
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

141 | P a g e

www.ijacsa.thesai.org

A Study of Scala Repositories on Github

Ron Coleman

Computer Science Department

Marist College

Poughkeepsie, New York, United States

Matthew A. Johnson

Computer Science Department

Marist College

Poughkeepsie, New York, United States

Abstract—Functional programming appears to be enjoying a

renaissance of interest for developing practical, ―real-world‖

applications. Proponents have long maintained that the

functional style is a better way to modularize programs and

reduce complexity. What is new in this paper is we test this claim

by studying the complexity of open source codes written in Scala,

a modern language that unifies functional and object

programming. We downloaded from GitHub, Inc., a portfolio of

mostly ―trending‖ Scala repositories that included the Scala

compiler and standard library, much of them written in Scala;

the Twitter, Inc., server and its support libraries; and many other

repositories, several of them production-oriented and

commercially inspired. In total we investigated approximately

22,000 source files with 2 millions lines of code and 223,000

methods written by hundreds of programmers. To analyze these

sources, we developed a novel compiler kit that measures lines of

code and adaptively learns to estimate the cyclomatic complexity

of functional-object codes. The data show, first, lines of code and

cyclomatic complexity are positively correlated as we expected

but only weakly which we did not expect with Kendall’s τ=0.258–

0.274. Second, 75% of the Scala methods are straight-line, that is,

they have the lowest possible cyclomatic complexity. Third,

nearly 70% of methods have three or fewer lines. Fourth, the

distributions of lines of code and cyclomatic complexity are both

non-Gaussian (P<0.01), which is as surprising as it is interesting.

These data may offer new insights into software complexity and

the large-scale structure of applications including but not

necessarily limited to Scala.

Keywords—Functional programming; Scala; GitHub.com

I. INTRODUCTION

Functional programming appears to be enjoying a
renaissance of interest for writing practical applications. The
turn toward functional programming is evident in recent
introductions of new functional languages, revival of old ones,
incorporation of functional semantics in non-functional
languages, publications of trade texts focused on functional
programming, proliferation of open source communities and
tools dedicated to functional programming, and adoption of
functional approaches by some firms in industry. While
reasons for the newfound enthusiasm are likely varied, some
proponents have argued that elaboration of the lambda
calculus is well suited to writing modular programs that
reduce complexity.

What is new in this paper is we tested this latter claim and
developed an experimental compiler kit to analyze the
modularity and complexity of Scala, a modern language that
unifies functional and object styles [1,2]. (While the focus is
on Scala, the concept we present is more general and we posit
adaptable to the functional style, whether in a pure functional

language or a language like Java that recently incorporated
lambda expressions beginning with version 8.) We then
downloaded from GitHub.com

1
a portfolio of mostly

―trending‖ Scala repositories that contain millions of lines of
source in tens of thousands of files with hundreds of thousands
of methods written by hundreds of programmers. A robust
analysis of this data indicates that lines of code (LOC) and
cyclomatic complexity (M) [3] are positively correlated, as we
expected, but only weakly which we did not expect. In other
words, LOC and M are clearly related though not necessarily
interchangeable as suggested elsewhere in the literature for
programs written with imperative languages. While we do not
yet know if this new finding is unique to Scala, robust
variability statistics indicate M is a more reliable estimate of
complexity compared to LOC, confirming the distinction of
the two metrics, at least for the Scala repositories on GitHub.
The data furthermore shows an interesting non-Gaussian
preponderance of short, straight-line methods, which also
surprised us. That is, we assumed as a null hypothesis that
LOC and M would be normally distributed about a mean value
which they aren’t. These new findings may offer insights into
software complexity and the large-scale structure of programs
including, but not necessarily limited to, Scala.

II. BACKGROUND

Functional programming for much of its history has
thrived largely in academic obscurity [4,5]. That may be
changing. A renaissance of interest in ―real-world‖
applications of functional programming, languages, and styles
has emerged in recent years [6,7,8,9,10,11,12]. Some
investigators have observed that the renewed enthusiasm for
functional programming is partly a response to the ―free lunch
is over‖ dilemma posed by the advent of commodity multicore
systems [13,14]. Others like Twitter, Inc., have switched to
functional programming, and Scala in particular, for the
advantages Scala purports to offer for scalability.

 2
 Yet

functional programming proponents have long maintained that
mathematical expressiveness of the functional style lends itself
to modularization and reducing program complexity [15]. That
there have been no empirical studies to support these latter
suppositions has not stopped language designers, developers,
and authors from arguing for more functional programming.

