.6 

5 4,124 1.8 95.4 

6 2,287 1.0 96.4 

7 1,606 0.7 97.1 

8 1,071 0.5 97.6 

9 911 0.4 98.0 

10 678 0.3 98.3 

The chart below gives the M per method distribution 
plotted on a log-log scale. 

 
Fig. 3. Distribution of M / method plotted on log-log scales including (+) 

and excluding (o) the Scala complier/standard library repository. 

The table below gives the distribution of the first ten M per 
method values 

TABLE V. DISTRIBUTION OF LOC MEASUREMENTS 

LOC Freq. % of total cum. % 

1 100,692 45.5 45.5 

2 31,221 14.1 58.6 

3 14,212 8.7 68.3 

4 9,994 6.4 74.7 

5 7,197 4.5 79.2 

6 2,287 3.3 82.5 

7 1,606 2.7 85.2 

8 5,990 2.1 87.3 

9 4,700 1.7 89.0 

10 3,935 1.5 90.5 

The chart below gives the LOC per method distribution 
plotted on a log-log scale. 

 
Fig. 4. Distribution of LOC / method plotted on log-log scales including (+) 

and excluding (o) the Scala complier/standard library repository 
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VII. DISCUSSION 

In this section we discuss and interpret the results. 

A. Soft signature miss rate 

We had noted that estimated soft signature miss rate, S, is 
less than 3%. This suggests that the book, which as we 
mentioned always contains the Scala standard library, is 
mostly complete as it contains an overwhelming majority of 
all the soft signatures required by the portfolio to reliably 
estimate M. 

B. Correlations 

Table 3 shows weak correlation between M and LOC 
including the Scala repository. The correlation also remains 
weak without the Scala repository. We interpret the weak 
correlation with and without Scala repository this to mean that 
the Scala repository does not appear to bias the M and LOC 
correlation. That the correlation is positive agrees with the 
commonsense expectation we posited at the outset. However, 
that the correlation is weak tell us that M is not ―effectively 
useless‖ in relation to LOC as Hatton wrote. 

The positive but weak correlation would seem to suggest 
that M and LOC are measuring related but nevertheless 
different phenomena in the source. Some evidence in support 
of this conjecture is the MADM statistics. That MADM(M) < 
MADM(LOC) in general indicates that M is a more stable 
measure with less variability compared to LOC. This stands to 
reason since the range of M tends to be smaller than that for 
LOC. Indeed, this would explain the vertical layering of the 
scatterplots in Figure 1 and Figure 2. (Note: since M>0 and 
LOC>0, we find no data points on the x=0 or y=0 axis.) In 
other words, these data don’t contradict Hatton [23] but they 
also don’t fully support it. LOC and M are not interchangeable 
and both metric may be needed to provide a more complete 
picture of the complexity of Scala codes. 

C. Hard and soft decision points 

We note in Table 3 that there are nearly as many soft 
decision points as hard ones. The hard-to-soft ratio with the 
Scala repository is 1.03 and without it, 0.87. This fraction 
might indicate that overall programmers are exploiting the 
blend of functional and object styles in Scala, which would 
make sense. That the Scala repository employs fractionally 
more hard decision points (126,432-96,732=29,700) than soft 
ones (122,202-110,996=11,206) is noteworthy as the hard-to-
soft ratio is 2.65. We offer only as conjecture the possibility 
that the Scala repository doesn’t reference its own standard 
library in relative terms. The standard library would be 
designed and implemented more for reuse by others. 

D. Distributions 

Although the median M=1 in Table 3, Table 4 shows that 
slightly more than 75% of methods have M=1. Although the 
median LOC=2, Table 5 shows nearly 70% of methods have 
LOC≤3. In other words, most of the code is highly modular 
and mostly simple. As we pointed out, the K-S test indicates 
that both of these distributions are non-Gaussian (P < 0.01). 

In our opinion, this is perhaps even more interesting and 
surprising. First, on its face, this data tends to agree with 

claims of functional programming proponents, that is, 
functional programming encourages highly modular coding. It 
does not, at least, seem to contradict them. Whether this is 
unique to Scala or the functional style is unknown. Second, it 
could be argued that the short and simple methods are mainly 
―getters‖ and ―setters‖. We don’t know; Sclastic does not 
distinguish getters and setters from other methods. However, 
we doubt this is the explanation for the preponderance of 
short, straight-line methods since Scala obviates the use of 
such boilerplate in general. Another explanation to consider is 
programmers are merely following the published style guides 
by Scala language designers and Twitter, Inc.

11
 The problem 

with this idea is the style guides are only those: guides. 
Furthermore Scala is a relatively new language and the style 
guides, as far as we know, are even newer. 

There is yet another possibility to account for these 
distributions. As we pointed out, the distributions and M and 
LOC are non-Gaussian. This was the reason we used robust 
methods of statistical analysis. First, the charts in Figure 3 and 
Figure 4 strongly resemble one another. Again, this suggests 
that with (+) or without (o) the Scala compiler / standard 
library repository, the general statistical pattern persists. 
Second, the distributions resemble those distributions of 
physical and aesthetic phenomena known to follow power-
laws [29]. That is, the explanatory model has the form of a 
homogenous power-law, namely, f (x) = c x 

α
 where c and α 

are constants. This notion was tested by [30] which found 
power-laws offered the best, most parsimonious explanation 
for distributions and M and LOC. The reader will note that, 
indeed, if we plotted, log f (x) = α log(x) + β we would obtain 
a line with slope α and intercept β = log(c). Figure 3 and 
Figure 4, in this case, α <0, suggest that. 

Here we wish to go further and speculate that the M and 
LOC type-distributions as presented in this paper may not be 
unique to Scala per se. Rather, they may be a statistical 
characteristic of other languages, when studied in the large as 
the case of our portfolio of Scala repositories. However, 
similar distributions for other languages have not been 
reported elsewhere in the literature, which leaves open a 
research for further study. 

VIII. CONCLUSIONS 

The results we have give in this paper point in a few 
different directions for future research. One of these is to 
confirm our findings for other functional programming 
languages where open source is concern. In this way, we have 
the opportunity to study possibly many other repositories. We 
gave a list of candidate languages in the ―Background‖ 
section. Another direction is to study a language like Java. The 
promise of Java is we would likely find many repositories on 
GitHub. Finally, a study of Java repositories, being largely 
object-oriented at this time (Java 8, which supports lambda 
expressions, was released in March 2014), offers an 
opportunity to make some assessment and comparison of the 
relative contributions of functional and object styles in the 
data we presented here for Scala. 

                                                           
11See ―Scala Style Guide,‖ http://docs.scala-lang.org/style/, accessed 9 June 

2014 and ―Effective Scala,‖  http://twitter.github.io/effectivescala/, accessed 9 
June 2014 
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