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Abstract—RSA is one of the most important public key cryp-
tosystems for information security. The security of RSA depends
on Integer factorization problem, it relies on the difficulty of
factoring large integers. Much research has gone into problem of
factoring a large number. Due to advances in factoring algorithms
and advances in computing hardware the size of the number
that can be factorized increases exponentially year by year.
The General Number Field Sieve algorithm (GNFS) is currently
the best known method for factoring large numbers over than
110 digits. In this paper, a parallel GNFS implementation on
a BA-cluster is presented. This study begins with a discussion
of the serial algorithm in general and covers the five steps of
the algorithm. Moreover, this approach discusses the parallel
algorithm for the sieving step. The experimental results have
shown that the algorithm has achieved a good speedup and can
be used for factoring a large integers.

Keywords—parallel Algorithm; Public Key Cryptosystem; GNFS
Algorithm.

I. INTRODUCTION

Factoring is very important in the field of cryptography,
specifically in the RSA cryptosystem. The RSA algorithm [5]
is the most popular algorithm in public-key cryptosystems
and RSA is used in real world applications such as: internet
explorer, email systems, and online banking [12]. The security
of RSA algorithm relies on the difficulty of factoring large
integers. There are many integer factorization algorithms used
to factor large numbers, such as Trial division [6], Pollards
p-1 algorithm [7], Lenstra Elliptic Curve Factorization (ECM)
[8], Quadratic Sieve (QS) [9] and General Number Field
Sieve (GNFS) algorithm [1]–[4]. GNFS is the best known
algorithm for factoring large composite numbers over than
110 digits. This algorithm takes a long time to factor large
integers. Therefore, this paper presents an implementation of
parallel GNFS algorithm on a BA-cluster.

The main objective of this paper giving new proposed
algorithm for sieving step in cluster system. This paper consists
of eight sections. Section II will introduce the GNFS algorithm.
Section III gives the reasons for selecting sieve step. Section IV
gives an overview for serial sieve step and give an overview for
previous parallel sieve step. Section V proposes a new method
for parallel sieve step on cluster system. In section VI the
configuration of hardware and software used to implement the
parallel sieving step on cluster system. Section VII introduces
the experimental results for the proposed methods. Section VIII
focus in conclusion and future works.

II. THE GNFS ALGORITHM

The General Number Field Sieve (GNFS) algorithm [1],
[2] is derived from the Number Fields Sieve (NFS) algorithm,
developed by A. K. Lenstra, H. W. Lenstra, M.S. Manasse and
J. M. Pollard [10].

GNFS have five major steps which are described as follows:

1) Step 1: (Polynomial selection)
Find a polynomial f : R→ R of degree d with

integer coefficients as follows:

f(x) = adx
d + ad−1x

d−1 + · · ·+ a0 (1)

such that f(m) ≡ 0( mod n).

2) Step 2: (Factor bases)
The main objective of this step is to find three

types of factor bases: (1) rational factor base, R, (2)
algebraic factor base, A, and (3) quadratic character
base, Q. The three factor bases are define as follows:
The rational factor base R [1]
A rational factor base is a finite collection of prime
numbers, pi, up to some bound M , M ∈ N. i.e.

R = {p : p is a prime and p ≤M , M ∈ N }.
Smooth over R [1]
An integer l ∈ Z is said to be smooth over a rational
factor base R if R contains all of the prime divisors
of l. i.e.

l =
∏
pi∈R

pi.

The algebraic factor base A [1]
An algebraic factor base is a finite set {a+bθ} ⊂

Z[θ] where for a, b ∈ Z, each a+bθ satisfies ∀(a, b), @
c, d ∈ Z[θ] such that c · d = a+ bθ.
Smooth over A [1]

An element l ∈ Z[θ] is said to be smooth over
an algebraic factor base A if

l =
∏

(c,d)∈À⊂A

(c+ d θ).

The quadratic character base Q [1]
The quadratic character base Q is a finite set of pairs
(p, r) with the same properties as the elements of
the algebraic factor base, but the primes pi ∈ Q are
larger than the largest in the algebraic factor base,
pi > p̀ ∈ A where p̀ is the largest element in the
algebraic factor base A, i.e.
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Digits Sieve Total Sieve/Total

30 26.5s 32.3s 82%

39 15.0s 19.7s 76.1%

45 184.3s 250s 74%

51 222.3s 311.5s 71.4%

61 3620.7s 4320.4s 84%

76 26477.9s 37171.9s 71.2%

98 17300.6s 20790.9s 83.2%

TABLE I: GNFS integer factorization records [14]

Q = {(pi, ri) : pi > p̀ where p̀ the largest in the
algebraic factor base A}

3) Step 3: (Sieving)
Find many pairs of integers (a, b) with the

following properties:
1. gcd(a, b) = 1.
2. a+bm is smooth over the rational factor base.
3. a+bθ is smooth over the algebraic factor base.