We don’t fault functional programming enthusiasts. There
isn’t even a consensus regarding what software complexity is,
a conundrum in our view reminiscent of asking what beauty is,

1See GitHib, Inc., https://github.com/trending?l=scala, accessed: 6 June 2014
2See C. Metz, ―Twitter jilts Ruby for Scala,‖ The Register,

http://www.theregister.co.uk/2009/04/01/twitter_on_scala/, accessed 4 Jun
2014

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

142 | P a g e

www.ijacsa.thesai.org

which Immanuel Kant tackled more than two centuries ago
[16]. Perhaps the relationship between software complexity
and aesthetics and matters of taste is more than a philosophical
one for if software complexity were ―in the eyes of the
beholder‖ it might account for the 100-plus different metrics,
computational and cognitive, that propose to blindly quantify
what is desirable and undesirable in code, the irony
notwithstanding [17,18]. Our point is only to suggest that
rather than inventing yet another metric for functional
programs, we believed it more productive as an experiment to
start with existing metrics, off-the-shelf, so to speak; refactor
them only if needed; and see what the source code is telling
us.

As a candidate, M has its downsides, being imperfect and
dated [19,20]. Furthermore there is no research on how to
apply M to functional programs, which differ in some
fundamental ways from imperative programs for which M had
been originally developed. Still M remains the most widely
known and often applied metric, standing singularly for its
diverse implementations

3
 and published risk assessments by

the Software Engineering Institute [21].

LOC, as a simple measure of complexity, is similarly dated
and inadequate [22]. Some modern languages furthermore
present semantic challenges for measuring LOC because of
nested definitions and structures. Nevertheless the enduring
importance LOC, despite their limitations, are evident in
modern source editors, IDEs, operating systems, etc. which
would be incomplete from a programming point of view
without line counting facilities.

Hatton observed for FORTRAN and C that M and LOC
were statistically correlated, declaring M ―effectively useless‖
[23]. Perhaps Hatton made this claim because LOC was so
obvious and simple that there had to be a better approach,
although for our purposes we show this view of LOC is naïve
at best. We don’t disagree with Hatton in principle; we would
simply state the matter differently. Namely, we expect only as
a working hypothesis that any other measure of software
complexity is positively correlated with LOC since this view
comports with commonsense and anecdotal experience.

III. WHY SCALA?

We were motivated to study Scala for a few reasons.

1) Scala blends functional and object-oriented styles,

which stood out for us as representative of the forward-

looking, modern turn toward practical functional

programming.

2) Scala is a Java Virtual Machine (JVM) language. This

is complementary to the first item above and it means Scala

3 For only a smattering of languages see F. Kline, ―Cyclomatic Complexity

Viewer,‖ http://www.codeproject.com/Articles/10705/Cyclomatic-

Complexity-Viewer, accessed 12 Aug 2013; G. Wilson, ―Cyclomatic
complexity for Python code,― http://thegarywilson.com/blog/2006/cyclomatic-

complexity-for-python-code/, 9 Jul 2006, accessed 6 Jun 2014; G. Wilson,

―Cyclomatic complexity for Python code,―
http://thegarywilson.com/blog/2006/cyclomatic-complexity-for-python-code/,

9 Jul 2006, accessed 6 Jun 2014; SonarSource, http://www.sonarqube.org/,

accessed 6 Jun 2014; and Cyvis, ―Software Complexity Visualiser,‖
http://cyvis.sourceforge.net/cyclomatic_complexity.html, accessed 6 Jun 2014

runs virtually everywhere (e.g., desktops, browsers,

cellphones, tablets, and GPUs [24], and furthermore

interoperates with a large installed base of legacy Java codes.

Thus, a study of Scala may be of interest to a broader

audience of programmers and researchers.

3) Scala repositories are readily accessible as open

source. Some of these repositories, as we show, are large,

sophisticated, and deployed in a commercial / production

capacity.

4) The Scala open source community provided us with the

requisite tools to develop our own tools. We are referring

mainly to the Scala plugin for Eclipse (see below) that was

created and over the years improved by the Scala community.

5) We are Scala programmers. We have used Scala for

teaching and research purposes and we were thus curious to

know how our anecdotal experience compared with empirical

data.

IV. SCLASTIC

The main problems, conceptual and programming, were
how to apply LOC and M to Scala. In summary, the issue for
LOC is how to interpret inner definitions. The issue for M is
handling standard library and user-defined high-order
predicate functions.

Thus, we sought to implement an experimental compiler
kit capable of solving these problems for a large sample of
Scala source codes. We call this kit, Sclastic since it operates
in an ―elastic‖ manner, that is, it learns to dynamically
estimate M by discovering the signatures of high-order
functions that take predicate (i.e., Boolean-returning) function
objects as parameters and storing this information in a
database that Sclastic consults during a separate pass.

Sclastic is itself mostly written in Scala and the source is
hosted on GitHub.

 4
Sclastic is not in the portfolio of

repositories we analyze.

At a high level, the main body of Sclastic has three phases,
each comprising one or more passes. The first phase, the de-
commenter, removes comments and empty lines from the
input file, which it stores as an in-memory stream of string
objects. The second phase, the parser, filters the string stream
and identifies lexical objects, methods, scopes, and decision
points, which we describe below. The final phase, the method
compiler, analyzes the parse stream and calculates lines counts
and estimates M for each method.

This three-phase process outputs a list of Scala objects that
other parts of the Sclastic kit analyze for statistical and report
generation purposes.

A. Definitions

For the purposes of this paper, we have the following
definitions.

 Line. A Scala line is a sequence of zero or more
characters terminated by a newline character or the end

4See ―Sclastic,‖ http://github.com/roncoleman125/Sclastic, accessed 6 June
2014

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

143 | P a g e

www.ijacsa.thesai.org

of file. In the degenerate case, an empty line has only a
newline character or is the end of file. A line may
contain one or more comments. A de-commented line
is a line with all comments removed.

 Method. A method is a Scala class member function.
The function may return an object or it may be void
returning in which case it may also be called a
procedure. The method may have zero or more formal
parameters. Every method is composed of at least one
non-empty line.

B. Line counts

Per the definition above, counting lines in Scala source, in
the simplest cases, is simple. Consider the snippet below.

1: class A {

2: def evens(input: List[Int]):

 List[Int] = {

3: input.filter(p => p % 2 == 0)

4: }

5: }

Snippet 1

The evens method of class A, given a list of integers,
returns a new list with only the even numbers from the input
list. (Note: Scala ignores indents and most whitespace. We
added line numbers only for readability; they are not part of

Scala syntax.) In this case, the line count of evens which
Sclastic reports, is the number of lines between and including

the inner curly braces of evens, that is, three.

Curly braces, however, are often optional in Scala.

Consider the snippet of class B below.

1: class B {

2: def evens(input: List[Int]) =

 input.filter(p => p % 2 == 0)

3: }

Snippet 2

This evens method is functionally equivalent to the one

from class A. However, Sclastic compiles evens in this case
giving a line count of one.

Counting lines is even subtler since Scala permits inner
definitions of classes and methods. That is, it is possible to
define classes within classes, methods within methods, and
combinations thereof with arbitrary nesting depth. Consider

the snippet below, which implements evens with the closure,

iseven.

1: class C {

2: val TWO = 2

3: def evens(input: List[Int]):

 List[Int] = {

4: def iseven(a: Int): Boolean =

 a % TWO == 0

5: input.filter(p => iseven(p))

6: }

7: }

Snippet 3

While the ―nominal‖ line count of evens is four (i.e.,
lines 3 – 6), the ―effective‖ line count is three (i.e., lines 3, 5

and 6). The nominal and effective line count of iseven is
one (i.e., line 4).

Note furthermore that class C has an implied constructor

which initializes the member, TWO, whenever an instance of C

comes into existence. (In Scala, a val type is a read-only

―value‖ or constant, final in Java.)

Sclastic interprets constructors as initializer methods.
Thus, while the constructor’s nominal line count is seven (i.e.,
lines 1 – 7), its effective line count is three (i.e., lines 1, 2, and
7).

We define the nominal line count to be the number of lines
of a lexical scope including inner definitions. The effective
line count is the number of lines of a lexical scope not
including inner definitions. For purposes of this paper, we use
only the effective line count.

C. Hard signatures

The cyclomatic complexity given by McCabe [5] is

M = E – N + 2 P (1)

where E and N are the number of edges and nodes,
respectively, in the program flow graph and P is the number of
exit points for a given method.

A simplification is to use predicate counting [5,33]. It
counts decision points, i.e., statements that contain Boolean
expressions where an alternate path though the code might be
selected. If π is a function, which returns the number of
decision points within a method, then the cyclomatic
complexity can also be calculated as follows:

M = π + 1 (2)

McCabe [5] shows that Equations 1 and 2 give the same
result for a method whe P=1. In both cases, the smallest value,
M=1, means the method consists only of a ―basic block‖ or
―straight-line‖ code.