4) Step 4: (Linear algebra)
The relations are put into relation sets and a

very large sparse matrix is constructed. The matrix is
reduced resulting in some dependencies, i.e. elements
which lead to a square modulo n.

5) Step 5: (Square root)

• Calculate the rational square root, r, such that:

r2 =
∏

(a,b)∈V

(a+ bm)

• Calculate the algebraic square root, s, such
that:

s2 =
∏

(a,b)∈V

(a+ bθ)

• Then p and q can then be found by gcd(n, s−
r) and gcd(n, s + r) where p and q are the
factors of n.

III. WHY SIEVING STEP?

The main objective of this section is to give the
importance of the sieving step. Previous studies shows that
the sieving step is very important for several reasons:

1) The sieving step is the most time consuming, it takes
more than 70% of the total time from the time of
implementation as shown in Table I [14].

2) The second reason is that the sieving step can be
parallelized easily.

The experimental studies show that there are some
problems in the implementation that led to slow the previous
parallel program. In the previous algorithm there are many
communications between the master nodes and the slaves. The
communication times increase when the size of n increases.
Another cause for inefficiency is that each processor does
sieving for different pairs. Therefor, the sieving time for each
processor might be different. The master node can not start the
next sieving until all the slave nodes finish their sieving [14].

IV. PREVIOUS SIEVING WORK

Algorithm 1 shows the steps of serial sieving. The
sieving step uses nested for-loops, one for the values of b′s and
the other for the values of a′s. In the outer loop, b ranges from
−C to C, usually the values of b′s are in range 1 ≤ b < C. In
the inner loop, b is fixed and a changes from −N to N . The
sieving step takes long time because it uses two loops and the
values of a and b are usually very large.

Algorithm 1 Serial sieving algorithm [14].
1: b0 = 1;
2: b1 = C;
3: a1 = −N ;
4: a2 = N ;
5: for (b = b0; b < b1; b+ +) do
6: for (a = a1; a < a2; a+ +) do
7: if (a, b) Smooth over R and Smooth over A then
8: save(a, b);
9: end if

10: end for
11: end for

L.T.Yang, L.Xu, and M.Lin proposed parallel sieving
in a cluster system [12]–[15]. The basic idea of the proposed
algorithm is that each processor takes a range of b′s values
and generate a set of (a, b) pairs as shown in algorithm 2.

Algorithm 2 Parallel sieving algorithm [14].
1: MPI Init();
2: MPI Comm size();
3: MPI Comm rank();
4: b0 = Min b;
5: b1 = Max b;
6: a1 = −N ;
7: a2 = N ;
8: num of bs = ((b1− b0)/p);
9: MPI Bcast(num of bs);

10: for (b=(taskid∗num of bs +b0)+1;b≤(b0+(taskid+1)∗
num of bs;b++) do

11: for (a = a1; a ≤ a2; a+ +) do
12: if (a, b) Smooth over R and Smooth over A then
13: if master then
14: MPI Recv((a,b));
15: save(a, b);
16: else
17: MPI Send((a,b));
18: end if
19: end if
20: end for
21: end for
22: MPI Finalize();

V. THE NEW METHODS

The main objective of this section is to describe the
new methods for the parallel sieving step of GNFS algorithm.
The new methods improve the parallel sieving algorithm by
decreasing the communications between the master node and
the slaves. In the following sections (V-A, V-B) we explain
the new methods and the results of each method.
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A. The first method

The main idea of the first method is to divide the range
of b between the processors. This is because, each b in the outer
loop generates a set of ordered pairs (a, b) independently of
the others b′s. So, each processor takes a range of b values and
generates a set of (a, b) pairs and then saves in a local file, see
Fig. 1. When all processors finish the computations of finding
their sets of ordered pairs (a, b), the master node copy all the
files that have the sets of (a, b) pairs from the slaves into one
file.