Using Equation 2 makes calculating M straight forward for
languages like Java. In this case, the decision point signatures
are the selection and looping statements: if, switch-case, for,
while, and do-while. Since these statements may also contain
Boolean expressions connected by logical-and and/or logical-
or operators, respectively, && and | | are also decision points
in the context of selection and looping statements. For
instance, we count an if statement as one decision point while
we count an if statement with an embedded && or | | as two
decisions points.

There is yet another simplification which we assume.
Namely, if the Boolean expression in the selection or loop is
constant true (i.e., there is no decision), it is still counted as a
decision point, even though the Boolean expression will never
be false.

As the table below suggests, there is an incomplete
correspondence between Java and Scala decision point
signatures.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

144 | P a g e

www.ijacsa.thesai.org

TABLE I. JAVA AND SCALA DECISION POINT SIGNATURES

Java Scala

if if

for for (possibly)

while while

do-while N/A

switch-case match-case

&&, | | &&, | |

N/A higher-order functions

First, we ignore the do-while. It doesn’t exist in Scala.

As for the Scala for statement, it behaves like the Java for-
each statement. That is, it operates on a collection and visits

every element unconditionally. The Scala for statement may
contain an if keyword. However, this case is covered by the if
signature in Table 1.

We say the above signatures are ―hard‖ in the sense that
their signatures are part of the language. Furthermore, we
hard-code them in a program table we call the ―book‖ which
Sclastic searches when it parses the input source.

D. Hard signatures

Scala also makes decisions in the context of higher-order
functions that take Boolean-returning function objects. We call
these higher-order functions, predicate contexts.

Consider Snippet 1. The function literal, p => p % 2

== 0, determines whether an element of the List collection
is even. The problem is that we must search the source for all

references to predicate contexts like filter. As we show,
the Scala standard library has hundreds of such methods, the
signatures of which we can put in the book with the hard
signatures.

Doing so solves only part of the problem. It does not allow
for the Scala standard library to incorporate new predicate
contexts or refactor old ones. Furthermore, a programmer may
extend the Scala standard library and add new predicate
contexts or create new classes and predicate contexts that are
independent of the Scala standard library.

Our solution to these problems was to make two passes
over the input during the parser phase. During the first pass the
parser identifies method definitions that are predicate contexts,
that is, ―soft‖ signatures, which the parser adds to the book.
During the second pass, the parser queries the book to identify
decision points, hard and soft. (In practice, there are in fact
two books, a ―hard‖ one, which is ―hard-coded‖ into Sclastic,
and a ―soft‖ one, which is created dynamically and stored in a
datbase. A configuration switch tells Sclastic to generate the
soft one and stop or load the soft one and continue analyzing
the source.)

E. Soft signature miss rate

The book may still be incomplete. Namely, decision points
that reference predicate contexts, which are not in the portfolio
of repositories, will not be in the book. One solution is to
inflate the portfolio with repositories until the book is
―closed,‖ namely, all references to predicate contexts are

contained in the book. We consider this approach definitive
but impractical. The universe of Scala repositories is likely
large and not necessarily completely hosted by GitHub.

We have chosen instead to model the potential severity of
the problem by estimating the probability of a soft signature
not being in the book when it is needed—the soft signature
miss rate. First, we have the probability of declared imports
that that do not have corresponding package exports in the
portfolio. This is the package miss rate. However, the soft
signature miss rate is likely a fraction of the miss package rate
since not every imported package contains predicate contexts.
For instance, Java imports will not have predicate contexts. In
general, the majority of Scala repositories in the portfolio do
not contain predicate contexts. Thus, the soft signature miss
rate is a joint probability, namely, the missing package rate
times the probability that a package has predicate contexts,
assuming the two are mathematically independent.

For a random sample of repositories, we model the soft
signature miss rate, S, as follows:

S ≈ k × w (3)

where k is the observed missing package rate and w is the
observed fraction of repositories that contain packages with
predicate contexts. We observe the parameters, k and w, using
the law of succession [25] and frequency data extracted from
the portfolio.

Finally, there are reasons we suggest to exclude the Scala
compiler / standard library repository from the portfolio.
However, our analysis always includes in the book soft
signatures from the entire portfolio of repositories, that is,
including the Scala repository.

V. EXPERIMENTAL DESIGN

In this section, we describe the experimental design and
give summary statistics for the portfolio.

A. Data

We created a portfolio of all the Scala repositories that
GitHub identified as trending. This term, ―trending,‖ is
GitHub terminology, which by GitHub’s definition means a
repository that ―the GitHub community is most excited about‖.
The important thing is that GitHub selects these repositories
when we specify the language, ―scala.‖ GitHub returns the
respective ―trending‖ repositories as hyperlinks on several
web pages.

The portfolio starts as a collection of downloaded zip files
which are inputs to Sclastic. The portfolio includes the Scala
compiler / standard library which are written largely in Scala

5
;

the Twitter, Inc., server and libraries
6

; several, large
commercially inspired repositories such as Lift [26] and
Akka

7
; and many smaller and lesser known repositories for

computational finance, graphics, games, networking, web

5See ―Scala: Object-Oriented Meets Functional,‖ http://scala-lang.org,
accessed 6 Jun 2014
6See ―Twitter is built on open source software,‖ http://twitter.github.io/,

accessed 30 Jun 2013
7See ―Akka,‖ http://akka.io/, accessed 6 June 2014

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

145 | P a g e

www.ijacsa.thesai.org

services, crypto-graphics, and artificial intelligence, among
others.

In the case of Twitter, Inc., of its 42 repositories on
Twitter’s home page on GitHub

6
, three were found to be

―trending‖ and the rest we included in the portfolio for the
sake of curiosity and possible future research. The other
exception was Casbah

8
, a repository we had used for initial

testing.

We downloaded 262 repositories in total. 85% of the
repositories were trending and the rest, 15%, were non-
trending, being the 39 Twitter repositories and Casbah. This
portfolio consisted of 21,596 source files with 2,391 KLOC
(1,519 KLOC with comments and empty lines removed), and
223,493 methods.

The book has 1,187 soft signatures. 471 or approximately
40% are from the Scala repository. The remaining 60% are
made from 77 other repositories. The portfolio exports 3,667
unique packages and imports 89,131 packages, 81,285 or
91.2% of which Sclastic found in the portfolio.

The table below gives statistics on the ten largest
repositories in the portfolio ranked by number of methods.
(All counts are ×1000.)

TABLE II. TEN LARGEST REPOSITORIES IN THE PORTFOLIO.

Repository

Methods

% tot.

Raw
LOC

Stripped
LOC

1 Scala 57 26 401 247

2 Scala Test 17 7 300 170

3 Delite 9 4 62 41

4 Lift 9 4 106 58

5 Akka 8 4 105 66

6 SBT-0.13 7 3 45 36

7 Spire-2.10.0 5 2 23 17

8 Scalaz-Seven 5 2 42 28

9 Finagle 5 2 56 41

10 BIDMat 4 2 16 14

These ten largest repositories account for 56% of the
methods and 47% of the executable LOC in the portfolio.

B. Setup

We used Eclipse
9
, Indigo service release 2 to develop and

run Sclastic with the Scala 2.92 compiler and the Scala IDE
plugin 3.0.0

10
.

We have one Korn shell script. It computes the package
miss rate given a list of imports and a list of imports that have
no declared class or package in the source. We also have one
C program. It calculates, Kendall’s τ [27] and MADM [28]
statistics.

C. Nonparametric methods

A visual inspection of the distributions of M and LOC
suggested the data probably were non-Gaussian. This was in

8See ―MongoDB,‖ http://10gen.com, accessed 6 June 2014
9See ―Eclipse,‖ http://eclipse.org, accessed 15 Feb 2013
10See ―Scala IDE for Eclipse,‖ http://scala-ide.org/, accessed 12 Aug 2013

fact confirmed by the Kolmogorov-Smirnov (K-S) test [27].
Thus, we used only robust statistical measures like the K-S
test. Two other methods we use are Kendall’s τ and median
absolute deviation from the median or MADM. Kendall’s τ is
a rank-based measure of correlation, a nonparametric analogue
of Person’s r. MADM is a rank-based measure of variability
which might be considered a nonparametric analogue of the
coefficient of variation. We calculate both of these statistics
using the kendall.c program included in the Sclastic
repository. The interested reader may wish to consult the
source code and/or the literature for more details about these
statistics.