B. The Second Method

The main idea of the second method is the same as
the first method, it depends on dividing the range of b between
the processors. Except that each processor takes a range of b
values and generate a set of (a, b) pairs and then save it in an
array of large size (rels), see Fig. 2. Then each slave, find the
rels of different sets of ordered pairs (a, b) for each b in the
range belonging to this slave, then the slave will send the rels
to the master, and the master node receives all the sets of rels
from the slaves. This process will be repeated until we reach
the last b in the range belonging to this slave.

VI. HARDWARE AND SOFTWARE PROGRAMMING
ENVIRONMENT

The parallel GNFS program is implemented on a
Bibliotheca Alexandrina (BA) Supercomputer which is located
in Alexandria library, Alexandria, Egypt. The supercomputer
is a high performance computing cluster with performance
reaching 11.8 TFLOPS. It is composed of 130 computational
nodes, 6 management nodes including two batch nodes for job
submission (64 Gbyte RAM), inter-process Communication
network, and 36-TByte storage. Each node has two Intel Quad
core Xeon 2.83 GHz processors (64 bit technology), 8 Gbyte
RAM, 80 Gbyte hard disk, and a GigaEthernet network port.

The parallel code is based on the serial code developed
by C. Monico in [3]. The program is written in ANSI C and
compiled by GNU C compiler (gcc) and run under Linux
operating system. We have used MPI library to write the
parallel program. MPICH1 [16] is installed for MPI library.
Also we installed a free library GMP [17] which is required
to compile and to run the program.

VII. PERFORMANCE EVALUATION

A. Test Cases

In order to test our parallel algorithm for speedup
and efficiency, we choose different n and different number
of processors. In Table II shows all test cases and number of
processors which are used.

B. Timing Results

The time for the first method and the second method
for each test case is shown in Fig.3.

The Fig.3 show that the ruining time decreases by
increasing the number of processors. From Fig.3 the first

Test Digits of n Number of processors
1 61 1, 2, 4, 8, 10, 12, ,14, 16
2 76 1, 2, 4, 8, 10, 12, ,14, 16
3 80 1, 2, 4, 8, 10, 12, ,14, 16
4 100 1, 2, 4, 8, 10, 12, ,14, 16
5 110 1, 2, 4, 8, 10, 12, ,14, 16
6 120 1, 2, 4, 8, 10, 12, ,14, 16
7 130 1, 2, 4, 8, 10, 12, ,14, 16

TABLE II: Test cases and number of processors

method is faster than the second method using small number
of processors, otherwise the two methods are approximately
equal.

C. Speed-Up

Speedup is defined by the following formula:
Sp = T1

Tp
, where p is the number of processors, T1 is the

execution time of the sequential algorithm, and Tp is the
execution time of the parallel algorithm with p processors.
The speedup for the test cases using different number of
processors for the first method and for the second method are
presented in Fig.4.

From Fig.4 the second method is better than the first
method when n is small number, the first method is better
than the second method when n is large number.

D. Sieving Efficiency

Efficiency is defined as Ep =
Sp

p = T1

pTp
. It is a value,

between zero and one. The sieving efficiency for each test
case is shown in Fig.5.

From Fig.5 the first method is better than the sec-
ond method using small number of processors, otherwise is
approximately equal.

VIII. DISCUSSIONS

We propose two algorithms for sieving step in cluster
system. The difference between them is that one generate
a set of (a, b) pairs and then save it in local file for each
processor, the other strategy is to generate a set of (a, b) pairs
and then save it in an array of large size then send the set of
(a, b) pairs to the master.

The experimental studies show that the ruining time
decreases by increasing the number of processors. From Fig.3
the first method is faster than the second method when using
small number of processors, otherwise they are approximately
equal. Fig.4 shows that the speed-up for the second method
is better than the first method when n is small number, the
first method is better than the second method when n is large
number. Fig.5 shows that the efficiency for the first method
is better than the second method using small number of
processors, otherwise the efficiency is approximately equal.

There are still open questions and some research
points which can be studied, in future, such as:
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Smooth
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Sieve( )

yes no

MPI_Finalize( );

Fig. 1: The flowchart of first method

1) Decreasing the communications time when the size
of n increases by decreasing the communications be-
tween the master nodes and the slaves, so the sieving
time decreases when the communications decreases.

2) Further improvements on better load balance.
3) Trying to make all the steps of the algorithm in

parallel whenever possible
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