D. Scatter plots

Our intensions for the scatterplots were to paint a picture
of the qualitative relationship between M and LOC. However,
since both M and LOC are discrete integer values, we found a
simple scatterplot gives a terrace-like picture, obscuring many
data points that may be overlaid by other data points. This
loses much information. The scatterplots we use attempt to
correct this problem by rendering data points at not at x=M×q
and y=LOC×q but x=Ω(M×q+η0) and y=Ω(LOC×q+η1). Here
q is a scaling constant that converts the respective value to
pixel units (q is the same in both cases); η0 and η1 are uniform
random deviates on the interval [-0.50, 0.50); and Ω rounds to
the nearest integer. In other words, we render each point
without bias within one scaled unit of its location in the chart.

VI. RESULTS

Thus, per Equation 3 we estimate k = 0.088 and w =
(1+78) / (262+2), namely, in accordance with the law of
succession [25]. Our ―best guess‖ of the soft signature miss
rate is S ≈ 0.026.

All results are based on source after the comments and
empty lines have been removed. Furthermore, since the Scala
complier/standard library repository is by far the largest in the
portfolio, we analyzed the portfolio with this repository and
without it to check for any possible bias the Scala repository
may have had on the overall results. The table below gives the
summary statistics for the portfolio with and without the Scala
repository.

TABLE III. SUMMARY STATISTICS WITH AND WITHOUT THE SCALA

REPOSITORY

 Portfolio w/o Scala repos.

τ 0.258 0.274

Median M 1.0 1.0

Median LOC 2.0 2.0

MADM (M) 0.0 0.0

MADM (LOC) 1.0 2.0

Hard decision points 126,432 96,732

Soft decision points 122,202 110,996

The scatter plots below include the Scala
compiler/standard library repository and excludes it
respectively.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

146 | P a g e

www.ijacsa.thesai.org

Fig. 1. Scatter plot M (horizontal axis) vs. LOC (vertical axis) including the
Scala compiler/standard library repository. Both axes have range [0,50].

Fig. 2. Scatter plot M (horizontal axis) vs. LOC (vertical axis) excluding the

Scala compiler/standard library repository. Both axes have range [0,50].

M is the horizontal axis and LOC, the vertical axis. The
ranges of M and LOC on each axis are 0 - 50 (inclusive) which
account for >99% of the data points.

The table below gives the distribution of the first ten M per
method values across the entire portfolio.

TABLE IV. DISTRIBUTION OF M MEASUREMENTS

M Freq. % of total cum. %

1 167,717 75.1 75.1

2 25,527 11.0 86.1

3 10,969 4.9 91.0

4 6,013 2.6 93.6

5 4,124 1.8 95.4

6 2,287 1.0 96.4

7 1,606 0.7 97.1

8 1,071 0.5 97.6

9 911 0.4 98.0

10 678 0.3 98.3

The chart below gives the M per method distribution
plotted on a log-log scale.

Fig. 3. Distribution of M / method plotted on log-log scales including (+)

and excluding (o) the Scala complier/standard library repository.

The table below gives the distribution of the first ten M per
method values

TABLE V. DISTRIBUTION OF LOC MEASUREMENTS

LOC Freq. % of total cum. %

1 100,692 45.5 45.5

2 31,221 14.1 58.6

3 14,212 8.7 68.3

4 9,994 6.4 74.7

5 7,197 4.5 79.2

6 2,287 3.3 82.5

7 1,606 2.7 85.2

8 5,990 2.1 87.3

9 4,700 1.7 89.0

10 3,935 1.5 90.5

The chart below gives the LOC per method distribution
plotted on a log-log scale.

Fig. 4. Distribution of LOC / method plotted on log-log scales including (+)

and excluding (o) the Scala complier/standard library repository

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100

F
re

q

M / method

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000

F
re

q

LOC / method

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

147 | P a g e

www.ijacsa.thesai.org

VII. DISCUSSION

In this section we discuss and interpret the results.

A. Soft signature miss rate

We had noted that estimated soft signature miss rate, S, is
less than 3%. This suggests that the book, which as we
mentioned always contains the Scala standard library, is
mostly complete as it contains an overwhelming majority of
all the soft signatures required by the portfolio to reliably
estimate M.

B. Correlations

Table 3 shows weak correlation between M and LOC
including the Scala repository. The correlation also remains
weak without the Scala repository. We interpret the weak
correlation with and without Scala repository this to mean that
the Scala repository does not appear to bias the M and LOC
correlation. That the correlation is positive agrees with the
commonsense expectation we posited at the outset. However,
that the correlation is weak tell us that M is not ―effectively
useless‖ in relation to LOC as Hatton wrote.

The positive but weak correlation would seem to suggest
that M and LOC are measuring related but nevertheless
different phenomena in the source. Some evidence in support
of this conjecture is the MADM statistics. That MADM(M) <
MADM(LOC) in general indicates that M is a more stable
measure with less variability compared to LOC. This stands to
reason since the range of M tends to be smaller than that for
LOC. Indeed, this would explain the vertical layering of the
scatterplots in Figure 1 and Figure 2. (Note: since M>0 and
LOC>0, we find no data points on the x=0 or y=0 axis.) In
other words, these data don’t contradict Hatton [23] but they
also don’t fully support it. LOC and M are not interchangeable
and both metric may be needed to provide a more complete
picture of the complexity of Scala codes.

C. Hard and soft decision points

We note in Table 3 that there are nearly as many soft
decision points as hard ones. The hard-to-soft ratio with the
Scala repository is 1.03 and without it, 0.87. This fraction
might indicate that overall programmers are exploiting the
blend of functional and object styles in Scala, which would
make sense. That the Scala repository employs fractionally
more hard decision points (126,432-96,732=29,700) than soft
ones (122,202-110,996=11,206) is noteworthy as the hard-to-
soft ratio is 2.65. We offer only as conjecture the possibility
that the Scala repository doesn’t reference its own standard
library in relative terms. The standard library would be
designed and implemented more for reuse by others.

D. Distributions

Although the median M=1 in Table 3, Table 4 shows that
slightly more than 75% of methods have M=1. Although the
median LOC=2, Table 5 shows nearly 70% of methods have
LOC≤3. In other words, most of the code is highly modular
and mostly simple. As we pointed out, the K-S test indicates
that both of these distributions are non-Gaussian (P < 0.01).

In our opinion, this is perhaps even more interesting and
surprising. First, on its face, this data tends to agree with

claims of functional programming proponents, that is,
functional programming encourages highly modular coding. It
does not, at least, seem to contradict them. Whether this is
unique to Scala or the functional style is unknown. Second, it
could be argued that the short and simple methods are mainly
―getters‖ and ―setters‖. We don’t know; Sclastic does not
distinguish getters and setters from other methods. However,
we doubt this is the explanation for the preponderance of
short, straight-line methods since Scala obviates the use of
such boilerplate in general. Another explanation to consider is
programmers are merely following the published style guides
by Scala language designers and Twitter, Inc.

11
 The problem

with this idea is the style guides are only those: guides.
Furthermore Scala is a relatively new language and the style
guides, as far as we know, are even newer.

There is yet another possibility to account for these
distributions. As we pointed out, the distributions and M and
LOC are non-Gaussian. This was the reason we used robust
methods of statistical analysis. First, the charts in Figure 3 and
Figure 4 strongly resemble one another. Again, this suggests
that with (+) or without (o) the Scala compiler / standard
library repository, the general statistical pattern persists.
Second, the distributions resemble those distributions of
physical and aesthetic phenomena known to follow power-
laws [29]. That is, the explanatory model has the form of a
homogenous power-law, namely, f (x) = c x

α
 where c and α

are constants. This notion was tested by [30] which found
power-laws offered the best, most parsimonious explanation
for distributions and M and LOC. The reader will note that,
indeed, if we plotted, log f (x) = α log(x) + β we would obtain
a line with slope α and intercept β = log(c). Figure 3 and
Figure 4, in this case, α <0, suggest that.

Here we wish to go further and speculate that the M and
LOC type-distributions as presented in this paper may not be
unique to Scala per se. Rather, they may be a statistical
characteristic of other languages, when studied in the large as
the case of our portfolio of Scala repositories. However,
similar distributions for other languages have not been
reported elsewhere in the literature, which leaves open a
research for further study.

VIII. CONCLUSIONS

The results we have give in this paper point in a few
different directions for future research. One of these is to
confirm our findings for other functional programming
languages where open source is concern. In this way, we have
the opportunity to study possibly many other repositories. We
gave a list of candidate languages in the ―Background‖
section. Another direction is to study a language like Java. The
promise of Java is we would likely find many repositories on
GitHub. Finally, a study of Java repositories, being largely
object-oriented at this time (Java 8, which supports lambda
expressions, was released in March 2014), offers an
opportunity to make some assessment and comparison of the
relative contributions of functional and object styles in the
data we presented here for Scala.

11See ―Scala Style Guide,‖ http://docs.scala-lang.org/style/, accessed 9 June

2014 and ―Effective Scala,‖ http://twitter.github.io/effectivescala/, accessed 9
June 2014

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

148 | P a g e

www.ijacsa.thesai.org

ACKNOWLEDGMENTS

The authors thank the reviewers for their helpful feedback.

REFERENCES

[1] M. Odersky, L. Spoon, B. Venners, Programming in Scala: A
Comprehensive Step-by-Step Guide, Artima, 2011

[2] M. Odersky, T. Rompf, ―Unifying Functioal and Object-Oriented
Programming with Scala,‖ CACM, vol. 57, no. 4, April 2014

[3] T. McCabe, ―A Complexity Measure,‖ IEEE Transactions on Software
Engineering, vol. SE-2, no. 4, Decemember 1976

[4] P. Hudak, ―Conception, Evolution, and Application of Functional
Programming Languages, ACM Computing Surveys, vol. 21, no. 3,
1989

[5] G. O’Regan, A Brief History of Computing, Springer, 2010

[6] C. Emerick, B. Carper, C. Grand, Clojoure Programming, O’Reilly,
2012

[7] M. Fogus, Functional JavaScript: Introducing Functional Programming
with Underscore.js, O’Reilly, 2013

[8] M.R. Hnsen, H. Rischel, Functioal Programming Using F#, Cambridge
University Press, 2013

[9] G. Michaelson, An Introduction to Functional Programming Through
Lambda Calculus, Dover, 2011

[10] S. St. Laurent, Introducing Erlang, O’Reilly, 2013

[11] S. Thompson, Haskell: The Craft of Functional Programming, Pearson
Education Ltd, 2011

[12] D. Wampler, Functional Programming for Java Developers: Tools for
Better Concurrency, Abstraction, and Agility, O’Reilly, 2011

[13] H. Sutter, The Free Lunch is Over: The Fundamental Turn Toward
Concurrency in Software, Dr. Dobbs Journal, vol. 30, no. 3, 2005

[14] R. Coleman, U. Ghattamaneni, ―Parallel Collections: A Free Lunch?,‖
Journal of Computer Science and Engineering,‖ vol. 17, issue 2, 2012

[15] J. Hughes, ―Why Functional Programming Matters,‖ Research Topics in
Functional Programming, ed. Turner D, Addison-Wesley, 1990, pp. 17–
42

[16] I. Kant, The Critique of Judgment (1790), translation by J. C. Meredith,
Oxford University Press, 1978

[17] E. Weyuker, ―Evaluating Software Complexity,‖ IEEE Transactions on
Software Engineering, vol. 14, no. 9, Sep. 1988

[18] D. Tran-Cao, G. Lévesque, J. Meunier. "A Field Study of Software
Functional Complexity Measurement." Proceedings of the 14th
International Workshop on Software Measurement, 2004

[19] G. Gill, C. Kemerer C, ―Cyclomatic Complexity Metrics Revisited: An
Empirical Study of Software Development and Maintenance,‖ CISR WP
No. 218, Sloan WP No. 3222-90, 1990

[20] N. Pataki, A. Sipos, Z. Porkolab, ―Measuring the Complexity of Aspect-
Oriented Programs with Multiparadigm Metric,‖ Proc. of ECOOP 2006
Doctoral Symposium and PhD Students Workshop, 2006

[21] SEI, ―C4 Technology Reference Guide, Software Engineering Institute,‖
Carnegie Mellon, 1997

[22] C. Archer ―Measuring Object-Oriented Software Products,‖ Software
Engineering Institute, Carnegie Mellon, 1995

[23] L. Hatton, ―The role of empiricism in improving the reliability of future
software,‖ TAIC, 2008

[24] N. Nystrom, W. White, K. Das, ―Firepile: GPU Programming in Scala,―
GPCE, 23 Oct 2011

[25] E.T. Jaynes, Probability Theory: The Logic of Science, Cambridge, UK,
Cambridge University Press, 2003

[26] T. Perrett, Lift in Action: The Simply Functional Web Framework for
Scala, Manning Publications, 2011

[27] J. Conover J, Practical Non-Parametric Statistics, Wiley, 1995

[28] D.C. Hoaglin, F. Mosteller, J.W. Tukey, Understanding Robust and
Exploratory Data Analysis, Wiley-Interscience, 2000

[29] M. Schroeder, Fractals, Chaos, Power Laws: Minutes from an Infinite
Paradise, Dover, 2009

[30] R. Coleman, M. Johnson, ―Power-Laws and Structure in Functional
Programs‖, Proceedings of the 2014 International Conference on
Computational Science & Computational Intelligence, Las Vegas, NV,
10 – 13 Mar, 2014, IEEE Computer Society CPS.

